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Math. Slovaca 37, 1987, No. 2, 147—158 

NILPOTENCY IN SEMIGROUPS AND SUBLATTICES 
OF THEIR BOOLEANS 

ROBERT SULKA 

1. Introduction. 

Let S be a semigroup, S' a subsemigroup of S, M g S', N the set of all 
positive integers and <^(S), .= > the Boolean of S. We introduce the following 
notations 

N,(S', M) = {xeS'\x"eM for almost all neN}, 
N2(S', M) = {xeS'\x"eM for infinitely many neN}, 
N3(S", M) = {xeS'\x"eM fore some neN}. 

With respect to the notations in the paper [5] if M .= S, then 
N,{M) = N{S, M)fori=l, 2, 3, N,(5', M) is the set of all strongly M-potent 
elements of S', N2(S', M) is the set of all weakly A/-potent elements of S' and 
N3(5", M) is the set of all almost M-potent elements of S'. 

Further let 

Jr
x 2(S') = {M c S'\NX(S', M) = N2(S', M)}, 

J^ 3(S') = { M c S'\NX(S', M) = N3(S', M)} and 
^2 AS') = {M^ S'\N2(S', M) = N3(S', M)}. 

With respect to the notation in the paper [5] if M ^ S, then Jr
fj(S) = ^V,y for 

i<j> i»j= U 2, 3. 
From the paper [5] it follows that <tyV, 2(S'), g> is a lattice and 

<^V, 3(5'), ^ > and <.yV2 3(5"), .= > are complete lattices. In the mentioned paper 
the structure of Jf x 2(S), Jr

x 3(S) and Jf2 3(S) was studied in the case of a cyclic 
semigroup S. 

The purpose of this paper is to elucidate the connections between the lattices 
J"i j(S) and the lattices Jr

i j(Sk) (keK) where Sk are subsemigroups of the 
semigroup 5, to elucidate the connections between the lattices Jr

i j(S) and the 
lattices Jr

jJ(S'), if S' is a homomorphic image of S and to give characterizations 
of some classes of periodic semigroups by means of the notions mentioned 
above. 
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It will be shown that if S = u{SA |kGK}, Sk are subsemigroups of S and 
M c 5, then M e l ' , . ,(S) iff for all keK Mn SkeJr

i ,(Sk) holds. Hence the 
knowledge of the lattices ^Vu(Sk ke K) allows to test, whether the set M belongs 
to *Vjj(S) or not. Therefore the knowledge of the lattices ,Vt f(Sk) (keK) allows 
to construct the lattices A , j(S). 

Since every semigroup S is a union of some system of its cyclic subsemigroups 
<a£> (keK) and the structure of lattices JTx:,«#*» is known, we get a tool for 
the construction of the lattices ^VU(S) of an arbitrary semigroup S. 

As we shall see the above mentioned construction of the lattices Jf {}(S) can 
be essentialy simplified if S = u {Sk\keK}, where every two subsemigroups Sk, 
Sh kJeK.k^l are disjoint. In this case M e , VU(S) iff M = u {Mk\keK\ and 
MkeJri f(Sk) for every keK. This will be particularly true in the case of a free 
semigroup 3?x on a set X, because this semigroup is a union of a system of its 
cyclic subsemigroups that are mutually disjoint. 

If cp: S -> S' is a homomorphism of a semigroup S onto a semigroup 5' , then 
.V, ,(£') = {AT <= S ' l p - ^ A O e J',-y(5)} h ° lds for ij = 1, 2, 3, / <j. 

This result may be also applied to the free semigroup 3Fx on a set X and its 
arbitrary homomorphic image. 

2. .yV0(S) for a cyclic semigroup S. 

For completeness we have to mention that it follows from the paper [5] 

Proposition 1. Let S = <a> be the cyclic semigroup generated by the element 
a. Then • ^ MeJr

2 3(S) iff M is a union of countably many sets 
k k k k k k 

{x, x ' , x ' 2, . . . ,x l 2 ", . . . } ,xeS , where (kj^°=1 is a sequence of positive integers 
knt kn> V. 

Proposition 2 and Proposition 3 are also consequences of the paper [5]. 

