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Math. Slovaca 29,1979, No. 3 

ON COMPLETE LATTICE ORDERED GROUPS 
WITH TWO GENERATORS II 

MARIA JAKUBIKOVA 

Part I of this paper has been published in to Mathem. Slovaca 28,1978,389 — 406. 

§ 7. Singular complete lattice ordered groups with two generators 

If A is a direct factor of a lattice ordered group G and if M cz G, then we denote 

M(A)={m(A):meM). 

7.1. Lemma. Assume that a set MJ=0 generates a complete lattice ordered 
group G and that A is a direct fector of G. Then the set M(A) generates the 
complete lattice ordered group A. 

Proof. According to the assumption there exists an /-subgroup B of G with 
G =A xB. Let Hi be a closed /-subgroup of A such that M(A)czHi . Let H be 
the set of all elements geG with g(A)eHu Clearly H = HxxB. Then H is 
a closed /-subgroup of G and M czH; thus H=G. From this it follows Hi = A. 

Let G be a lattice ordered group. An element O^e eG is said to be a weak unit 
in G if eA*>0, whenever 0<xeG. 

The following assertion is known (cf. [10]). 

7.2. Lemma. Lef G be a singular complete lattice ordered group with a weak 
unit. Let O^geG. 

(a) There exists a (uniquely determined) singular element e in G such that e is 
a weak unit in G and d^e for each singular element et of G. 

(b) There are singular elements e, (i e N) such that the set {et} (i e N) is disjoint 
and 

g = VieNiei 

holds in G. 
The assertion (b) from 7.2 can be generalized as follows: 
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7.3. Lemma. Let G be a singular complete lattice ordered group containing 
a weak unit. Let g eG. Then there are singular elements e, (i eN0) such that 

(a) the set {e,} (ieN0) is disjoint; 
(b) there exists a singular element e eG such that e is a weak unit in G and 

e = ViGiv0ej. 

(C) Ig+ = V«eMe«, g~ = \ZieNf\N-iei. 

Proof. According to 7.2 there exist singular elements e, (i e IV) in G such that 
the set {ei} (ieIV) is disjoint and 

Q + = \fieNiet. 

Analogously there exist singular elements e\ (ieN) in G such that the set {e\} 
(i e I) is disjoint and 

g~ = \/ieNie\. 

Also, according to 7.2 there exists e eG such that e is singular, e is the join of all 
singular elements of G and e is a weak unit in G. Thus there is e0 e G with 

e0 = e - ( V .eNe f ) V ( V i e N e . ) . 

Since g*Ag~ = 0, we have e, Ae7' = 0 for each i eN and each/eIV. Put e\ = e_. for 
each i eN. Then the set {et} (ieN0) is disjoint and 

e = \/ieN0ei, 

g~ = \/ieN0\N—iei. 

7.4. Lemma. Let G be a singular complete lattice ordered group with a weak 
unit. Let eu e2 be singular elements of G. Then e\e2] = e\/\e2. 

Proof. Let e be as in 7.2. Hence ei = e, e2 = e. From the definition of a singular 
element it follows that the interval [0, e] of G is a Boolean algebra. Hence there 
exists the relative complement e'2 of e2 in the interval [0, e]. Put x =e\/\e2. Then 
ei = (eiAe2)v.r, XAe2 = 0. From this we obtain ei = (eiAe2) + x, ;c[e2] = 0, hence 

ei[e2] = (ei Ae2) [e2] = e, Ae 2 . 

7.5. Lemma. Let G,g,e,et (i eN0) have the same meaning as in 1.3. Let i e N0 

and let e' be a singular element in G, e'=\ei. Then g[e'] = ie'. 

Proof. If i = 0, then |g |Ae , = 0 , hence \g\ Ae ' = 0 and thus g[e'] = 0. Let i eN. 
In this case we have g~/\et = 0, hence g~/\e' = 0, from which we infer g~[e'] = 0 
and g[e'] = g+[e']. Further, we have 

g + = id v (V/eiv\{i)M-) = iex + \/jeN\{i}jej. 
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For each / eN\{i} the relation eyAe' = 0 is valid, whence 

(VicNMote) W] = 0. 

According to 7.4, iei[et] = ie'. By summarizing, we obtain 

g[e'] = ie'. 

