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NILPOTENCY IN SEMIGROUPS AND SUBLATTICES
OF THEIR BOOLEANS

ROBERT SULKA

1. Introduction.

Let S be a semigroup, S” a subsemigroup of S, M = §’, N the set of all

positive integers and {Z2(S), =) the Boolean of S. We introduce the following
notations

N\(S', M) = {xe S’|x"e M for almost all ne N},
N,(S', M) = {xe §’|x"e M for infinitely many ne N},
N3(S’, M) = {xe S’|x"e M fore some ne N}.

With respect to the notations in the paper [5] if M < S, then
N{(M) = N{(S, M) for i =1, 2, 3, N,(S’, M) is the set of all strongly M-potent
elements of S’, N,(S’, M) is the set of all weakly M-potent elements of S” and
N3(S’, M) is the set of all almost M-potent elements of S’

Further let

A1 o8) ={M = SIN(S', M) = N(S', M)},
A1 (8) ={M < SIN(S’, M) = Ny(S', M)} and
N2 3(8) ={M = S'|N,(S', M) = Ny(S’, M)}.

With respect to the notation in the paper [5] if M < §, then A", (S) = .V, ; for
i<j,i,j=1,2,3.

From the paper [5] it follows that (", ,(S"), =) is a lattice and
(AN 5(S7), €D and (A, 3(S"), =) are complete lattices. In the mentioned paper
the structure of A7, ,(S), A7, 5(S) and A", 4(S) was studied in the case of a cyclic
semigroup S.

The purpose of this paper is to elucidate the connections between the lattices
A7 (S) and the lattices A7, (S;) (ke K) where S, are subsemigroups of the
semigroup S, to elucidate the connections between the lattices .47, (S) and the
lattices A (S"), if S is a homomorphic image of S and to give characterizations

of some classes of periodic semigroups by means of the notions mentioned
above.
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It will be shown that if S = U {S;|keK}, S, are subsemigroups of S and
M < S, then Me A, (S) iff for all ke K M n S, et (S,) holds. Hence the
knowledge of the lattices .47, (S, k € K) allows to test, whether the set M belongs
to .7, (S) or not. Therefore the knowledge of the lattices .47, ,(S,) (k€ K) allows
to construct the lattices .4 ; ;(.S).

Since every semigroup S is a union of some system of its cyclic subsemigroups
{a,y (ke K) and the structure of lattices A", ({&,)) is known, we get a tool for
the construction of the lattices .47, (S) of an arbitrary semigroup S.

As we shall see the above mentioned construction of the lattices .47, (S) can
be essentialy simplified if S = U {S;|k € K}, where every two subsemigroups S,
S, k, le K, k # [ are disjoint. In this case M e. V", (S) iff M = U {M,|]ke K} and
M,e A, (S,) for every ke K. This will be particularly true in the case of a free
semigroup % , on a set X, because this semigroup is a union of a system of its
cyclic subsemigroups that are mutually disjoint.

If ¢: S — S is a homomorphism of a semigroup S onto a semigroup S’, then
N (S)={M = Slp"(M)e.V, (S)) holds for i, j= 1,2, 3, i <.

This result may be also applied to the free semigroup % , on a set X and its
arbitrary homomorphic image.

2. A7 (S) for a cyclic semigroup S.

For completeness we have to mention that it follows from the paper [5]

Proposition 1. Let S = {a) be the cyclic semigroup generated by the element
a. Then O # /H'f:‘kaV2 3(S) iff M is a union of countably many sets
{x, XX X "'k", ...}, xe S, where (k,);°_ | is a sequence of positive integers
k,, k,> 1.

Proposition 2 and Proposition 3 are also consequences of the paper [5].

Proposition 2. Let S = {(a) be a cyclic semigroup of infinite order Then
O#Me. V', 5(S) iff M is the complement of a finite subset of S.

Let S = {a) be a cyclic semigroup of finite order. Then 0 # M e V| 4(S) if M
contains the maximal subgroup G of S.