Proposition 2. Let S = <a> be a cyclic semigroup of infinite order Then 
• ?- Me,V\ 3(S) iff M is the complement of a finite subset of S. 

Let S = <a> be a cyclic semigroup of finite order. Then • ^ MeJr
x 3(S) iff M 

contains the maximal subgroup G of S. 

Proposition 3. Let S = {ay be a cyclic semigroup of infinite order. Then 
Me Jfx 2(S) iff either M is a finite subset of S or M is the complement of a finite 
subset of S. 

Let S = <a> be a cyclic semigroup of finite order. Then MeJr
x 2(S) iff either 

MnG = Uor M^G. 
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^ 2 4SJ^>) in the case if <a> is a cyclic semigroup 
of finite order 

Proposition 4. Let G be a group. Then every finite cyclic subsemigroup of G is 
a group. 

Proof. Let <a> = {a, a2, ..., d~\ ar, ..., a^^"1} c G and r be the index 
and m the period of the semigroup <a>. Then ar+ ] = ar + m + ]. In G there exists 
(d)~], hence a = am+ ]. This means that <a> is a group. 

Let <a> = {a, a2, ..., ar~], ar, ..., ar + m~]} be the cyclic semigroup of finite 
order with index r and with period m. We denote P(a) = {a, a2, ..., ar~ ]} and 
G(a) = {ar, ..., ar + m~ ]}. It is known that G(a) is the maximal subgroup of the 
semigroup <a> and G(a) is a cyclic group. 

Proposition 5. Let <a> be a cyclic semigroup of finite order. Then for every 
cyclic semigroup <b>, be {a} there holds: P(b) ~l P(a), G(b) ~l G(a). 

Proof. Since G(b) is a cyclic group of finite order, <x> is a cyclic group 
for all xeG(b). Hence for every xeG(b) there exists a teN such that x* = x, 
therefore G(b) n P(a) = D. This implies that G(b) c G(a). 

UxeG(a) n P(b), then <x> ^ G(a) n <b>. Therefore <x> is a cyclic group of 
finite order of <b>, hence xeG(b). However, this is a contradiction with the 
assumption xeP(b). This means that G(a) n P(b) = D, hence P(b) ~\ P(a). 

Theorem 1. Let S = <a> be a cyclic semigroup of finite order. Then the 
following statements hold: 

i) The lattice Jr
2 3(S) is atomic. 

ii) The atoms of Wr
2 3(S) are exactly all one-element sets {b}, beG(a). 

iii) The lattice Jr
2 3(S) contains all sets of the form {b, b*}, beP(a), bkeG(a). 

iv) The lattice JT2 3(S) contains exactly all unions of all subsystems of the system 
of all sets mentioned in ii) and iii). 

Proof, i) is evident, since Jr
2 3(S) is finite. 

a) We shall prove that all sets mentioned in ii) belong to Jf2 3(S). Let beG(a) 
and xeN3(S, {b}) hold. Then there exists apeNsuch that xp = b. Since <b> 
is a cyclic group of finite order, there exists a q e N, q > 1 such that for all 
seN we have (b)^ = b. Hence xpqS = (x^)^ = b, for all seN. This means that 
infinitely many powers of x are equal to b, therefore xeN2(S, {b}). We have 
N3(5, {b}) = N2(S, {b}), hence {b}e^2 3(S). 

b) Now we shall prove that all sets mentioned in iii) belong to J^2 3(S). 
Let xeN3(S, {b, M}), beP(a) and bkeG(a). Then either there exsits a peN 
such that xp = beP(a) or there exists a peN such that xp = bkeG(a). 
a) Let x? = bkeG(a). Then like in a) infinitely many powers of x are equal 
toM, hence xEN2(5,{b,M}). 
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P) Let xp = be P(a). Then ^p = bke G(a) and again like in a) infinitely many 
powers of x are equal to bk. Hence xeN2(S, {b, bk}). 
We have N3(S, {b, bk}) = N2(S, {b. bk}), i.e. {b, bk}e^2 3(S). 

c) Since <«yV2 3(S), ^ > is a complete upper subsemilattice of the complete 
semilattice <^(S), ^ > , the unions of arbitrary subsystems of the system 
of sets mentioned in ii) and iii) are elements of Ar

2 3(S). 
d) Finally we shall prove that j \ r

2 3(S) does not contain sets that are not 
unions of a subsystem of the system of sets mentioned in ii) and iii). 

