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ON COMPLETE LATTICE ORDERED GROUPS
WITH TWO GENERATORS II

MARIA JAKUBIKOVA

Part I of this paper has been published in to Mathem. Slovaca 28, 1978, 389 —406.

§7. Singular complete lattice ordered groups with two generators

If A is a direct factor of a lattice ordered group G and if M < G, then we denote
M(A)={m(A):meM}.

7.1. Lemma. Assume that a set M+ @ generates a complete lattice ordered
group G and that A is a direct fector of G. Then the set M(A) generates the
complete lattice ordered group A.

Proof. According to the assumption there exists an /-subgroup B of G with
G =A XB. Let H, be a closed /-subgroup of A such that M(A)c<H,. Let H be
the set of all elements geG with g(A)e H,. Clearly H=H, X B. Then H is
a closed /-subgroup of G and M c H ; thus H = G. From this it follows H,; = A.

Let G be a lattice ordered group. An element 0=e € G is said to be a weak unit
in G if eAx >0, whenever 0<x eG.

The following assertion is known (cf. [10]).

7.2. Lemma. Let G be a singular complete lattice ordered group with a weak
unit. Let 0=g €G. '

(a) There exists a (uniquely determined) singular element e in G such that e is
a weak unit in G and e; = e for each singular element e; of G.

(b) There are singular elements e; (i € N) such that the set {e;} (i € N) is disjoint
and

g= VieNiei

holds in G.
The assertion (b) from 7.2 can be generalized as follows:

271



7.3. Lemma. Let G be a singular complete lattice ordered group containing
a weak unit. Let g € G. Then there are singular elements e; (i € Ny) such that
(a) the set {e:} (i € Ny) is disjoint;
(b) there exists a singular element e € G such that e is a weak unit in G and

e = VieNuei )
+ . - .
) g =VieNlei, g =VieNy»\N_lei.

Proof. According to 7.2 there exist singular elements ¢; (i € N) in G such that
the set {e} (i e N) is disjoint and

g+=VieNiéi~

Analogously there exist singular elements e (i € N) in G such that the set {e;}
(i e I) is disjoint and

g =Vieniei.

Also, according to 7.2 there exists e € G such that e is singular, e is the join of all
singular elements of G and e is a weak unit in G. Thus there is eoe G with

eO=e_(ViENei)V(Vie;Ve:‘)~

Since g*Ag~ =0, we have e;ne, =0 for each i e N and each je N. Put e} =e_; for
each i e N. Then the set {e;} (i € No) is disjoint and

e= Vi eNo€i »
g_ = VieNo\N— ie; .
7.4. Lemma. Let G be a singular complete lattice ordered group with a weak
unit. Let e,, e, be singular elements of G. Then e [e.] =eAe,.

Proof. Lete be asin 7.2. Hence e; = ¢, e:=e. From the definition of a singular
element it follows that the interval [0, e] of G is a Boolean algebra. Hence there
exists the relative complement e of e, in the interval [0, e]. Put x =e,Ae3. Then
ei=(einez)vx, x Ae;=0. From this we obtain e, =(ei1Ae2) + x, x[e.] =0, hence

eifex] = (e1ner) [ex]=eines.
7.5. Lemma. Let G, g, e, e; (i € Ny) have the same meaning as in 7.3. Leti € N,
and let e’ be a singular element in G, e' =e;. Then gle']=ie’.

Proof. If i=0, then |g|Ane; =0, hence [glane’=0 and thus g[e’']=0.LetieN.
In this case we have g Ae; =0, hence g Ae’ =0, from which we infer g [e']=0
and g[e'] = g”'[e’]. Further, we have

+ . . . .
g =lev (VieN\(i)]ej) =iei+ Viemwie; .
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For each je N\{i} the relation ¢;Ae’ =0 is valid, whence
(VieN\(i)fei) [e']=0.
According to 7.4, ie;[e'] =ie’. By summarizing, we obtain
gle'l=ie’.

The method for i e Ny, i <0 is analogous.

For a lattice ordered group G we define the completely subdirect product
decomposition of G as follows.

Let {A;} (ieI) be a set of direct factors of G such that

(a) AinA;=0, whenever { and j are distinct elements of I;

(b) for each g € G, g >0 there exists i e I with g(A;)>0.

Then G is said to be a completely subdirect product of its /-subgroups G:.

The notion of the completely subdirect product has been introduced by F. Six
[17] (in a formally different, but equivalent, way). It is not hard to verify that G is
a completely subdirect product of its /-subgroups A;(i € I) if and only if for each
0<geG there are uniquely determined elements g; € A; such that g = \/ic1g:. (Cf.
also [14], §3.)