Proposition 3. Let S = <a) be a cyclic semigroup of infinite order. Then
Me N, (S) iff either M is a finite subset of S or M is the complement of a finite
subset of S.

Let S = {a) be a cyclic semigroup of finite order. Then M € .{", 5(S) iff either
MnG=0o0rM=20G.
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3. 7, (@) in the case if (a) is a cyclic semigroup
of finite order

Proposition 4. Let G be a group. Then every finite cyclic subsemigroup of G is
a group.

Proof. Let <a) ={a, &, ..., a ', @, ..., @™~ '} = G and r be the index
and m the period of the semigroup <{a). Thena *' = a *™*' In G there exists
(a’)~', hence a = ¢"+'. This means that {a) is a group.

Let <a) ={a, & ...,a ', a, ..., a*™ '} be the cyclic semigroup of finite
order with index r and with period m. We denote P(a) = {a, @’, ..., a’~'} and
G(a) ={da, ...,a’ *™~"}. It is known that G(a) is the maximal subgroup of the

semigroup <{a) and G(a) is a cyclic group.

Proposition 5. Let {a) be a cyclic semigroup of finite order. Then for every
cyclic semigroup {b), be {a) there holds: P(b) = P(a), G(b) = G(a).

Proof. Since G(b) is a cyclic group of finite order, {x) is a cyclic group
for all xe G(b). Hence for every x e G(b) there exists a 1€ N such that x' = x,
therefore G(b) N P(a) = O. This implies that G(b) = G(a).

If xe G(a) N P(b), then (x) = G(a) N {b). Therefore {x) is a cyclic group of
finite order of {b), hence xe G(b). However, this is a contradiction with the
assumption x e P(b). This means that G(a) n P(b) = O, hence P(b) < P(a).

Theorem 1. Let S = {a) be a cyclic semigroup of finite order. Then the
following statements hold:
i) The lattice N, 4(S) is atomic.
i) The atoms of V", i(S) are exactly all one-element sets {b}, be G(a).
iii) The lattice N, (S) contains all sets of the form {b, b*}, be P(a), b*€ G(a).
iv) The lattice N, 5(S) contains exactly all unions of all subsystems of the system
of all sets mentioned in ii) and iii).

Proof. i) is evident, since .47, 5(S) is finite.

a) We shall prove that all sets mentioned in ii) belong to 4", 5(S). Let be G(a)
and x e N;(S, {b}) hold. Then there exists a pe N such that x” = b. Since {b)
is a cyclic group of finite order, there exists a ge N, g > 1 such that for all
se N we have (b)* = b. Hence x*? = (x*)? = b, for all se N. This means that
infinitely many powers of x are equal to b, therefore x € N,(S, {b}). We have
Ny(S, {b}) = Ny(S, {b}), hence {b}e A", 5(S).

b) Now we shall prove that all sets mentioned in iii) belong to A", 5(S).

Let xe Ny(S, {b, b}), be P(a) and b* € G(a). Then either there exsits a pe N
such that x? = be P(a) or there exists a pe N such that x” = b* € G(a).

a) Let X’ = p*e G(a). Then like in a) infinitely many powers of x are equal
to b, hence x e N.(S, {b, b'}).
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P) Let x* = be P(a). Then x*” = b* € G(a) and again like in a) infinitely many
powers of x are equal to b*. Hence xe Ny(S, {b, b*}).
We have Ny(S, {b, b*}) = Ny(S, {b. b*}), i.e. {b, b} e N5 (S).
¢) Since (A", (S), &) is a complete upper subsemilattice of the complete
semilattice (2(S), <), the unions of arbitrary subsystems of the system
of sets mentioned in ii) and iii) are elements of .17, ,(S).
d) Finally we shall prove that A", 4(S) does not contain sets that are not
unions of a subsystem of the system of sets mentioned in ii) and iii).
Let M = S not be a union of a subsystem of the system of sets mentioned in
i1) and iii). Then M contains an element x € P(a), but M contains no power of
x that is in G(a). Therefore x € Ny(S, M) and M can contain only powers of x that
belong to P(a). This means that M contains only a finite number of powers of
x, hence x¢ N,(S, M). This implies that M ¢ .17, ;(S).
From these results it follows immediately that all sets {b}, b € G(«) are exactly
all atoms of the lattice . 17, 4(S).