The method for ieN0, i < 0 is analogous. 
For a lattice ordered group G we define the completely subdirect product 

decomposition of G as follows. 
Let {A,} (i e l ) be a set of direct factors of G such that 
(a) A,nA7 = 0 , whenever i and / are distinct elements of I ; 
(b) for each g e G, g >0 there exists i el with g(At)>0. 
Then G is said to be a completely subdirect product of its /-subgroups G,. 
The notion of the completely subdirect product has been introduced by F. SIK 

[17] (in a formally different, but equivalent, way). It is not hard to verify that G is 
a completely subdirect product of its /-subgroups A,(i el) if and only if for each 
0 < g e G there are uniquely determined elements #, e A, such that g = V-e-0.- (Cf. 
also [14], §3.) 

If G and A, fulfil the above mentioned conditions, then the mapping / defined by 

f(x) = {x(Ai)}iei for each xeG 

is an isomorphism of G into the direct product J^[.e/A,. 

7.6. Lemma. Let G be a lattice ordered group. Suppose that 
(a) G is a completely subdirect product of its l-subgroups A, (i e I); 
(b) G is a completely subdirect product of its l-subgroups B, (j eJ). 
Then G is a completely subdirect product of its l-subgroups AinBj (i eI,jeJ). 

Proof. Denote AinBj = Gy. If i, i"i e I, / , ]\ eJ and (i, / ) =£ (ii, ]\)9 then clearly 

G,nC, i y i = {0}. 

Let 0 < g e G. According to (a) there is i e I with 0 < g (A,). Hence according to (b) 
there is jeJ such that (g(At)) (Bj)>0. Thus 

g(Cii) = g(AinBj) = (g(Ai))(Bi)>0. 

7.7. Lemma. Suppose that a finite set gi9 g2, ..., gn generates a complete lattice 
ordered group G. Then the element h = \gi\ v\g2\ v . . . v | g„ | is a weak unit in G. 

Proof. The set [h] is a closed /-subgroup of G and h is a weak unit in [h]. 
Clearly g, e[h] for i = l , 2, ..., n. Hence [h] = G. 

Now suppose that a two-element set {g\9 g2} generates a singular complete 
lattice ordered group G. According to 7.7, G contains a weak unit and hence by 
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7.2 there exists a singular element e in G such that e is a weak unit in G . Let e, 
(i e No) have the same meaning as in Lemma 7.3 for g = g- and let the elements e5 
(i eN0) have an analogous meaning for g =g 2 . Denote 

Gu = [ei]n[e'j], A = C , A C J (i, / e 1V0). 

7.8. Lemma. Let G be as above. Then we have: 
(a) G is a completely subdirect product of its I-subgroups Gl7 (/, j eN0). 
b) For each i, j eN0, either Gu = {0} or Gti is isomorphic with N0. 
(c) IfiJeNo, Gij£ {0} andij=0j=j, then the integers i, j are relatively prime. 
(d) Hi =j = 0, then Gti = {0}.lfi = 0 and G^- {0}, thenj e {1, - 1 } . Ifj = 0 and 

Gi^{0}, then ie{\, - 1 } . 
(e) If i, jeN0, G«,-=£ {0}, then 

gi(Gij) = ifih g2(Glj) = jfif. 

Proof. From 7.3 we obtain that for each 0 < a e G there exists ieN0 with 
etAg>0, and that the set {et} (ieN0) is disjoint. From this it follows that the 
system of direct factors [et] (ieN0) fulfils the conditions (a) and (b) in the 
definition of the completely subdirect product decomposition. Hence G is 
a completely subdirect product of its /-subgroups [et] (i eN0). Analogously, G is 
a completely subdirect product of its /-subgroups [e)\ (j eN0). Hence from 7.6 we 
obtain that G is a completely subdirect product of its /-subgroups 

G./ = [ei]n[e;] (i,jeN0). 

Let i, j eN0. According to 7.1, the set 

{<7i(Giy), g2(G«)} 

generates the complete lattice ordered group G,. From the properties of principal 
polars it follows [ei]n[ej] = [etAe)]. Thus by 7.5 we have 

gi(Gij) = i(eiAe'i), g2(Gij)=j(eiAe'i). 

Hence in the case i =j = 0 we obtain Gl7 = {0}. 
Suppose that Gn^h {0}. Thus 0<e i Ae) e G0. First let us consider the case i = 0. 

Then the one-element set {j(et Ae))} generates the complete lattice ordered group 
G$± {0} and the element j(ei Ae)) is comparable with 0. Thus Gt] is the set 

{mj(eiAe-)} (meN 0 ) . 