If G and A, fulfil the above mentioned conditions, then the mapping f defined by

f(x)={x(A)}ic1 foreach xe G

is an isomorphism of G into the direct product [ [, _A:.

7.6. Lemma. Let G be a lattice ordered group. Suppose that

(a) G is a completely subdirect product of its I-subgroups A; (iel);

(b) G is a completely subdirect product of its [-subgroups B; (j € J).

Then G is a completely subdirect product of its I-subgroups A;nB; (ieI,jeJ).

Proof. Denote A;nB;=C;.Ifi,i,el,j,jieJ and (i, j) # (i1, j1), then clearly
CinC.;,={0}. »
Let 0<g € G. According to (a) there is i € I with 0 <g(A:). Hence according to (b)
there is j € J such that (g(A;)) (B;)>0. Thus
9(Cy)=9g(AinB;))=(g9(A)) (B;)>0.

7.7. Lemma. Suppose that a finite set g1, g2, ..., g. generates a complete lattice
ordered group G. Then the element h = [g:| v |g2|v ...v|ga| is a weak unit in G.

Proof. The set [h] is a closed /-subgroup of G and A is a weak unit in [A].
Clearly g; e[h] for i=1, 2, ..., n. Hence [h]=G.

Now suppose that a two-element set {gi, g} generates a singular complete
lattice ordered group G. According to 7.7, G contains a weak unit and hence by
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7.2 there exists a singular element e in G such that e is a weak unit in G. Let e,
(i € No) have the same meaning as in Lemma 7.3 for g = g, and let the elements e
(i e No) have an analogous meaning for g =g,. Denote

G, =le]nlei]l, fi=ene] (i, j € No).

7.8. Lemma. Let G be as above. Then we have:

(a) G is a completely subdirect product of its [-subgroups G; (i, j € No).

b) For each i, j€No, either G; = {0} or G is isomorphic with N.

(c) Ifi,jeNo, G;# {0} and i# 0 #j, then the integers i, j are relatively prime.

(d) Ifi=j=0, then G;={0}.Ifi =0 and G;# {0}, thenje {1, —1}.If j =0 and
G;# {0}, then ie {1, —1}.

(e) If i, je Ny, G;# {0}, then

91(Gy)=1f;, g(Gy)=jfy.

Proof. From 7.3 we obtain that for each 0<g € G there exists i € N, with
e:Ag >0, and that the set {e;} (i € No) is disjoint. From this it follows that the
system of direct factors [e;] (i € No) fulfils the conditions (a) and (b) in the
definition of the completely subdirect product decomposition. Hence G is
a completely subdirect product of its /-subgroups [e:] (i € No). Analogously, G is
a completely subdirect product of its /-subgroups [e}] (j € No). Hence from 7.6 we
obtain that G is a completely subdirect product of its /-subgroups

G, =[e]n[e]] (i, j € No).
Let i, j € No. According to 7.1, the set
{9:(Gy), 9.(Gy)}

generates the complete lattice ordered group G, . From the properties of principal
polars it follows [e;]n[ej] = [e:ne]]. Thus by 7.5 we have

g1(Gy)=i(enej), g:(Gij)=j(einej).

Hence in the case i =j =0 we obtain G; = {0}.

Suppose that G;# {0}. Thus 0<e; Ae; € G;. First let us consider the case i =0.
Then the one-element set{j(e; Ae})} generates the complete lattice ordered group
G;# {0} and the element j(e; Ae}) is comparable with 0. Thus G; is the set

{mj(einej)} (meNo).

Since e, A€ € G;, we must have either j =1 or j = —1. Moreover, G; is isomorphic
with No. The case j =0 is analogous.

Further let us assume that i+ 0#j. Let k € N be the greatest common divisor of
the integers i and j. Then the set
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H; = {mk(e.ne})} (m e No)
is a closed I-subgroup of G; and
91(Gy) e Hy, g:(Gy)eH;.

Thus H; = G;. From this it follows that G;; is isomorphic with Nj. Since e; ne} € Hj;,
we must have k = 1. The proof is complete.

Now suppose that a singular complete lattice ordered group is generated by a set
{91, ..., gn }. According to 7.7 and 7.2 there exists a singular element e in G such
that e is a weak unit in G. Let ke {1, ..., n} and let ex (i € No) have a meaning
analogous to that of e; (ie No) in 7.3 if we put g =g«. For each iy, ..., i, € No we
denote

G(il, veey in)= [e,‘l,1]ﬁ[ei2_2]n...ﬁ[ei"‘,.].