Corollary. Let S = {a) be a cyclic group of finite order. Then .V", ;(S) = 2(S).

Proof. Evidently all atoms of .17, 3(S) are exactly all sets {b}, be<a),
hence A7, 5(S) = Z(S).

Example 1. Let S=<a) = {a, &, &, a*, a’} be the cyclic semigroup of
finite order with index 3 and period 3.

Then P(a) = {a, @’} and G(a) = {@’, d*, a®}. Further (&) = {d’, &’, a*, a*},
P(d®) = {a’} and G(a&*) = {&@’, a*, &°}.

The atoms of .17, (S) are: {a’}, {a*}, {a°}.

Other elements of .47, 4(.S) are:

{a, &}, {a, a*}, {a, &},
Rl hl hl
(@, o, {@, a*}, (@, a°}.

Any element of .17, 5(S) is a union of a subsystem of the system of the above
mentioned sets.

In this case all apirs {b, ¢}, be P(a), ce G(a) belong to A", «S).
Example2. Let S =<a) = {a, &, &, &*, &°, &, d', &*, a’, a'’} be the cyclic
semigroup of finite order with index 5 and period 6.
Then P(a)={a,a’,d’ 4"} and G(a)={d’ d’ d', d* d’, a"}. Further
(a*y ={a’,d', a’, &, a"}, P(d®) = {d’, a'} and G(d®) = {d®, d°. '},
(ay ={d, &, d°}, P(@) = {a*} and G(a®) = {d°, d°},
{a'} = {d*, &’. &, a"*}, P(a") = {¢*} and G(a*) = {°, d*, @'°}. The atoms of .17, (S)
are:
(@}, {a}. {d'}, (@}, (e} and {a"}.
Other elements of . 17, (S) are:
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{a, a%), {a, o}, {a, d’}, 1@, a%}, {a, &°}, {a, @'},
(@&, a%, {&, a*}, {d*, a"}

{@, a%, {d, &%},

{04, (16}, {04, aS}’ {a4, alO}'

All elements of A, 5(S) are unions of a subsystem of the system of all sets
mentioned above.

The set {@? a’}¢ .45 (S) because a’e Ny(S, {a*, a°}) but a*¢ N,(S, {d, @°}),
since @’ ¢ (a*).

We can see that not all pairs {b, c}, be P(a), ce G(a) belong to A", 5(S).

4. Semigroup and its subsemigroups

Theorem 2. Let S be a semigroup, M a subset of S, Si(k € K) subsemigroups of

S and let S=u{SlkeK}. Then N{(S, M) = U {N(S,, Mn S,)keK} for

i=1,2,3.

Proof. We give the proof only for i = 3. For i = 1, 2 the proofs are sim-
ilar.

a) Let xe N;(S, M) hold. Then there exists an ne N such that x"e M. Since
S = u{S,lke K}, there exists a ke K such that xe S, hence for all ne N we
have x"eS,. This means that there exists an ne N such that x"e M N S,.
However, since xe€S,, this implies that xeN;(S,, M nS,) <
c U {N3(S;,, M n S)|lke K} and we have N,(S, M) c
< U {Ny(Si, M n SplkeK}.

b) Let xe U {Ny(S;, M n Sylke K} hold. Then there exists a ke N such that
x€N;(S,, M n S,). Hence there exists an ne N such that x’e M N S, = M.
This means that x e N,(S, M) holds and we have U {N4(S;, M n S))lke K} =
< Ny(S, M).

From a) and b) we get N3(S, M) = U{N,(S,, M n S))lke K}. Next we shall

need the following statement of paper [5].

Proposition 6. Let S be a semigroup, S” a subsemigroup of S and M a subset
of S. Then N{(S, M)n §" = N(S’, 8" M) holds for i =1, 2, 3.
Now we can prove

Theorem 3. Let S be a semigroup, S(k€K) subsemigroups of S, S =
=uU{SilkeK}, i,j=1,2,3,i<j. Then Me N (S) iff M~ S, eN; (S,) holds
for all ke K.