Let M ^ S not be a union of a subsystem of the system of sets mentioned in 
ii) and iii). Then M contains an element xeP(a), but M contains no power of 
x that is in G(a). Therefore x e N3(S, M) and M can contain only powers of x that 
belong to P(a). This means that M contains only a finite number of powers of 
x, hence x£N2(S, M). This implies that M£A\ 3(S). 

From these results it follows immediately that all sets {b}, b e G(a) are exactly 
all atoms of the lattice , V2 3(S). 

Corollary. Let S = (a) be a cyclic group of finite order. Then Ar
2 3(S) = 0>(S). 

Proof . Evidently all atoms of t V2 3(S) are exactly all sets {b}, be {a}, 
hence A\ 3(S) = &>(S). 

E x a m p l e V Let S = <a> = {a, a2, a3, a4, a5} be the cyclic semigroup of 
finite order with index 3 and period 3. 

Then P(a) = {a, a2} and G(a) = {a\ a4, a5}. Further <a2> = {a2, a\ a4, a5}, 
P(a2) = {a2} and G(a2) = {a\ a4, a5}. 

The atoms of „ r 2 3(S) are: {a3}, {a4], {a5}. 
Other elements of A\ ?(S) are: 

{a, a3}, {a, a4}, {a, a5}, 

{a2, a3}, {a2, a4}, {a2, a5}. 

Any element ot\V2 3(S) is a union of a subsystem of the system of the above 
mentioned sets. 

In this case all apirs {b, c}, beP(a), ceG(a) belong to Ar
2 3(S). 

E x a m p l e 2 . Let S = <a> = {a, a2, a3, a4, a5, a\ a\ a\ a\ a]0} be the cyclic 
semigroup of finite order with index 5 and period 6. 

Then P(a) = {a, a2, a3, a4} and G(a) = {a5, a\ a\ a\ a\ a10}. Further 
<a2> = {a2, a4, a\ a\ a10}, P(a

2) = {a2, a4} and G(a2) = {a\ a\ a]0}, 
(a3) = {a3, a\ a9}, P(a3) = {a3} and G(a3) = {a\ a9}, 
{a4} = {a4, a\ a\ a]0}, P(a4) = {a4} and G(a4) = {a\ a\ a]0}. The atoms of ^V2 3(S) 
are: 

{a\ {a% {a1}, {a8}, {a"} and {a10}. 

Other elements of . i \ ,(S) are: 
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{a, a% {a, a6}, {a, a1}, {a9 a\ {a, a9}, {a, a10}, 
{a\ a% {a\ a"}9 {a\ awh 
{a\ a% {a\ a9}, 
{a\ a6}, {a\ a"}, {a\ a10}-

All elements of Jr
2 3OS) are unions of a subsystem of the system of all sets 

mentioned above. 
The set {a\ a9}$^2 3(S) because a2 e N3(S9 {a2

9 a
9}) but a2 $ N2(S, {a2, a9}), 

since a9$(a2}. 
We can see that not all pairs {b9 c}9 beP(a)9 ceG(a) belong to Jr

2 3(S). 

4. Semigroup and its subsemigroups 

Theorem 2. Let S be a semigroup, M a subset ofS, Sk(keK) subsemigroups of 
S and let S=u{Sk\keK}. Then N,{S9 M) = u {N,(Sk9 M n Sk)\keK} for 
i = l , 2 , 3 . 

Proof. We give the proof only for i = 3. For i = I, 2 the proofs are sim­
ilar. 
a) Let xeN3(S, M) hold. Then there exists an neN such that x"eM. Since 

S = u {Sk\k e K}, there exists a k e K such that x e Sk, hence for all n e N we 
have x"eSk. This means that there exists an neN such that xneMnSk. 
However, since x e Sk9 this implies that x e N3(Sk9 M n Sk) ^ 
<= u {N3(Sk9 M n Sk)\k e K} and we have N3(S9 M) ^ 
czv{N3(Sk9MnSk)\keK}. 

b) Let xe u {N3(Sk9 Mn Sk)\keK} hold. Then there exists a keN such that 
xeN3(Sk9 MnSk). Hence there exists an neN such that xneMnSk = M. 
This means that xeN3(S9 M) holds and we have u {N3(Sk, M n Sk)\keK} ^ 
c N3(S, M). 