Since e. Ae) e Gu, we must have either / = 1 or / = — 1. Moreover, Gl7 is isomorphic 
with IVo. The case 7 = 0 is analogous. 

Further let us assume that ij=0^hj. Let k e N be the greatest common divisor of 
the integers i and j . Then the set 
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Ha = {mk(et /\e])} (meN0) 

is a closed /-subgroup of GJ7 and 

gi(G„)eHu, g^G^eH,. 

Thus Hi, = Gij. From this it follows that Ga is isomorphic with IV0. Since dAe) e Hu, 
we must have k = \. The proof is complete. 

Now suppose that a singular complete lattice ordered group is generated by a set 
{gu .., gn}. According to 7.7 and 7.2 there exists a singular element e in G such 
that e is a weak unit in G. Let k e{\, ..., n} and let eik (i eN0) have a meaning 
analogous to that of e, ( ieN0) in 7.3 if we put g =gk. For each iu ..., /„ eN0 we 
denote 

G(/i, ..., /„) = [ei1,i]n[e l2,2]n...n[e in,„]. 

Further, we denote by N(iu ...,/„) the set of all integers that belong to the set 
{/i, ..., /„} and are distinct from 0. 

By a method analogous to that in the proof of 7.8 we obtain: 

7.9. Lemma. Let G fulfil the above mentioned assumptions. Then: 
(a) G is a completely subdirect product of its l-subgroups G(/i, ...,/„) 

(I'I, . . . , /„ e N0). 
(b) Foreachiu ..., /„ eN0either G(iu ..., /„) = {0} orG(iu ..., /„) is isomorphic 

with No. 
(c) Ifii = i2=... = in=0,thenG(iu...,in) = {0}. If at least one of the numbers 

ii, ..., in is distinct from zero, G(iu ..., /„)=£ {0} and if k eNis the greatest common 
divisor of integers belonging to N(iu . . . , /„), then k = \. 

(d) If iu ..., in eN0, then 

gk(G(iu ..., in)) = ik(eilAei2A...Aein) 

holds for each ke {1, ..., n}. 

7.10. Lemma. Let G be a complete lattice ordered group. Let {G0} (/, j eN0) 
be a system of l-subgroups of G and let gu g2eG. Suppose that the conditions 
(a)—(d) from 7.8 are fulfilled. Further suppose that the following condition holds: 

(e') Ifi,jeN0, G0^={0}, then 

gi(Gij) = ifij, g2(Gij)=jfi], 

where fa is the least positive element of Gtj. Then the set {gu g2} generates the 
complete lattice ordered group G. 

Proof. Let H be the intersection of all closed /-subgroups of G containing both 
g1 and g2. Then the set [gu 92} generates the complete lattice ordered group H. 
For x eH we denote by [x]i the principal polar in H generated by the element x. 
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Let cp be the identical mapping on the set H. Then cp is a complete homomorphism 
of H into G, hence according to 5.14 for each x,y eH the relation 

(*) x[y]\=x[y] 

holds. 

We have to verify that H=G. Let i, jeN0. If G0 = {0}, we put fu = 0. If 
Gi,£{0}, then according to (b) there exists ft] e GI; having the property that fu 

covers 0 in G,7. Denote 
gi[\j'gi-ig2\] = g*i. 

From (*) we obtain g*eH. According to (e') we have 

gi-g* = ifu, 

hence ifu e H. Analogously we obtain jfu eH.lii = 0 or / = 0, then according to (d) 
we have fu eH. In the case i^hO^hj, the integers i and j are relatively prime, thus 
fa eH as well. 

Let O^g e G. From the condition (a) it follows 

g = Vg(Gu) (1,/eATo). 

According to (b) and (e') for each i, j eN0 there exists a non-negative integer kti 

such that g(Gij) = k^. Thus 

g=V*./.; (i,jeN0). 

Since fu eH for each i, j eN0 and since H is a closed /-subgroup of G, we obtain 
g eH. From this it follows G =H, completing the proof. 

Now suppose that a set {g\, g2} generates a singular complete lattice ordered 
group G and that a set {g'ug2} generates a singular complete lattice ordered 
group G \ For i, j eN let / , have the same meaning as in 7.8. Further let the 
symbols / ; ; have an analogous meaning with respect to G ' . 

7.11. Lemma. Let G and G' be as above. Let cp be a complete homomorphism 
of G into G' such that cp(gi) = g'i, cp(g2) = g2. Then cp(fij)=f'ij holds for each i, 
jeN0. 