Proof. a) Let Me A" (S), i.e. N(S, M) = N,(S, M). Then Proposition 6
implies that N(S;, M n S,) for all k € K. This means that M n S, e A", (S) for all
ke K.

b) Let M S,e A" (S,) for all keK, i.e. N(S;, M S}) = N(S;, M S))
for all ke K. Then Theorem 2 implies that N(S, M) = U {N{(S;, M n S, lke K} =
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= U{N/(S;, M 0 Slke K} = N(S, M). This means that Me A", (S) holds.
From the paper [5] we have

Proposition 7. Let S be a semigroup, S’ a subsemigroup of S and M < S'. Then
Me N, 4(S) implies M e A, 4(S).
Now we can prove

Theorem 4. Let S be a semigroup, S (keK) subsemigroups of S,
S=u{SlkeK} and M, e N5 (S, for all keKk. Then
M=u{M\|keKie N, S).

Proof. By the assumption M,€.4", 4(S,) holds for all ke K. Hence
Proposition 7 implies that M, e A", 5(S) for all ke K. Since (A", 3(S), =) ,isa
complete upper sublattice of (2(S), € >, M = nu {M,lke K} € A", 5(S) holds.

Corollary 1. Let S be a periodic semigroup and every cyclic subsemigroup of S
a group. Then N, 4(S) = 2(S).

Proof. S = u{{adlae S}, where {(a) is a cyclic group of finite order. By
Corollary of Theorem 1 and by Theorem 4 4", ,(S) contains all sets {a}, a€ S.
Since <.17, 4(S), ) is a complete upper sublattice of <(2(S)>, S, 47, ;(S)
contains all elements of 2(S).

Corollary 2. Let S be a band. Then A", 4(S) = 2(S).

Theorem 5. Let S be a semigroup, S,(keK) subsemigroups of S,
S=u{SlkeK}, and M= S. Then Me NV, (S) iff M=uU{M|keK} and
M€ A7, 5(Sy) for every ke K.

The proof follows from Theorem 3 and Theorem 4. In the following example
it is shown that a similar Theorem does not hold for the other two kinds of
lattices.

Example3. Let S= S5, = (a) be the cyclic semigroup of infinite order
and S, = {a® = {a*lk = 1,2, 3, ...}. Then S = S, U S,. Further let M, = O and
M,={a"n=2,3,4 .} Then M, S, M= S,and M = M{OUM,= M, =
={a"ln=2,3,4,..}.

Since M, = O, we have M,e 4", 4(S,) and M, € A", (S,). The fact that M, is
a complement of a finite set in S, implies that M,e A", 5(S,) and M,e A", 5(S,).
But since M is neither a finite set nor a complement of a finite set in S we have
M¢ . V', 4(S) and M ¢ A", (S). Nevertheless the following Thorem holds.

Theorem 6. Let S be a semigroup, Si(keK) subsemigroups of S. Let
S = U {Silke K} and every two subsemigroups S, S\(k, [€ K), k # | be disjoint.
Then Me A", (S) iff M = U{M,|lke K} and M, e A", (S}) for every ke K.

Proof. With respect to the fact that the subsemigroups S,(k€K) are
mutually disjoint it is clear that if M = U {M,|ke K}, then M, = S, n M for all
ke K. Now it is sufficient to use Theorem 3.
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Corollary 1. Let {S,|ke K} be a semilattice decomposition of a semigroup S,
McS and i,j=1, 2, 3, i<jThen Me N, (S) iff M =v{MkeK} and
M,e v, (S,) for every ke K.

Proposition 8. Let 7 , be the free semigroup on a set X. Let A = {ae F x| a not
be a power of any other element of F,}. Then F = v{{a)lac A} and if
a,, a,€ A, a, # a,, then {a,) n{a,y = 0.