From a) and b) we get N3(S, M) = u{N3(Sk9 Mn Sk)\keK}. Next we shall 
need the following statement of paper [5], 

Proposition 6. Let S be a semigroup, S' a subsemigroup of S and M a subset 
ofS. Then N,{S9 M)nS' = N,{S'9 S'n M) holds for i = 1, 2, 3. 

Now we can prove 

Theorem 3. Let S be a semigroup, Sk(k e K) subsemigroups of S, S = 
= u{Sk\keK}, i,j= 1, 2, 3, i<j. Then MeJr

ij(S) iff Mn SkeJr
ij(Sk) holds 

for alikeK. 
Proof, a) Let MeJr

ij(S), i.e. N,(S, M) = Nj(S9 M). Then Proposition 6 
implies that N{(Sk9 Mn Sk) for all keK. This means that M nSke Jr

i j(S) for all 
keK 

b) Let MnSkeAr
tj(Sk) for all keK, i.e. N,(Sk9 M n Sk) = Nj(Sk9 MnSk) 

for all keK. Then Theorem 2 implies that NfJS9 M) = u {N,{Sk9 Mn Sk\keK} = 
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= u {Nj(Sk, MnSk\keK} = Nj(S, M) . This means that Me,ViJ(S) holds. 
From the paper [5] we have 

Proposition 1. Let S be a semigroup, S' a subsemigroup ofS and M cr $\ Then 
Me<y\r

2 3(S) implies MeJr
2 3(S). 

Now we can prove 

Theorem 4. Let S be a semigroup, Sk(keK) subsemigroups of S, 
S=u{Sk\keK} and Mke JT2 3(Sk) for all keK. Then 
M= u{Mk\keK}eJT23(S). 

Proof . By the assumption MkeJr
23(Sk) holds for all keK Hence 

Proposition 7 implies that MkeJV2 3(S) for all keK. Since (Jr
2 i(S), ^ > , is a 

complete upper sublattice of (3P(S), = > , M = n u {Mk\ke K] e Jf2 3(S) holds. 

Corollary 1. Let S be aperiodic semigroup and every cyclic subsemigroup of S 
a group. Then ^V2 3(S) = 0>(S). 

Proof . S = u{<a>|aeS}, where <a> is a cyclic group of finite order. By 
Corollary of Theorem 1 and by Theorem 4 J/\ 3(S) contains all sets {a}, aeS. 
Since <^V2 3(5), ^ > is a complete upper sublattice of <^(5)>, .= , Jr

23(S) 
contains all elements of 0>(S). 

Corollary 2. Let S be a band. Then J"2 3(S) = 2?>(S). 

Theorem 5. Let S be a semigroup, Sk(keK) subsemigroups of S, 
S=u{Sk\keK} and M <= S. Then Me^23(S) iff M=u{Mk\keK} and 
Mke, V2 3(Sk) for every keK. 

The proof follows from Theorem 3 and Theorem 4. In the following example 
it is shown that a similar Theorem does not hold for the other two kinds of 
lattices. 

E x a m p l e 3 . Let S = Sx = <a> be the cyclic semigroup of infinite order 
and S2 = <a2> = {a2A|k = 1, 2, 3, . . . } . Then S = 5, u S2. Further let M, = D and 
M2 = {a2"|ri = 2, 3, 4, . . . } . Then M, c s „ M2 c S2 and M = M, u M, = M2 = 
= { a > = 2, 3 ,4 , . . . } . 

Since M, = D, we have MxeA\ 3(SX) and MxeJr
x 2(SX). The fact that M2 is 

a complement of a finite set in S2 implies that M2eJfx 3(S2) and M2eJr
x 2(S2). 

But since M is neither a finite set nor a complement of a finite set in S we have 
M$Jr

x 3(S) and M$Jfx 2(S). Nevertheless the following Thorem holds. 