Proof. Let i, j eN0. Analogously as in the proof of 7.10 we denote 

g* = gi[\jgi-ig2\l g'i* = g'i[\jgi-ig2W-

Then we have 
cp(g*) = g[*, 

gi-g*i = ifn, 
g'i-g'i* = ifu, 

hence 
<P(ifu) = ifii-
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Analogously we get 

<P Ufa) =jf ti­

lt it 0 or y =>-= 0, then we infer (p(fii)=fih If i =y = 0, then/ , = 0 = /!/, thus <?(/.,)=/., 

as well. 

§ 8. a -free complete lattice ordered groups in the class % 

In this paragraph there will be described the a -free complete lattice ordered 
group with two a-free generators in the class %. 

The following lemmas 8.1—8.3 give us a deeper insight into the situation we are 
investigating and the reasons why we are dealing with the lattice ordered group G2 

in the proof of 8.5. 
Let N' be the set of all pairs (i,j) (i,jeN0) fulfilling some of the following 

conditions : 
(a) l-£0=£y and the integers i, y are relatively prime; 
(b) i = 0 and y = 1, or i = 1 and y = 0. 
First we deduce two necessary conditions for an a-free complete lattice ordered 

group with two a-free generators in <£-. 

8.1. Lemma. Let G he ana free complete lattice ordered group with two a-free 
generators g\, g2 in the class <£,. Then (under the denotation of 7.8) we have / , > 0 
for each (i,j)eN'. 

Proof. Let i, jeN0. Then/ , ^ 0 . For each (n,m)eN'we set Gnm=N0. Further 
we denote 

G' = UG'nm((n,m)eN'). 
Choose g [, g 2 e G', fulfilling 

g[(n, m) = n, g'2(n, m) = m 

for each (n,m)eN'. According to 7.10 the set {g[,g2} generates the complete 
singular lattice ordered group G'. Moreover (under denotations analogous to those 
in §7) we have the relations 

/ . /(*,/) = 1, 

f'u(P> r) = 0, whenever (p, r)eN' and (p, r)¥=(i,j); 

hence f'ii > 0. 

According to the assumption there exists a complete homomorphism q> of G into 
G' such that q)(gi) = g\ (i = 1, 2). Hence by 7.11, 

<p(fii)=fh-

Since /Jy^O, we obtain fi,¥=0 and thus / y > 0 . 
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Let G have the same meaning as in 8 .1 . Put g3 = |g i | v \g2\. Further, we denote 

G0 = \JneN[~ng3, ng3]. 

Let o(G) be the orthogonal hull of G . 

8.2. Lemma. There exists 0<g eo(G) such that g I G0. 

Proof. Let N' be as in the proof of 8.L Further, we shall use the same 
denotations as in 7.8. The set 

{iJfi\((i*i)eN') 

is disjoint. If (i,j)eN', i>0, / > 0 , then ijftj>0 according to 8.1. Since o(G) is 
orthogonally complete, there exists 0<g eG such that 

g=ViJfn((i,i)eN') 

holds in o(G). Let n eN, (i, j)eN', i>n, j>n. Then 

ng3(GU) = n max {i, j}fu < ijfa = g (G.y). 

Thus for each n eN we have g£ng3. Therefore g £ G0. 

8.3. Lemma. Let G, G0 be as in 8.2. Then G = G0. 

Proof. We have G0^G, G0e% and {gug2}^G0. Hence there exists 
a complete homomorphism q of G into G0 such that cp(gi) = gL (i = l,2). Thus 
according to 5.8, q(G) = G. Therefore G = G0. 

Let G \ g\, g2 be as in the proof of 8.L Put g3= \g\\ v |#2 | and denote 

G2 = UneN[-ng'3, ng3]. 

Then G2 can be also characterized as the set of all elements g' eG' having the 
following property: there exists a positive integer n=n(g') such that 

|a ' ( i , / ) | ^AZ-max{ | / | , | / | } 

for each (i, j)eN'. 

8.4. Theorem. The set {g'u g2} is a set of a-free generators of the complete 
lattice ordered group G2 in %s. 

Proof. Obviously G2e
c€s. According to 7.10, the set {g'ug2} generates the 

complete lattice ordered group G2. Let H be a complete singular lattice ordered 
group and let gu g2 e H. We denote by G the intersection of all closed /-subgroups 
of H containing both gx and g2. Then the set {gu g2} generates the complete lattice 
ordered group G. Thus we can use for G the denotations from §7. 