Proof. Let a,=uwu,...u,, u, Uy ..., U,€X, G = V,05... Uy, Uy, Upy..ry
v,€ X, a, # a,. Let a, be a power of no other element of # y and a, be a power
of no other element of & ,.

Let us suppose that af = @, for some k, /e N. We shall prove that this is
impossible. This will imply that <{a,)> n {a,) = 0O.

Let Z be the set of all integers.

We can define two functions:
fiZ-X, f())=u, f2) =u, ..., f(m) = u, and f(s) = f(s + m), for all se Z.
This function is periodic with a positive period m.

g Z-X, g(1) =0, g12) =0, ..., g(n) =v, and g(s) = g(s + n), for all seZ.
This function is periodic with a positive period n.

With respect to the condition
a = @wu, ... u,) =@, .. v,)=ad and since F, is a free semigroup,
f() = g(i), for all ie Z.

The function f: Z — X is therefore periodic and has positive periods m and
n.

Since a, is not a power of another element of & and a, is not a power of
another element of % ,, both m and » are the smallest positive periods of the
function f: Z — X, hence m = n.

This means that ¢, = u, u, ... u,, = v, v,... v,, = a,. But this is a contradiction
because we have supposed that a, # a,.

Corollary 2. Let &, be the free semigroup on a set X, M = ¥, and i, j =
=1,2,3,i<}j.
Then Me N, (F y) iff M = u{M Jaec A} and M e N, ({a)) for every a€ A.

Corollary 3. Let S be a union of mutually disjoint, cyclic groups of finite order,
G, =<a,y (keK) and j =2, 3. Then the following statements hold:

i) Me N (S) iff M = u{aplle L} and L is an arbitraly subset of K.

i) A7 5(S) = 2(S).

Proof. The proof of i) follows from the fact that if {a)> is a cyclic group
of finite order, then A" (<{a)) = {0, {a)}. ii) is a direct consequence of the
Corollary of Theorem 1. (See also Corollary 1 of Theorem 4.)

Corollary 4. Let S'be a band. Then A7 (S) = 2(S)fori, j=1,2,3,i <. (See
also Corollary 2 of Theorem 4.)
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5. Examples.

We shall give some examples showing how Theorem 6 can be uused.

Example 4. Let G be the cyclic group of infinite order generated by the
element a with the identity e¢. Then G is the union of mutually disjoint, cyclic
semigroups {a), {e>, {a "D, i.e G = {a) u<{edula "y. We can use Theorem
6 and we get the following results. Me. 4, {(G) it M = M, u M, U M,, where
Me. V', y(ad), Mye. 7, s({e)) and Mye . A", ({a ')) holds. This means that
Me A" (G)iff M =M, v M,0 M,, where M, is either the empty set or M, is
a complement of a finite subset of {a), M, is either the empty set or M. = {¢}
and M, is either the empty set or M, is a complement of a finite subset of (a™').
Me. A7, (G)IfT M =M, 0 M,u M, where M, e, ,({a)), Mye. 1| ,({e)) and
M,e. 17, y(<a™')). This means that Me. 1| ,(G) iff M = M, u M, U M,, where
M, is either a finite subset of (a) or M, is a complement of a finite subset of {(a),
M, is either the empty set or M, = {¢} and M, is either a finite subset of {a ")
or M, is a complement of a finite subset of {a ).

Remarkl. Let S,, keK, 0¢ K be mutually disjoint semigroups and
S, =1{0} be a semigroup disjoint with every semigroup S,, AeK. Let
S=uU{SlkeK} U S, Then S is a semigroup and {S,;|ke K} U S, is a semilattice
decomposition of S if vy = yx =0 for xe§,, ye S, i #j, i,je Ku {0} and the
multiplication in every semigroup S, /e KU {0} remains as before.

Example 5. Let the semigroup S = u {{a>|liel} {0} be the union of
mutually disjoint cyclic semigroups <a,», i€ I and of the semigroup <0) that is
disjoint with every semigroup {a,>, i€ I. Let xy = 0 in the case if x and ) belong
to distinct subsemigroups of the partition {{a,>|ie I} U {0) of the semigroup S.
Then we can use Theorem 6 and we have:

) Me A" (S) if M=u{Mliel;uM, where MeA" ({a)) and

M,e. 17, 4(£03),
i) Me A (S) if M=u{Mjliel}uM, where M,e. 1" ,({a>) and
Me A7 5(€0)).