Further, we denote by N(ii, ..., i) the set of all integers that belong to the set
{i\, ..., i,} and are distinct from O. ,
By a method analogous to that in the proof of 7.8 we obtain:

7.9. Lemma. Let G fulfil the above mentioned assumptions. Then:

(a) G is a completely subdirect product of its l-subgroups G (i, ..., in)
(i1, ..., In € No). : '

(b) Foreachiy, ..., i € Noeither G(iy, ..., i) = {0} or G(iy, ..., i») is isomorphic
with No.

(©) Ifi,=i,=...=i,=0,then G(i\, ..., i) = {0}. If at least one of the numbers
i1, ..., i, Is distinct from zero, G (iy, ..., i,) # {0} and if k € N is the greatest common
divisor of integers belonging to N(i, ..., i,), then k =1.

(d) If iy, ..., i, € Ny, then

g (G iy, ... in))=i(e1, AN ... N€;)
holds for each ke{1,...,n}.

7.10. Lemma. Let G be a complete lattice ordered group. Let {G;} (i, j € No)
be a system of Il-subgroups of G and let g, g.€ G. Suppose that the conditions
(a)—(d) from 7.8 are fulfilled. Further suppose that the following condition holds :

(e') If i, j e No, Gi;j# {0}, then

91(Gy) =1ify, g0Gy)=]jfy,

where f; is the least positive element of G;. Then the set {g:, g.} generates the
complete lattice ordered group G. '

Proof. Let H be the intersection of all closed /-subgroups of G containing both
g, and g,. Then the set {g1, g.} generates the complete lattice ordered group H.
For x e H we denote by [x]; the principal polar in H generated by the element x.
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Let @ be the identical mapping on the set H. Then ¢ is a complete homomorphism
of H into G, hence according to 5.14 for each x, y € H the relation

*) x[yli=x[y]
holds.

We have to verify that H=G. Let i, je€N,. If G;={0}, we put f; =0. If
G, + {0}, then according to (b) there exists f; € G; having the property that f;
covers 0 in G;. Denote

gillig, —ig|1=g*.
From (x) we obtain gt e H. According to (e’) we have
g1—gT=1if;,
hence if; € H. Analogously we obtain jf; € H. If i = 0 or j =0, then according to (d)
we have f; € H. In the case i# 0 #j, the integers i and j are relatively prime, thus

fi € H as well.
Let 0=g € G. From the condition (a) it follows

g=Vg(G.-,~) (i,j€No).

According to (b) and (e’) for each i, j € No there exists a non-negative integer k,;
such that g(G;) = kify. Thus

9=V, (i, j € No).

Since f; € H for each i, j € No and since H is a closed /-subgroup of G, we obtain
g € H. From this it follows G = H, completing the proof.

Now suppose that a set {g1, g-} generates a singular complete lattice ordered
group G and that a set {gi, g2} generates a singular complete lattice ordered
group G'. For i, jeN let f; have the same meaning as in 7.8. Further let the
symbols fi; have an analogous meaning with respect to G'.

7.11. Lemma. Let G and G' be as above. Let ¢ be a complete homomorphism
of G into G' such that ¢(g1)=41, ¢(g2)=g5. Then @(f;)=fi; holds for each i,
j € No.

Proof. Let i, j e No. Analogously as in the proof of 7.10 we denote

gt=aillig:—ig.ll, gi*=gilligi—ig:l].

Then we have

p(gt)=g1*,
gi—gt=ify,
gi—gi*=ify,
hence
@ (ifs) =if ;.
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Analogously we get

e Uf) =ifis-
If i # 0 or j# 0, then we infer @ (f;) =f/;. If i =j =0, then f; =0=fi;, thus @ (f;) =fi;
as well.

§8. a-free complete lattice ordered groups in the class 6,

In this paragraph there will be described the a-free complete lattice ordered
group with two a-free generators in the class ;.

The following lemmas 8.1—8.3 give us a deeper insight into the situation we are
investigating and the reasons why we are dealing with the lattice ordered group G
in the proof of 8.5.

Let N’ be the set of all pairs (i, j) (i, j € No) fulfilling some of the following
conditions :

(a) i#0+#j and the integers i, j are relatively prime;

(b) i=0and j=1,o0ri=1 and j=0.

First we deduce two necessary conditions for an a-free complete lattice ordered
group with two a-free generators in €;.

8.1. Lemma. Let G be an a free complete lattice ordered group with two a-free
generators g, g- in the class €. Then (under the denotation of 7.8) we have f; >0
for each (i,j)eN'.