We have to show that there exists a complete homomorphism q of G2 into G 
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such that <p(g'i) = gi (/ = 1, 2). According to 7.11 it suffices to consider only such 
mappings cp of G2 into G that fulfil the relation 

<P(fu)=fij for each (i,j)eN'. 

Let g' eG2. For each (i,j)eNf there is an integer c,7 such that 

g'(G'ii) = ciif'ii. 

From the fact that G is a completely subdirect product of linearly ordered groups 
G., ((i,j)eN') it follows that o(G) is the (complete) direct product of linearly 
ordered groups Gl7 (/, j)eN'). Thus in o(G) there exists a (uniquely determined) 
element g such that 

gf(Gl;) = c ^ 

holds for each (/, j)eN'. Consider the mapping cp of G2 into o(G) that is defined 
by 

<p(g') = g 

(under the above denotations). Since all (not only finite) joins and intersections in 
a completely subdirect product of lattice ordered groups are performed component 
-wise, the mapping cp is a complete homomorphism of G2 into o(G). Now from 
the fact that G is a convex /-subgroup of o(G) it follows: if cp(G2)cG, then cp is 
a complete homomorphism of G2 into G. 

From the definition of cp and from 7.8 we obtain 

<p(gi) = gu <p(g2) = g2. 

Let g' GG2, cp(g') = g. According to the definition of G2 there exists a positive 
integer n such that 

\g'\^n(\g[\w\g'2\). 

Since cp is a homomorphism of G2 into o(G), we obtain 

\g\^n(\gi\w\g.\). 

Because n(\g\\v \g2\) e G and since G is convex in o(G) we infer that g eG. This 
completes the proof. 

Let « > 2 b e a fixed integer. Let Nn be the set of all n-tuples (iu ..., /„) of 
integers that fulfil the following conditions: 

(a) at least one of the integers iu • -, in is distinct from 0; 
(b) if k e N is the greatest common divisor of the nonzero integers belonging to the 
set {/i, . . . , / „} , then k = \. 

For each n-tuple (iu ..., i„)eN'n we put 

G(/, , ..., in) = N0; 
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further we set 

GJ = nG( i i , ..., L) ((/,, ..., L)eNn). 

For each ke{l, ..., n} we define an element g'keG'n by the relations 

g!c(iu ..-,in) = ik for each (iu ..., in)eNn. 

Denote g' = \g[\v...v \gn\, 

Gn = UmJ-mQ',mg'}. 

8.4'. Theorem. The set {g[,g2, ...,g'n} is a set of a-free generators of the 
complete lattice ordered group Gn in ^s. 

The idea of the proof is the same as in 8.4; the denotations would be more 
complicated. We omit the details. 

8.5. Lemma. Let G be a complete lattice ordered group. Assume that G is 
a completely subdirect product of its lattice ordered subgroups G, (i e I) and that 
G is orthogonally complete. Then G is a direct product of its l-subgroups G, (i e I). 

Proof. Let H be the direct product of lattice ordered groups G, (i e I). Without 
loss of generality we can suppose that G is an /-subgroup of H. Let 0 ̂  h eH. Then 

A = Vici*(G,) 

holds in H and {h(Gi)}isi is a disjoint subset of G. Thus there is g e G such that 
the relation 

g =sup {h(Gi)}iei 

is valid in G. 
Thus h^g. Since G is a convex subset oio(G) = H, we obtain h e G ; therefore 

h=g. Hence H=G. 

8.6. Lemma. Assume that a set {gt, g2) generates a complete singular lattice 
ordered group G. Suppose that G is orthogonally complete. Then (under the same 
denotations as in §7) G is a direct product of its l-subgroups Gl7 ((/, j)eN'). 

This assertion follows from 7.8 and 8.5. 

8.7. Theorem. Let G', g[ and g2 be as in 8.1. The set {g[, g2} is a set of b-free 
generators of the complete lattice ordered group G' in the class ^ s n ^ 0 . 

Proof. We have G ' e ^ n ^ o and according to 7.10, the set {g[, g2} generates 
the complete lattice ordered group G' . We use the same denotations as in 8.4 with 
the distinction that now we have g eG', G e%n^0 (and hence G = o(G)). Then 
the mapping q? is a complete homomorphism of G ' into G. Let g* eG. According 
to 7.8 there are integers dti ((i, j)eN') such that 
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g*(Gii) = diifii 

is valid for each (i,j)eN'. There exists g*' eG' fulfilling 

0 * ' ( G ; , ) = <*</;, 

for each (i,j)eN'. From the definition of cp we obtain q)(g*') = g*, whence 
q)(G') = G, which completes the proof. 