Theorem 6. Let S be a semigroup, Sk(keK) subsemigroups of S. Let 
S = u {Sk\keK} and every two subsemigroups Sk, Sx(k, leK), k ^ I be disjoint. 
Then MeJ% f(S) iff M = u {MA.|ke K} and Mke Jr> j(Sk) for every keK 

Proof . With respect to the fact that the subsemigroups Sk(keK) are 
mutually disjoint it is clear that if M = u {Mk\keK}, then Mk = Skn M for all 
keK. Now it is sufficient to use Theorem 3. 
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Corollary 1. Let {Sk\keK} be a semilattice decomposition of a semigroup S9 

M^S and i , j = l , 2, 3, i<j.Then MeJr
ij(S) iff M = u{Mk\keK} and 

Mk e, Vt j(Sk) for every keK. 

Proposition 8. Let 3F x be the free semigroup on a set X. Let A = {ae 2Fx \ a not 
be a power of any other element of ^x}. Then 3FX— u{(a}\aeA} and if 
aX9 a2eA9 ax ̂  al9 then <a,> n <a2> = • • 

Proof. Let ax = ux u2 ... um9 u]9 ul9 ..., umeX9 a2 = vxv2... vn9 vX9 vl9...9 

vneX9 ax ^ a2. Let ax be a power of no other element of 3Fx and a2 be a power 
of no other element of 3Fx. 

Let us suppose that dx = d2 for some k9 leN. We shall prove that this is 
impossible. This will imply that <a,> n <a2> = • . 

Let Z be the set of all integers. 
We can define two functions: 

/ : Z -+X , / ( l ) = uX9f(2) = u29 . . . ,/(w) = um and f(s) =f(s + m), for all seZ. 
This function is periodic with a positive period m. 
g: Z -» X, g(\) = vl9 g(2) = v29 ..., g(n) = vn and g(s) = g(s + n)9 for all seZ. 
This function is periodic with a positive period n. 

With respect to the condition 
a\ = (ux u2 ... um)k = (vxv2 ... v„y = d> and since 2Fx is a free semigroup, 
f(i) = g(i)9 for all/ eZ. 

The function / : Z -> X is therefore periodic and has positive periods m and 
n. 

Since ax is not a power of another element of 3Fx and a2 is not a power of 
another element of 3FX9 both m and n are the smallest positive periods of the 
function/: Z - • X, hence m = ft. 

This means that ax — ux u2 ... wm = v, t>2... i;m = a2. But this is a contradiction 
because we have supposed that ax ̂  a2. 

Corollary 2. Lel J^^ be the free semigroup on a set X, M ^ 3Fx and i9j = 
= 1,2, 3 , / < / 

Fherz M e # , / ^ ) iff M = u{Ma\aeA} and MaetA
r
ij({a)) for every aeA. 

Corollary 3. Le/ S be a union of mutually disjoint, cyclic groups of finite order, 
Gk = (aky (keK) and j = 2, 3. Then the following statements hold: 

i) MeJfx j(S) iff M = u {<a,>|/eL} and L is an arbitraly subset of K. 
ii) JT2 3(S) = &(S). 
Proof. The proof of i) follows from the fact that if <a> is a cyclic group 

of finite order, then ^ , / < t f » = {•, <#>}. ii) is a direct consequence of the 
Corollary of Theorem 1. (See also Corollary 1 of Theorem 4.) 

Corollary 4. Let S be a band. Then jr. .(S) = &(S) for /, j = 1, 2, 3, i < j . (See 
also Corollary 2 of Theorem 4.) 
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5. Examples. 

We shall give some examples showing how Theorem 6 can be uused. 
E x a m p l e 4. Let G be the cyclic group of infinite order generated by the 

element a with the identity e. Then G is the union of mutually disjoint, cyclic 
semigroups <<7>, <e>, <a '>, i. e G = {a} u <<?> u {a ]}. We can use Theorem 
6 and we get the following results. MeA\ 3(G) iff M = M, u M2 u A/3, where 
M,eJ", 3 « t f » , M2eA\ -X<e» and M^eA\ 3 « a ' » holds. This means that 
MeAx 3(G) iff M = M, u M2 u M3, where M, is either the empty set or A/, is 
a complement of a finite subset of <a>, M2 is either the empty set or M2 = {e} 
and A/3is either the empty set or M3 is a complement of a finite subset of <a_1>. 
MeA\ 2(G)ifTM = M, u M2 u M3, where M, eA \ 2((a)),M2eA\ 2((e» and 
M3Ge \\ 3(<a_1>). This means that Me A \ 2(G) iff M = A/, u A/2 u M3, where 
A/, is either a finite subset of <a> or M, is a complement of a finite subset of <L/>, 
M2 is either the empty set or M2 = {e} and A/3 is either a finite subset of <a '> 
or M3 is a complement of a finite subset of <a ]>. 