Proof. Leti, j e No. Then f; Z0. For each (n, m) e N’ we set G,.. = No. Further

we denote
G'=I1Gmn((n,m)eN").

Choose g1, g;€ G’, fulfilling
gi(n,m)=n, gi(n,m)=m

for each (n, m)e N'. According to 7.10 the set {gi, g3} generates the complete
singular lattice ordered group G'. Moreover (under denotations analogous to those
in §7) we have the relations

:l(l’])=1,
ii(p, r)=0, whenever (p,r)eN’ and (p,r)+(i,Jj);
hence fi;>0.

According to the assumption there exists a complete homomorphism ¢ of G into
G' such that @(g:)=g: (i=1, 2). Hence by 7.11,

(i) =fi;.
Since fi;# 0, we obtain f;# 0 and thus f; >0.
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Let G have the same meaning as in 8.1. Put g; = 91| v|g:|. Further, we denote

GO = Un EN[_ng3, ng3] .
Let 0(G) be the orthogonal hull of G.

8.2. Lemma. There exists 0<g € 0(G) such that g € G,.

Proof. Let N’ be as in the proof of 8.1. Further, we shall use the same
denotations as in 7.8. The set

{iff;} ((.j)eN'")

is disjoint. If (i, j)e N’, i >0, j >0, then ijf; >0 according to 8.1. Since 0(G) is
orthogonally complete, there exists 0<g € G such that

g =Vijf; ((,j)eN’)
holds in 0(G). Let neN, (i,j)eN’', i>n, j>n. Then
ngs(Gy)=n max {i, j}f; <ijfi = g (Gy).
Thus for each n e N we have g £ng,. Therefore g ¢é G,.
8.3. Lemma. Let G, Gy be as in 8.2. Then G = G,.

Proof. We have Go=G, Goe% and {g., g-} =cGo. Hence there exists
a complete homomorphism @ of G into G, such that ¢(g:)=g: (i=1,2). Thus
according to 5.8, (G)=G. Therefore G = Go.

Let G', g1, g be as in the proof of 8.1. Put g3=|gi|v|g}| and denote

G:=UnN[—ng}, ngil.

Then G, can be also characterized as the set of all elements g' € G’ having the
following property: there exists a positive integer n =n(g') such that

lg' (i, HI=n-max {li], |j|}
for each (i, j)eN'.

8.4. Theorem. The set {gi, g;} is a set of a-free generators of the complete
lattice ordered group G, in ;.

Proof. Obviously G, e €;. According to 7.10, the set {g1i, g>} generates the
complete lattice ordered group G.. Let H be a complete singular lattice ordered
group and let g,, g. € H. We denote by G the intersection of all closed /-subgroups
of H containing both g, and g.. Then the set {g,, g.} generates the complete lattice
ordered group G. Thus we can use for G the denotations from §7.

We have to show that there exists a complete homomorphism @ of G into G
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such that @(gi)=g:; (i=1, 2). According to 7.11 it suffices to consider only such
mappings @ of G, into G that fulfil the relation

@(fi;)=f; foreach (i,j)eN’.
Let g' € G,. For each (i, j) e N’ there is an integer c¢; such that
9’ (Gi)=cif .
From the fact that G is a completely subdirect product of linearly ordered groups
G, ((i,j)eN") it follows that o(G) is the (complete) direct product of linearly

ordered groups G; (i, j) e N'). Thus in 0 (G) there exists a (uniquely determined)
element g such that

g (Gil) = cify

holds for each (i, j) € N'. Consider the mapping ¢ of G; into o(G) that is defined
by
@@)=4g
(under the above denotations). Since all (not only finite) joins and intersections in
a completely subdirect product of lattice ordered groups are performed component
-wise, the mapping @ is a complete homomorphism of G into o(G). Now from
the fact that G is a convex /-subgroup of o (G) it follows: if ¢(G,) =G, then @ is
a complete homomorphism of G: into G.
From the definition of ¢ and from 7.8 we obtain

e(gi)=9g:, @(g3)=g-.

Let g' € G2, @(g')=g. According to the definition of G, there exists a positive
integer n such that

lg’[=n(gilvigs]).
Since ¢ is a homomorphism of G, into o(G), we obtain

lgl=n(lg:|vig.]).

Because n(|g1| v|g2|) € G and since G is convex in o (G) we infer that g € G. This
completes the proof.

Let n>2 be a fixed integer. Let N, be the set of all n-tuples (iy, ..., i») of
integers that fulfil the following conditions:

(a) at least one of the integers iy, ..., i, is distinct from O;
(b) if k € N is the greatest common divisor of the nonzero integers belonging to the
set {ii, ..., I}, then k=1.