From 8.7 and 2.2 it follows 

8.8. Corollary. Let G',g[, g2 have the same meaning as in 8.7. The set {g[, g'z} 
is a set of a-free generators of the complete lattice ordered group G' in the class 
%s C\ Too-

By an analogous method we obtain: 

8.8'. Theorem. Let G'n, g[, ..., g'n be as in 8.4'. The set {g[, ..., g'n} is a set of 
b-free generators (and a set of a-free generators) of the complete lattice ordered 
group G'n in the class ^ n ^ 0 . 

Assume that a set {gu g2} generates a complete lattice ordered group G such 
that G e ^ n ^ o . Then according to 8.8 there exists a complete homomorphism of 
G' into G. Hence there exists a complete congruence relation g on G' such that 
G'/g is isomorphic with G. 

Let M be the set of all (i,j)eN' with cp(f'n)^0. From the fact that g is 
a complete congruence relation we infer that G'/g is isomorphic with 

(*) 
ll(«\/)eM

G ' '" 

Since each G'n ((/, j)eN') is isomorphic with IV0, the lattice ordered group (*) is 
determined up to isomorphisms by the power of the set M. Since any of the 
cardinalities 1, 2, ..., K0 can occur as the power of M (cf. Lemma 7.8), we obtain 
the following result: 

8.9. Proposition. Let M0 be the set of all nonisomorphic types of complete 
lattice ordered groups that are generated by a two-element set and belong to 
%n<go. Then cardM 0=K 0 . 

§ 9. Completely distributive lattice ordered groups 

A lattice L is said to be completely distributive if it fulfils the following condition 
(di) and the condition (d2) dual to (di). 

(di) Let {xt,5}ter,ses^L. Assume that there are elements u,veL such that 

U =\/teTAseSXt,s 

V = /\q>eS \AeT* . \<p( r ) . 

Then u=v. 
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A lattice ordered group G is called completely distributive if the corresponding 
lattice (G ; A , V ) is completely distributive. 

It is not hard to verify that a lattice ordered group G is completely distributive if 
and only if, for each 0 <g e G, the interval [0, g ] is completely distributive. If [0, g ] 
fails to be completely distributive and 0<g^g, then the interval [0, g\\ is not 
completely distributive. Each linearly ordered set is completely distributive. From 
this we infer that the following lemma is valid: 

9.1. Lemma. Let G be a lattice ordered group. Suppose that for each 0<g e G 
there exists gieG such that 

(a) 0<g^g, 
(b) the interval [0, gA] of G is a chain. 
Then G is completely distributive. 
It can be shown by examples that a complete singular lattice ordered group need 

not be completely distributive. 
From 7.8 and 9.1 it follows: 

9.2. Theorem. Let G be a complete singular lattice ordered group. If G is 
generated by a two-element set, then G is completely distributive. 

From 9.2, 8.4 and 8.7 we obtain: 

9.2.1. Corollary. Let G2 be as in 8.4. Then G2 is an a-free complete lattice 
ordered group with two a-free generators in the class ^st^^d. 

9.2.2. Corollary. Let G' be as in 8.7. Then G' is a b-free complete lattice 
ordered group with two b-free generators in the class ^ n ^ n ^ o . 

We need the following well-known result (cf. [19]): 

9.3. Theorem. Let G be a complete lattice ordered group. Assume that G is 
completely distributive. Then G is a completely subdirect product of linearly 
ordered groups. 

Now assume that a set {gu g2} generates a complete lattice ordered group G and 
that G is completely distributive. According to (T) from § 1, G can be written as 

G=A xB, 

where A e %, B e %v. From the complete distributivity of G it follows that both A 
and B are completely distributive. According to 7.1, the set {gx(A), g2(A)} 
generates the complete lattice ordered group A . Hence either A = {0}, or the 
structure of A is described by Lemma 7.8 (if we take A , gi(A) and g2(A) instead 
of G, 0i and g2). 