R e m a r k 1. Let SA, keK, 0<£K be mutually disjoint semigroups and 
S0 = {0} be a semigroup disjoint with every semigroup Sk, keK. Let 
S = u {SJk G K} u S0. Then S is a semigroup and {Sk\k e K} u S0 is a semilattice 
decomposition of S if xv = yx = 0 for v e S „ yeS,, / f̂, ij'eKu {0} and the 
multiplication in every semigroup S,, / e K u { 0 } remains as before. 

E x a m p l e 5. Let the semigroup S = u {<a/>|ie/} u {0} be the union of 
mutually disjoint cyclic semigroups <a,>, ie/and of the semigroup <0> that is 
disjoint with every semigroup <a,>, iel. Let xy = 0 in the case if x and y belong 
to distinct subsemigroups of the partition {<a,>|/e/} u <0> of the semigroup S. 
Then we can use Theorem 6 and we have: 

\)MeA~]2(S) iff M = u { M J / e / ) u M 0 , where MieAr
] , « « , » and 

A/0e.V , 3 « 0 » , 
i i )MG.A^ ] 2(S) iff M = u{Mj\ieI}vM09 where M.eA\ 2 « a , » and 

M0e.V, 2 « o » . 
R e m a r k 2 . Let S, and S2 be disjoint semigroups and S = S, u S2. Then S 

is a semigroup and {S,, S2} is a semilattice decomposition of Sif .xy = yx = x for 
all xeS, and yeS2 and the multiplication of two elements of S,, resp. of two 
elements of S2 remains as before. 

E x a m p l e 6. Let S = <a> u <b>, where <a> and <b> are disjoint cyclic 
semigroups, generated by a and b, respepcively, and xy = yx = x in the case if 
xe <a> and >'e<b>. 

In this case Theorem 6 can be also used. 
R e m a r k 3. Combining the constructions of Remark 1 and Remark 2 we 

get other semigroups, where Theorem 6 may be used. 
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6. Semigroup and its homorphic image 

Proposition 9. Let S and S' be semigroups and let <p: S -*• S' be a surjective 
homomorphism. Let M <~\ S. If xeS and x"eM for some neN, then 
((p(x))"e<p(M). 

Proof. (<p(x))" = <p(x")e<p(M). 

Proposition 10. Let S and S' be semigroups and let <p: S-* S' be a surjective 
homomorphism. Let M' <~\ S'. Ifx'eS', (x')"eM' for some neN and <p(x) = x', 
then x"e<p~\M'). 

Proof. <p(x") = (<p(x))" = (x'feM', hence x"e<p~\M'). 

Corollary 1. Let S and S' be semigroups and <p: S —> s' be a surjective homo­
morphism. Let M' <~\ S'. Then for i = 1, 2, 3 there holds: 

i) N,(S, <p-\M')) = <p~\N,(S', M')), 
ii) N,(S',M') = <p(N,(S,<p-\M'))). 

We give the proof only for / = 2. Let <p~\M') = M, then <p(M) = M'. 
a) If x e N2(S, M), then x" e M holds for infinitely many neN, hence by Proposi­

tion 9 we have (<p(x))ne<p(M) = M' for infinitely many neN i.e. 
<p(x)eN2(S',M'), hence xe<p~\N,(S', M')). Therefore N2(S, <p~\M')) ~\ 
£ <P~\N2(S', M')). 

b) Let xe<p~\N2(S', M')). This means that x' = (p(x)eN2(S', M'), i.e. (x'f = 
= (<p(x))"eM' for infinitely many neN. By Proposition 10 we have 
x"e<p~\M') for infinitely many neN i.e. xeN2(S, <p~\M')). Hence 
<p-\N2(S', M')) £ N2(S, <p~\M')). 
This means that N2(S, <p~\M')) = <p~\N2(S', M')) and evidently also 

At2(s', M') = <p(N2(S, <p~\M'))). 