For each n-tuple (iy, ..., i,) e N, we put

G(il, veey in)=No;
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further we set
G.=TIG(is, ..., in) ((i15 ..., in)ENL).

For each ke€{1, ..., n} we define an element gie G, by the relations
gi(i1, ..., in)=10x foreach (iy, ..., i) € N,.

Denote g’'=|gi|v...v|g.l,

G, = HmeN[—mg’, mg'].

8.4'. Theorem. The set {gi, 93, ..., g.} is a set of a-free generators of the
complete lattice ordered group G, in %;.
The idea of the proof is the same as in 8.4; the denotations would be more

complicated. We omit the details.

8.5.Lemma. Let G be a complete lattice ordered group. Assume that G is
a completely subdirect product of its lattice ordered subgroups G; (i € I') and that
G is orthogonally complete. Then G is a direct product of its [-subgroups G; (i e I').

Proof. Let H be the direct product of lattice ordered groups G (i € I'). Without
loss of generality we can suppose that G is an /-subgroup of H. Let 0=h € H. Then

h= Vielh(Gi)

holds in H and {h(G:)}i: is a disjoint subset of G. Thus there is g € G such that
the relation

g =sup {h(Gi)}iex

is valid in G.
Thus h =g. Since G is a convex subset of 0 (G) = H, we obtain h € G ; therefore

h=g. Hence H=G.

8.6. Lemma. Assume that a set {g., g.) generates a complete singular lattice
ordered group G. Suppose that G is orthogonally complete. Then (under the same
denotations as in §7) G is a direct product of its [-subgroups G; ((i,j)e N’).

This assertion follows from 7.8 and 8.5.

8.7. Theorem. Let G', gi and g5 be as in 8.1. The set {g1, g5} is a set of b-free
generators of the complete lattice ordered group G' in the class €, N%,.

Proof. We have G’ € 6.n%, and according to 7.10, the set {g1, g3} generates
the complete lattice ordered group G'. We use the same denotations as in 8.4 with
the distinction that now we have g € G’, G € €, %, (and hence G =0(G)). Then
the mapping ¢ is a complete homomorphism of G’ into G. Let g* € G. According
to 7.8 there are integers d; ((i, j) e N') such that
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9*(Gy)=dif;
is valid for each (i, j)e N'. There exists g*' € G’ fulfilling
g*' (Gij)=difi

for each (i, j)e N'. From the definition of ¢ we obtam @(g*')=g*, whence
®(G')= G, which completes the proof.
From 8.7 and 2.2 it follows

8.8. Corollary. Let G', g}, g} have the same meaning as in 8.7. The set {g1, 93}
is a set of a-free generators of the complete lattice ordered group G’ in the class
(gs N (go.

By an analogous method we obtain:

8.8'. Theorem. Let G, g1, ..., g. be as in 8.4'. The set {g3, ..., g»} is a set of
b-free generators (and a set of a-free generators) of the complete lattice ordered
group G, in the class € N %6o.

Assume that a set {g1, g.} generates a complete lattice ordered group G such
that G € €, %,. Then according to 8.8 there exists a complete homomorphism of
G' into G. Hence there exists a complete congruence relation ¢ on G’ such that
G'/p is isomorphic with G.

Let M be the set of all (i,j)e N’ with @(fi;)#0. From the fact that g is
a complete congruence relation we infer that G'/g is isomorphic with

*
*) I‘[“_MMG:,..

Since each Gi; ((i, j) e N') is isomorphic with N,, the lattice ordered group (*) is
determined up to isomorphisms by the power of the set M. Since any of the
cardinalities 1, 2, ..., 8, can occur as the power of M (cf. Lemma 7.8), we obtain
the following result:

8.9. Proposition. Let M, be the set of all nonisomorphic types of complete
lattice ordered groups that are generated by a two-element set and belong to
6,N€6o. Then card My=R,.

§9. Completely distributive lattice ordered groups

A lattice L is said to be completely distributive if it fulfils the following condition
(dy) and the condition (d;) dual to (d,).
(d)) Let {x. }rer.sescL. Assume that there are elements u, v € L such that

u= VteT/\:ESxt.s
V= Aoes VierXio0-

Then u =v.
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A lattice ordered group G is called completely distributive if the corresponding
lattice (G ; A, v) is completely distributive.