Let us consider the structure of the lattice ordered group B. Since B e ^ . w e can 
define a multiplication of elements of B by reals in such a way that B turns out to 
be a vector lattice. By 9.3, B is a completely subdirect product of complete linearly 
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ordered groups B, (i e l ) . In what follows we are dealing only with the nontrivial 
case B=£ {0}. Then we may suppose that B,̂ = {0} for each i el. Moreover, each B, 
is a vector lattice, thus B, is a linearly ordered group isomorphic with R. For each 
i el we have 

(g,(B)) (Bi) = g1(BnBi) = g1(Bi) 

and an analogous equality holds for flf2. The set {gi(Bt), g2(Bt)} generates the 
complete lattice ordered group B,. If flfi(B,) = 0 or flf2(B,) = 0, then the complete 
lattice ordered group B, is generated by a one-element set, whence either B, = {0} 
or Bi is isomorphic with N0, which is a contradiction. Thus flfi(B,)-^0-^-^2(BI) for 
each / e l . Since B, is a vector lattice, there exists a real x(i)j=0 with 

g2(Bi)=x(i)gi(Bi). 

Assume that x(i) is rational, i.e., we can write 

Xt= — , m. , n{ 6 No, «, > 0 , 

where m, and nt are relatively prime. There exists h eB, with 

nih=gi(Bi). 

The set H\ = {mh}meN0 is a closed /-subgroup of B., gi(Bt), g(Bi)eHri. Hence 
H'i=Hi. But H'i is isomorphic with N0, which is a contradiction. Therefore all x(i) 
are irrational. 

9.4. Lemma. Let Bt (i el) have the same meaning as above. Let i,jel, i^j. 
Then x(i)j=x(j). 

Proof. Assume that x(i)=x(j). We shall show that then for each geB the 
following assertion is valid: 

(*) UyeR and g(Bi) = ygx(Bi), then flr(By) = y0i(B7). 
Let g eG. There are uniquely determined reals y(g, i), y(g,j) with 

^(BJ) = y(^,/)^i(Bl), g(Bj) = y(g,j)gi(B]). 

Let Aa (a^a0) have the same meaning as in 5.8 with the distinction that 
-4o={gi(B), g2(B)} and that we now have B instead of G. According to the 
assumption, (*) holds for each g eA0. Since all joins and meets in B are perfomed 
componentwise, by a transfinite induction we obtain that (*) is valid for each 
g 6 AOQ = B. Now put 

g=gl(Bi) + g2(Bj). 

Then we have 

0(B.) = ff,(B.), g(Bi) = g2(Bi), 
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hence y(g, /) = 1, y(g,]) = x(j). We have verified above thats( /) ls irrational, thus 
y(Q* 0 ^ y ( g > / ) - 1° view of (*) we have a contradiction. Hence x(i)£x(j). 

Let R' be the set of all irrationals and let IV' be as in the previous paragraphs. 
From 7.8 and 9.4 we obtain: 

9.5. Lemma. Suppose that a set {gu g2} generates a complete lattice ordered 
group G. Assume that G is completely distributive. Then there exist lattice ordered 
groups Aij((i,j)eN'), Bk(keR') having the following properties: 

(a) G is a completely subdirect product of lattice ordered groups An ((/, / ) e IV'), 
Bx(xeR'). 

(b) If (/, j)eN', then either An = {0} or Atj is isomorphic with IV0. 
(c) If x eR', then either Bx = {0} or Bx is isomorphic with R. 
(d) If (i,j)eNf and Aiy=£{0}, then gl(Alj) = ifij, g2(Ail)=j'fij, where fu is 

a strong unit in A,-,-. 
(e) IfxeR' and Bx±{0}, then 0^g2(Bx) = xg,(Bx). 

9.6. Lemma. Let G be a complete lattice ordered group, gug2eG. Assume that 
there are lattice ordered groups An ((/, j)eN'), Bx (x eR') such that the condi­
tions (a)—(e) from 9.5 are fulfilled. Then the set {gu g2} generates the complete 
lattice ordered group G and G is completely distributive. 

Proof. From 9.1 it follows that G is completely distributive. Let xeR', 
Bxj={0}. We denote by B'x the intersection of all closed /-subgroups of Bx 

containing both elements gi(Bx) and g2(Bx). Then the set {gx(Bx), g2(Bx)} 
generates the complete lattice ordered group B'x. By (e), B'x+ {0} and hence B'x is 
isomorphic either with IV0 or with R. Again from (e) we obtain that the first case is 
impossible. Therefore B'X = BX. Thus we have verified that the set {gi(Bx), g2(Bx)} 
generates the complete lattice ordered group Bx. 