Corollary 2. Let S and s' be semigroups and <p: S -* S' be a surjective homo­
morphism. Then JT,J(Sr) = {M' £ S'\<p-\M')eJr,J(S)} holds for i,j = 1, 2, 3, 
i<f 

Proof, a) Let M'eJTiJ(S'), i.e. JV,<s', M') = At/s', A/'). Then Corollary 1 
i) implies that At,<s, <p~\M')) = ^"'(AtXs', M')) = <p-\Nj(S', M')) = 
= Nj(S, <p-\M')), hence <p-\M')eJriJ(S). 

b) Let <p-\M')eJTiJ(S) i.e. 7V,<s, <p~\M')) = Nj(S, <p~\M')). Then Co­
rollary 1 ii) implies that At,(s', M') = <p(N,(S, <p~\M'))) = <p(Nj(S, <p~\M'))) = 
= At<s', M') hence M ' G ^ , / s ' ) . 

Remark 4. It is known that every semigroup S is a homomorphic image 
of some free semigroup ^x on a set X. This implies the following 

Theorem 7. Let S be a homomorphic image of a free semigroup 3~ x on a set X 
by the homomorphism <p: # x -» s. Let M <~\ S. Then the following statements 
hold: 
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i) N,(^x,cp \M)) = cp ](N,(S,M)), 
ii) N,(S, M) = <p(N,(&x, cp~\M))), 

iii) A ,,(S) = {M c= S\cp \M)e.Vlf(^x)}, for i,j = 1, 2, 3, i <j. 

7. Application to characterizations of some classes of semigroups 

Theorem 8. Let S be a semigroup. Then the following statements are equivalent: 
i) {a}eA\ ,(S)forallaeS. 

ii) S is a band. 
iii) J \ IS) = //(S). 
Proof , i) => ii). Since ae{a}eJr, ,(S), we have aeN3(S, {a}) = NX(S, {a}), 

hence there exists an n0e N such that ane{a} holds for all n > n0, i. e. a!1 = a for 
nil n > n0. Therefore a = a"0 = a"{) = a"0a = a2; i.e. a is an idempotent. 
ii) => iii). Let S be a band and let M ^ S. If xeN3(S, M), then x'?0e A/ for some 
n0eN. Since x is an idempotent, we have xn = x"°eM for all neN, hence 
xeN,(S, A/). This means that N,(S, M) = N3(S, M), therefore M e / , 3(5). (See 
also Corollary 4 of Theorem 6.) 
iii) => i) is evident. 

Theorem 9. Let S be a semigroup. Then the following statements are equivalent: 
x) {a}e,\r

2,(S)for all aeS. 
ii) S is a periodic semigroup and each cyclic subsemigroup of it is a group. 

iii) J \ ,(S) = &(S). 
Proof , i) --> ii). From {a}eA\ 3S) we have N2(S, {a}) = N3(S, {a}). Since 

aeN^(S, {a}) = N2(S, {a}), an = a holds for infinitely many neN, hence an = a 
holds for at least one n > 1. This means that <a> is a finite, cyclic group, 
ii) => iii). Let M ^ S and let xeN^S, M). Then x"°eM for some n0eN. By the 
assumption <x'?0> is a finite cyclic group. Hence there exists an meN, m > 1, 
such that x"°mk = (x"yk = xh)eM for all keN. This means that xneM for 
infinitely many neN, therefore xeN2(S, Af). 

We have N3(S, M) <= N2(S, M). This together with N2(S, M) ^ N3(5, M) gives 
N3(S, M) - N2(S, M) for all subsets M <= S. Hence Jf2 3(S) = 0>(S). 
iii) => i) is evident. 

Theorem 10. Let S be a semigroup. Then the ffollowing statements are equiv­
alent: 

x) (a}eA\ 2(S) all aeS. 
ii) S is a periodic semigroup and each its cyclic subsemigroup has period 1. 

iii) Jf, 2(S) = 0>(S). 
Proof , i) => ii). Let aeS. By the assumption we have (<a2}e^V] 2(S), i.e. 