It is not hard to verify that a lattice ordered group G is completely distributive if
and only if, for each 0 <g € G, the interval [0, g] is completely distributive. If [0, g]
fails to be completely distributive and 0 <g,=g, then the interval [0, g.] is not
completely distributive. Each linearly ordered set is completely distributive. From
this we infer that the following lemma is valid:

9.1. Lemma. Let G be a lattice ordered group. Suppose that for each 0<g e G
there exists g, € G such that

(a) 0<g:=g,

(b) the interval [0, g,] of G is a chain.

Then G is completely distributive.

It can be shown by examples that a complete singular lattice ordered group need
not be completely distributive.

From 7.8 and 9.1 it follows:

9.2. Theorem. Let G be a complete singular lattice ordered group. If G is
generated by a two-element set, then G is completely distributive.
From 9.2, 8.4 and 8.7 we obtain:

9.2.1. Corollary. Let G, be as in 8.4. Then G, is an a-free complete lattice
ordered group with two a-free generators in the class €;N%6..

9.2.2. Corollary. Let G' be as in 8.7. Then G' is a b-free complete lattice
ordered group with two b-free generators in the class €, N6sN%o.
We need the following well-known result (cf. [19]):

9.3. Theorem. Let G be a complete lattice ordered group. Assume that G is
completely distributive. Then G is a completely subdirect product of linearly
ordered groups.

Now assume that a set {g,, g} generates a complete lattice ordered group G and
that G is completely distributive. According to (T) from § 1, G can be written as

G=AXB,

where A € 6,, B € €,. From the complete distributivity of G it follows that both A
and B are completely distributive. According to 7.1, the set {gi(A), g.(A)}
generates the complete lattice ordered group A. Hence either A = {0}, or the
structure of A is described by Lemma 7.8 (if we take A, g:(A) and g.(A) instead
of G, g, and g,).

Let us consider the structure of the lattice ordered group B. Since B € 6., we can
define a multiplication of elements of B by reals in such a way that B turns out to
be a vector lattice. By 9.3, B is a completely subdirect product of complete linearly
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ordered groups B; (i e I).In what follows we are dealing only with the nontrivial
case B+ {0}. Then we may suppose that B;# {0} for each i € I. Moreover, each B;
is a vector lattice, thus B; is a linearly ordered group isomorphic with R. For each
i eI we have

(9:(B)) (B:)=g1(BnB:)=g:(B:)

and an analogous equality holds for g,. The set {gi(B:), g:(B:)} generates the
complete lattice ordered group B;. If ¢g,(B:)=0 or g.(B;) =0, then the complete
lattice ordered group B; is generated by a one-element set, whence either B; = {0}
or B; is isomorphic with No, which is a contradiction. Thus g:(B;) # 0 # g,(B:) for
each i eI. Since B; is a vector lattice, there exists a real x(i)# 0 with

g2(B:) =x(i)g:1(B).
Assume that x (i) is rational, i.e., we can write

m.
x.‘=n—l, m;, n; € No, n; >0,

where m; and n; are relatively prime. There exists h € B; with
n,—h = gl(B,) .

The set Hi={mh}mcn, is a closed [-subgroup of B:, gi(B:), g(B:)e H!,. Hence
H = H,. But H! is isomorphic with N,, which is a contradiction. Therefore all x (i)
are irrational.

9.4. Lemma. Let B; (i e I) have the same meaning as above. Let i,jel, i#j.
Then x (i) # x(j).

Proof. Assume that x(i)=x(j). We shall show that then for each g e B the
following assertion is valid:

(+) If y e R and g(B:)=yg.(B:), then g(B;)=yg:(B).
Let g € G. There are uniquely determined reals y(g, i), y(g,j) with
g(B)=y(g,i)g9:(B:), g(B))=y(g,)9:(B;).

Let A, (a=a,) have the same meaning as in 5.8 with the distinction that
Ao={g:(B), g.(B)} and that we now have B instead of G. According to the
assumption, (x) holds for each g € A,. Since all joins and meets in B are perfomed
componentwise, by a transfinite induction we obtain that (x) is valid for each
g € A,,= B. Now put

g =g:(B:)+g2:(B;).
Then we have
g(B:)=g:(B:), g(Bj)=g:(B;),
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hence y(g,i)=1,y(g,j)=x(j). We have verified above that s(j) is irrational, thus
y(g,i)#y(g,j). In view of (x) we have a contradiction. Hence x (i) # x(j).

Let R’ be the set of all irrationals and let N’ be as in the previous paragraphs.
From 7.8 and 9.4 we obtain:

9.5. Lemma. Suppose that a set {g., g.} generates a complete lattice ordered
group G. Assume that G is completely distributive. Then there exist lattice ordered
groups A;((i,j)eN'"), B«(k € R') having the following properties :

(a) G is a completely subdirect product of lattice ordered groups A;((i,j)e N'),
B.(xeR').