Remark2. Let S, and S, be disjoint semigroups and S = S,u S,. Then S
is a semigroup and {S,, S,} is a semilattice decomposition of Sif xy = yx = x for
all xe S, and ye S, and the multiplication of two elements of S, resp. of two
elements of S, remains as before.

Example 6. Let S = {a) u<b), where {a) and {(b) are disjoint cyclic
semigroups, generated by ¢ and b, respepcively, and xy = yx = x in the case if
xe{a) and ye {(b).

In this case Theorem 6 can be also used.

Remark 3. Combining the constructions of Remark 1 and Remark 2 we
get other semigroups, where Theorem 6 may be used.
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6. Semigroup and its homorphic image

Proposition 9. Let S and S’ be semigroups and let ¢: S — S’ be a surjective
homomorphism. Let M <= S. If xeS and x"e M for some neN, then
(p(x))"€ p(M).

Proof. (p(x))" = @(x") € p(M).

Proposition 10. Let S and S’ be semigroups and let ¢: S — S’ be a surjective
homomorphism. Let M’ = S’. If x’€ S’, (x')"e M’ for some ne N and ¢(x) = x’,
then x"e€ ¢~ '(M’).

Proof. ¢(x") = (p(x))" = (x’)"e M’, hence x"€ ¢~ '(M’).

Corollary 1. Let S and S’ be semigroups and ¢: S — S’ be a surjective homo-
morphism. Let M’ < S’. Then for i = 1,2, 3 there holds:

i) N(S, o~'(M")) = ¢~ (N(S", M")),

ii) N(S', M) = o(N{S, ¢~ (M)

We give the proof only for i = 2. Let ¢~ '(M’) = M, then (M) = M".

a) If xe N,(S, M), then x"€ M holds for infinitely many n e N, hence by Proposi-
tion 9 we have (¢(x))"eo(M)= M’ for infinitely many neN i.e.
o(x)e Ny(S’, M"), hence xe @ '(Ny(S’, M’)). Therefore NS, ¢p~'(M’)) =
S ¢ (N(S', M")).

b) Let xe ¢~ '(N,(S’, M’)). This means that x’ = ¢(x)e N,(S’, M), i.e. (x')" =
=(¢(x))"e M’ for infinitely many neN. By Proposition 10 we have
x"e (M’ for infinitely many neN i.e. xeN,S, o '(M’)). Hence
9~ (NAS', M")) = NS, ™' (M")).

This means that NS, ¢~ '(M’)) = ¢~ '(N,(S’, M’)) and evidently also

Ny(S", M') = (NS, ¢~ '(M"))).

Corollary 2. Let S and S’ be semigroups and ¢: S — S’ be a surjective homo-
morphism. Then A, (S') ={M' < S'|o~'(M")e N, (S)} holds for i,j =1, 2, 3,
i<j.

Proof. a) Let M e A, (S, i.e. N(S', M") = N(S’, M"). Then Corollary 1
i) implies that N(S, @ '(M")) =@ '(N(S', M)) =9 '(N(S, M) =
= N(S, ¢7'(M")), hence ¢~ '(M")e N, (S).

b) Let o~ '(M')e N, (S) i.e. N(S, ¢~ '(M")) = N(S, ¢~ '(M")). Then Co-
rollary 1 ii) implies that N(S’, M’) = @(N{(S, ¢~ '(M")) = o(N(S, ¢~ (M) =
= N(S’, M’) hence M"e &, (§).

Remark 4. It is known that every semigroup S is a homomorphic image
of some free semigroup & , on a set X. This implies the following

Theorem 7. Let S be a homomorphic image of a free semigroup F , on a set X
by the homomorphism ¢: &, — S. Let M = S. Then the following statements
hold.
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l) NI('fX’ (P I(AI)) = (p I(N’(S’ M))9
ii) N(S, M) = p(N(F v, ¢ '(M))),
i) .1, (S) = {M < Slp (Mye. V', (F )} forij=1,2,3,i<j.