N{(S, (a2» = N2(S, {a2}). Hence aeN2(S, <a 2» - NX(S, £<tf2», therefore 
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there exists an щєNsuch that ďє(a2} holds for all n > щ. This means that an 
even power of a is equal to an odd power of a9 hence the cyclic semigroup <a> 
is of finite order for every aєS. This means that the semigroup 5 is periodic. 

Since every subsemigroup <я> of the semigroup 5 is of finite order, <я> 
contains an idempotent e = ď. Evidently <ď> = {ď} and by the assumption 
(ď}єJГì2(S). Hence aєN2(S9 (ď}) = NX(S9 (ď}) = NX(S9 {ď}). Therefore 
there exists an щєN such that ď = ď holds for all n > щ9 i.e. a"° = ď = a%+ . 
This implies ťhat the period of <я> is equal to 1, for all aєS. 
ii) => iii). Let M Ç S, S be a periodic semigroup and let every cyclic sub-
semigroup of S have a period m = 1. Let x є N2(S9 M)9 i. e. x" є M for infinitely 
many nєN. Let r the index of the semigroup <x>. Then there exists ak0єN such 
that x' = x + °єM. Since the semigroup <;c> has period m = 1, x* = -ť"+ * є M 
for all kєN9 hence xєNx(S9 M). Therefore we have N2(S9 M) ç NX(S9 M). This 
together with NX(S9 M) ç N2(S9 M) gives ЩS9 M) = N2(S9 M). This means that 
MєJГx 2(S) foг all M ç 5 , i.e. JГX 2(S) = &(S). 
iii) => i) is evident. 

R e m a r k 5. If /S = <я> is the cyclic semigroup of infinite ordeг, then 
{a}єJГx 2(S) for all aєS9 but JГX 2(S) Ф 0>(S). 

Theoгem 11. Let S be a semigroup. Then the following statements are equi-
valent: 

i) ЩS9 {a2}) = {a2} for all aєS. 
ii) S is a band. 

iü) N3(S', M) = Mfor all M^S. 
iv) ЩS9 {a}) = {a}for all aєS. 
Proof. i) => ii). If aєS9 then aєN3(S, {a2}) = {a2}. Hence a = a2. 

ii) => iii) => iv) ==> i) is evident. 

Theoгem 12; Let S be a semigroup. Then the following statements are equiv-
alent: 

i) For every aєS there exists a kєN such that N2(S9 {ak}) = {ď}. 
ii) S is a band. 

iii) ЩS9 M) = Mfor all M^S. 
Proof. Let aєS. Then ďєN2(S9 {ď}) = {ď} for some kєN. This means 

that ďn = (ď)n = ď holds for infinitely many nєN. Hence the semigгoup <я*> 
is a cyclic group with a unit e = ďr = ďnr and this equality holds for infinitely 
many nєN. Therefore aєN2(S9 {e}) = {e}. Hence a = e and this implies a2 = a. 

We have proved i) => ii). 
ii) => iii) ==> i) is evident. 

Theoгem 13. Let S be a semigroup. Then the following statements are equiv-
alent: 
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i) N}(S, {a}) = {a}forallaeS. 
ii) S is a band. 

iii) N,(S, M) = Mfor all M <= S. 
Proof, i) => ii). If aeS, then aeN}(S, {a}) = {a}. Therefore there exists an 

n0eN such that d1 = a for all n > n0. Hence 

a a = a2. We have a = a2 for all ae S, therefore S is a a = a 7° = a' 0 + 1 ДÍQ 

= a °a = 
band. 
iï)=> ІІІ) => i) is evident. 
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НИЛЬПОТЕНТНОСТЬ В ПОЛУГРУППАХ И ТРИ РЕШЕТКИ ИХ БУЛЕАНОВ 

ЯоЬсг! § и 1 к а 

Р е з ю м е 

С помощю ПОНЯТИЯ нильпотентности определены три решетки. Дана конструкция этих 

решеток для полугрупп, являющихся объединением непересекающихся циклических полу­

групп, и характеризация некоторых классов периодических полугрупп. 
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