(b) If (i,j)e N’, then either A; = {0} or A; is isomorphic with No.

(c) If x e R’, then either B, ={0} or B, is isomorphic with R.

(d) If (i,j)eN' and A;# {0}, then g.(A;)=1if;, g.(A;)=]f;, where f; is
a strong unit in A,.

(e) If xe R’ and B, # {0}, then 0+ g,(B.)=xg.(B,).

9.6. Lemma. Let G be a complete lattice ordered group, g., g. € G. Assume that
there are lattice ordered groups A; ((i,j)eN"), B. (x e R') such that the condi-
tions (a)—(e) from 9.5 are fulfilled. Then the set {g., g.} generates the complete
lattice ordered group G and G is completely distributive.

Proof. From 9.1 it follows that G is completely distributive. Let x e R’,
B,.#{0}. We denote by B; the intersection of all closed /-subgroups of B,
containing both elements g,(B.) and g.(B:). Then the set {g.(B.), g.(B:)}
generates the complete lattice ordered group B;. By (e), B; # {0} and hence B; is
isomorphic either with N, or with R. Again from (e) we obtain that the first case is
impossible. Therefore B = B,. Thus we have verified that the set {g:(B.), g2(B:)}
generates the complete lattice ordered group B;.

Let (i, j)e N'. If A; = {0}, we put fi; =0. If A;# {0}, then let f; be as in (d). Let
H be a closed /-subgroup of G, g, g. € H. Analogously as in 7.10 we can verify that
fi € H for each (i,j)eN’.

Let0<g e G.Let A and B be as in (T) (cf. § 1). There are non-negative integers
ci ((i,j)eN'") such that

g(A)=Veif; ((i,j)eN")

holds in G. From this we obtain g(A) e H. Similarly we obtain g(A) e H for each
0>g € G. Therefore g(A) € H for each g € G. In particular, g.(A)e H (i=1, 2).
From this it follows

gi(B)=g:.—g:(A)eH (i=1,2).
Let x e R’. Since B is a vector lattice, there exists xg:(B) in B. Put
g1(B)[|g2(B) —xg:.(B)|]=g*.
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By a reasoning analogous to that in 7.10 we can verify that
gteH
is valid. Then from (d) and (e) we infer that

_ g1(B) —gt=g.(B:x),
hence g1(B:) e H. Analogously we denote

g2(B)[|g2(B)—xg:(B)|1=g%;
then g% € H and we have

gz(B)—g; =gZ(Bx)’

thus g(B.) € H. From {g.(B.), g.(B:)} < H and from the fact that the set {g:1(B:),
g2(B.)} generates the complete lattice ordered group B, we obtain B, cH.
Again, let 0=g € G. Then

g(B)= VxeR'g(Bx).

Since g(B.) € B,, we have g(B}) e H for each x € R’ and thus g € H. From this it
follows H =G, completing the proof.

For each (i, j) e N’ let A }; be a lattice ordered group isomorphic with No, and for
each x € R’ let B/, be a lattice ordered group isomorphic with R. Further let G4 be
the direct product of lattice ordered groups A ;, B; ((i, j)e N', x e R'). In each of
the lattice ordered groups A}; there exists a strong unit fi;. Let gi and gz be
elements of G/ such that

gi(Ay)=ifi;, 9:(A;)=jfi; foreach (i,j)eN’,
0+¢g3(B)=xgi(B;) foreach xeR'.
Put g;=|gi|v|gi| and
G3 =Unen[—ngs, ngs.

9.7. Theorem. The set {gi, g3} is a set of a-free generators of the complete
lattice ordered group G4 in the class €..

Proof. The method is analogous to that in 8.4. According to 9.1, G3 is
completely distributive. From 9.6 it follows that the set {g1i, g2} generates the
complete lattice ordered group Gs3.

Let H be a complete lattice ordered group, g:, g.€ H. Assume that H is
completely distributive. Let G be the closed /-subgroup of H generated by the set
{491, g2}. Then G is completely distributive. Hence the structure of G is described
by 9.5 and we can use the denotations from 9.5. Let g’ € G3. There exist integers c;
((i,j)eN’) and reals y(x) (x e R') such that
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g'(Ay)=cfy, g'(B)=yx)g:«(B).