Let (/, j)eN'. If Au = {0}, we put//y = 0. If Ati^ {0}, then let/,, be as in (d). Let 
H be a closed /-subgroup of G, gi, g2 e H. Analogously as in 7.10 we can verify that 
fjeH for each (i,j)eN'. 

Let 0<g e G. Let A and B be as in (T) (cf. § 1). There are non-negative integers 
Cn ((iyj)eN') such that 

g(A) = \Jciifii ((i.j)eN') 

holds in G. From this we obtain g(A) eH. Similarly we obtain g(A)eH for each 
0 > g e G. Therefore g (A ) e H for each ^ G G . I n particular, g, (A ) e H (i = \, 2). 
From this it follows 

gi(B) = gi-gi(A)eH (i = l , 2 ) . 

Let x eR'. Since B is a vector lattice, there exists xgi(B) in B. Put 

gi(B)[\g2(B)-xgl(B)\] = g?. 

284 



By a reasoning analogous to that in 7.10 we can verify that 

g*ieH 

is valid. Then from (d) and (e) we infer that 

gi(B)-g*i=gi(Bx), 

hence gi(Bx)eH. Analogously we denote 

g2(B)[\g2(B)-xgi(B)\] = gf; 

then g\*eH and we have 

g2(B)-gt = g2(Bx), 

thus g2(Bx)eH. From {gi(Bx), g2(Bx)} c H and from the fact that the set {gi(Bx), 
g2(Bx)} generates the complete lattice ordered group Bx we obtain Bxc,H. 

Again, let O^g eG. Then 

g(B) = \/xeRg(Bx). 

Since g(Bx)eBx, we have g(Bx)eH for each xeR' and thus geH. From this it 
follows H = G, completing the proof. 

For each (i, / ) e N' let A 5/ be a lattice ordered group isomorphic with N0, and for 
each x e R' let B'x be a lattice ordered group isomorphic with R. Further let G'd be 
the direct product of lattice ordered groups A 5y, B'x ((i, j) e N', xeR'). In each of 
the lattice ordered groups A!y there exists a strong unit /!,. Let g[ and g'2 be 
elements of G'd such that 

flfi(Aw) = i/i/, g,2(Aii)=jf'ii foreach (i,j)eN', 

0*g'2(B'x) = xg[(B'x) foreach J t e K ' . 

Put g3=\g\\v\g2\ and 

9.7. Theorem. The sef {#i, g'2} is a set of a-free generators of the complete 
lattice ordered group Gd

2 in the class %d. 

Proof. The method is analogous to that in 8.4. According to 9.1, Gd
2 is 

completely distributive. From 9.6 it follows that the set {g[,g2} generates the 
complete lattice ordered group Gd

2. 
Let H be a complete lattice ordered group, gu g2eH. Assume that H is 

completely distributive. Let G be the closed /-subgroup of H generated by the set 
{gu g2}. Then G is completely distributive. Hence the structure of G is described 
by 9.5 and we can use the denotations from 9.5. Let g' eGt. There exist integers c7 

((i,j)eN') and reals y(x) (xeR') such that 
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g'(A[i) = clfii, g'(Bx) = y(x)gi(Bx). 

The orthogonal hull o(G) of G is the direct product of lattice ordered groups An 
((i,j)eN'), Bx(xeR'). Let us define a mapping (D of G2 into o(G) such that 
<p(g') = g, where g is defined by 

g(Aii) = ci]fii, g(Bx) = y(x)gx(Bx) 

for each (/, j)eN' and each x eR'. Then (D is a complete homomorphism of G2 

into tf(G) and q)(g[) = g\, (p(g2) = g2. By steps analogous to those in the proof of 
8.4 we can verify that q>(Gt)^G, completing the proof. 

Similarly as in 8.7 we obtain: 

9.8. Theorem. The set {g[, g'2) is a set of b-free generators (and, at the same 
time, a set of a-free generators) of the complete lattice ordered group G'd in the 
class %dr\%o. 
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О ПОЛНЫХ СТРУКТУРНО УПОРЯДОЧЕННЫХ ГРУППАХ 
С ДВУМЯ ОБРАЗУЮЩИМИ II 

Мария Якубикова 

Резюме 

Понятие а-свободной полной структурно упорядоченной группы было введено в части I этой 
статьи. В части II исследованы а-свободные полные структурно упорядоченные группы с двумя 
свободными образующими в классе всех сингуларных полных структурно упорядоченных групп 
и в классе всех структурно упорядоченных групп, которые являются полными и вполне дис­
трибутивными. 
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