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ON SQUARES OF COMPLEMENTARY GRAPHS 

LADISLAV NEBESKY 

By a graph we mean a graph in the sense of [1] or [7]. Let G be a graph. We 
denote by V(G), E(G), G, L(G), and d(G) its vertex set, edge set, complement, 
line graph, and diameter, respectively. If G is disconnected, then we put d(G) = oo. 
The cardinality of V(G) is called the order of G. We say that G is hamil-
tonian-connected if for every pair of distinct vertices u, ve V(G), there exists 
a hamiltonian path which connects u and v. 

If G is a graph, then by the square G2 of G we mean the graph with 
V(G2)=V(G) and 

E(G2) = {uv;u,veV(G) and l^dG(u, f ) = 2}, 

where dG(u, v) denotes the distance between u and u in G. 
Squares of graphs have been studied intensively, first of all from the point of view 

of their hamiltonian properties. Fleischner [4] has proved that if G is a 2-connected 
graph, then G2 is hamiltonian. This result was improved in [2], [8], and [3]; in [2] 
Chartrand, Hobbs, Jung, and Nash—Williams have proved that if G is a 2-con
nected graph, then G2 is hamiltonian-connected. Hamiltonian properties of 
squares of trees were studied in [11]. For some further results concerning 
hamiltonian properties of squares of graphs the reader is referred to [5] and [6]. 

The following theorem gives a sufficient condition for the square of a graph to be 
hamiltonian-connected. Note that Kp denotes the complete graph of order p, and 
Kp-e denotes the graph obtained from Kp by deleting exactly one edge. 

Theorem. Let G be a graph of order p^2. If Kp=t(G)2j=Kp-e, then G2 is 
hamiltonian-connected. 

Proof. Assume that Kp ± (G)2±Kp-e. Since (G)2±KP, we have that d(G)> 2. 
Let d(G) = oo. Then G is disconnected, and therefore d(G) ^ 2 . This means that G2 

is complete, and thus hamiltonian-connected. 
We shall assume that d(G)<oo. Then G is connected. Since d(G)>2, there 

exist ux,u2e V(G) such that dG(uu u2) = 3. Hence, p ^4. For i = 1, 2 we denote 

V = {ve V(Q - U l - u2); utv e E(G)}. 
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Since G is connected and dG(ux,u2)>\, we have that Vx^0j=V2. Since 
dG(uu u2)>2, we have that VxnV2 = 0. 

We shall distinguish two cases: 
Case 1. VxuV2= V(G -ux- u2) If for every vxeVx and v2 e V2 there holds that 

vxv2 e E(G), then for every pair of distinct vertices u' and u" with the property that 
{u', u"} ± {ux, u2} there holds that dG(u', u")^=2, and thus (G)2 = KP -e, which is 
a contradiction. This means that there exist v'eVx and v"eV2 such that 
v'v"^E(G). We denote by F, the graph with V(FX)= V(G) and 

E(FX)= {uxu2, u2v', v'v", v"ux}u 
u{uxw"; w"e V2}u{u2w'; w' e Vx}. 

Obviously, Fx is a connected graph which contains exactly one cycle. Since 
VxnV2 = 0, we have that Fx is a subgraph of G. It is easy to see that (F,)2 is 
hamiltonian-connected. Since V(FX)=V(G), we have that G2 is hamiltonian-
connected. 

Case 2. Vxu V2 =£ V(G — Wi — w2)- Consider an arbitrary vertex v e V(G -ux — 
u2) - (VxuV2). We denote by F2 the graph with V(F2)= V(G) and 

E(F2)= {v0ux, uxu2, u2v0}u 
u{u ,w 2; w2 e V(G — v0 — ux — u2) — Vx}u{u2wx; wx e Vx}. 

Obviously, F2 is a connected graph which contains exactly one cycle. It is easy to 
see that (F2)2 is hamiltonian-connected. Since F2 is a spanning subgraph of G, we 
have that G2 is hamiltonian-connected, which completes the proof. 

We denote by P4 the path of order four. Obviously, P4 = P4, and (P4)2 = K4-e. 

Corollary. Let G be a graph different from P4. Then G2 or (G)2 is hamil
tonian-connected. 

R e m a r k 1. A graph of order p = 1 is called panconnected if for every pair of 
distinct vertices u, v e V(G) and for every integer / with the property that 
dG(u, v)^j^p — 1, there exists a path of length j which connects u and v in G. 
Fleischner [5] has proved that if G is a graph, then G2 is panconnected if and only if 
G2 is hamiltonian-connected. 

R e m a r k 2. In [9] it was proved that if G ŝ a graph of order ^ 5 , trun here 
exists G' e{G, 0} such that G' is connected and L(G') is hamiltonian. This re u't 
was improved in [10], where it was also shown that for every integer p = 1, there 
exists a graph Gp of order p such that neither L(GP) nor L(GP) is hamiltonian-
connected. 
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О КВАДРАТАХ ДОПОЛНИТЕЛНЫХ ГРАФОВ 

Ладислав Небеский 

Резюме 

Доказывается следующая теорема: Пусть С-граф с р ^ 2 вершинами. Если КРФ (О)2Ф Кр — е, 
то С2 - гамильтоново связный. (С обозначает дополнение фафа С, Кр - полный фаф с р 
вершинами и Кр — е - фаф, полученный из Кр удалением одного ребра). 
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