The orthogonal hull 0 (G) of G is the direct product of lattice ordered groups A;
((i,j)eN'), B.(x eR’). Let us define a mapping @ of G3 into 0(G) such that
@(g')=g, where g is defined by

g(Ai)=cfs, g(B.)=y(x)g:(B:)

for each (i, j)e N’ and each x e R'. Then ¢ is a complete homomorphism of G35
into 0(G) and @(g1)=4g:, ¢(g:) = g.. By steps analogous to those in the proof of
8.4 we can verify that ¢(G3)< G, completing the proof.

Similarly as in 8.7 we obtain:

9.8. Theorem. The set {g1, g,} is a set of b-free generators (and, at the same
time, a set of a-free generators) of the complete lattice ordered group G} in the
class €.N 6.

REFERENCES

[1] BERNAU, S. J.: The lateral completion of an arbitrary lattice group. J. Austr. Math. Soc. 19,
1975, 263—289.
[2] BIRKHOFF, G.: Lattice theory, third edition, Providence 1976.
[3] CONRAD, P.: Lattice ordered groups, Tulane University, 1970.
[4] CONRAD, P.: The relationship between the radical of a lattice ordered group and complete
distributivity. Pacif. Journ Math. 14, 1964, 493—499.
[S] CONRAD. P.: Free abelian /-groups and vector lattices. Math. Ann. 190, 1971, 306—312.
[6] CONRAD, P.: The lateral completion of a lattice ordered group. Proc. London Math. Soc. 19,
1963, 444—480.
[7] ®YKC, JI.: YacTuuHo ynopsitoueHHble anrebpanyeckue cucteMbl, MockBa 1965.
[8] HALES, A. W.: On the non-cxistence of free complete Boolean algebras. Fundam. Math. 54,
1964, 45—66.
[9] AKYBHUK, 51.: IlpencraBnenue u pacudpenue [-rpynn, Czech. Math. J. 13, 1963, 267—283.
[10] JAKUBIK, J.: Cantor—Bernstein theorem for lattice ordered groups. Czech. Math. J. 22, 1972,
159—175.
[11] JAKUBIK, J.: Orthogonal hull of a strongly projectable lattice ordered group. Czech. Math. J. 28,
1978, 484 —527.
[12] JAKUBIKOVA, M.: Uber die B-Potenz einer verbandsgeordneten Gruppe. Matem. Cas. 23,
1973, 231—239.
[13] JAKUBIKOVA, M.: The nonexistence of free complete vector lattices. Cas. Pést. Mat. 99, 1974,
142—146.
[14] JAKUBIKOVA, M.: Totally inhomogeneous lattice ordered groups. Czech. Math. J. 28, 1978,
594 -610.
[15] POTKOBUY, I'. 51.: O qu3si0HKTHO NOJIHBIX NOJyynopsitoueHHbix rpynnax. Czech. Math. J. 27,
1977, 523 -527.
[16] UK, &.: K Teopuu cTpyKTYpHO ynopspoueHHbix rpynm. Czech. Math. J. 6, 1965, 1—25.
[17] SIK, F.: Uber subdirekte Summen geordneter Gruppen. Czech. Math. J. 10, 1960, 400—424,
[18] BYJIMX, B. 3.: BeefeHne B TEOPHIO MOJYYNOPSA0YEHHBIX MpOcTpaHcTB. Mocksa 1961.

286



[19] WEINBERG, E. C.: Completely distributive lattice ordered groups, Pacif. J. Math. 12, 1962,
1131—1137.
[20] WEINBERG, E. C.: Free lattice ordered groups. Math. Ann. 151, 1963, 187—199.

Received August 4, 1977

Katedra matematiky strojnickej fakulty
Vysokej Skoly technickej
Svermova 9
040 01 Kosice

O TOJIHBIX CTPYKTYPHO YIIOPSAOOYEHHBIX I'PYIIIIAX
C OBYMS OBPA3YIOIUMH II
Mapus HKy6MkOBa
Pe3oMme
[MousATHE a-cBOGOXHOM MOJHON CTPYKTYPHO YNOPSIIOYEHHOM IpyNnbl 6bIIO BBEAEHO B YacTH I aToM
cratby. B yact II uccnenoBaHbl a-CBOGOIHBIE MOJIHBIE CTPYKTYPHO YIIOPSAOYEHHbIE IPYNIbI C ABYMS
cBOGOAHBIMH 00Pa3yIOLIMMHU B KJIACCE BCEX CHHI'YIAPHBIX MOJHBIX CTPYKTYPHO YIOPSXOYEHHBIX IPYNIT

M B KJIacCe BCEX CTPYKTYPHO YNOPSITOYEHHBIX IPYNN, KOTOPbIE SBISIOTCS MOMHBIMM H BIOJHE AMC-
TPHOYTHBHBIMH.
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