7. Application to characterizations of some classes of semigroups

Theorem 8. Let S be a semigroup. Then the following statements are equivalent:
1) {a}e. V", «S) for all aeS.

i) S is a bund.

i) 47, 4(S) = 2(S).

Proof. 1) = ii). Since ae{u}e.17, 4(S), we have ae N,(S, {a}) = N\(S, {a}),
hence there exists an n e N such that "€ {a} holds for all n > n, i.e. @' = a for
wll n > ny. Therefore a = d" = d*" ' = 4"™a = &’ i.e. a is an idempotent.

ii) = iii). Let S be a band and let M < S. If xe Ny(S, M), then x"°e M for some
nye N. Since x is an idempotent, we have x" = x"e M for all ne N, hence
x€ N,(S, M). This means that N\(S, M) = N4(S, M), therefore M e 4", (S). (See
also Corollary 4 of Theorem 6.)
i) = 1) is evident.
Theorem 9. Let S be a semigroup. Then the jollowing statements are equivalent:
i) {a}e. A", 4(S) for all aeS.

i) S is a periodic semigroup and each cyclic subsemigroup of it is a group.

iil) A7, 4(S) = 2(S).

Proof. i) = ii). From {a}e.1", ;S) we have N, (S, {a}) = N;(S, {a}). Since

ae NS, {a}) = NS, {a}), a" = a holds for infinitely many ne N, hence " = a
holds for at least one » > 1. This means that {a) is a finite, cyclic group.
ii) = iii). Let M < S and let xe N,(S, M). Then xe M for some n,e N. By the
assumption {x" is a finite cyclic group. Hence there exists an me N, m > 1,
such that X" = (\"y"* = xe M for all ke N. This means that x"e M for
infinitely many ne N, therefore xe N,(S, M).

We have N,(S, M) < N,(S, M). This together with N,(S, M) = N,(S, M) gives
N,(S, M) = N.(S, M) for all subsets M = S. Hence A", ;(S) = 2(S).

iii) =1) is evident.

Theorem 10. Let S be a semigroup. Then the ffollowing statements are equiv-
alent:

1) <ay>e A" 5(S) all ae S.

i) S is a periodic semigroup and each its cyclic subsemigroup has period 1.

i) A7) (S) = 2(S).

Proof. i) = ii). Let ae S. By the assumption we have {a?)€ A", o(S), i.e.
N(S, <d®>) = Ny(S, (a*)). Hence ue NS, {(a*)) = N,(S, D{a*)), therefore
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there exists an n,e N such that a"e {(a*) holds for all n > n,. This means that an
even power of a is equal to an odd power of a, hence the cyclic semigroup <{a)
is of finite order for every ae S. This means that the semigroup S is periodic.

Since every subsemigroup <{a) of the semigroup S is of finite order, {a)
contains an idempotent e = ¢'. Evidently {¢') = {a¢’} and by the assumption
(aye N (S). Hence ae Ni(S, {a*)) = N\(S, {a')) = N,(S, {a'}). Therefore
there exists an nye N such that @" = a’ holds for all n > n,, i.e. a° = @’ = aet,
This implies that the period of {a) is equal to 1, for all a€ S.
ii) = iii). Let M = S, S be a periodic semigroup and let every cyclic sub-
semigroup of S have a period m = 1. Let xe N,(S, M), i.e. x"e M for infinitely
many ne N. Let r the index of the semigroup <x). Then there exists a k,€ N such
that " = x"**e M. Since the semigroup {x) has period m =1, X’ = X’ *ke M
for all ke N, hence x€ N,(S, M). Therefore we have N,(S, M) = N,(S, M). This
together with N,(S, M) < N,(S, M) gives N,(S, M) = N(S, M). This means that
Me V| (S) forall M = S, i.e. N, ,(S) = 2(S).
iii) =1) is evident.

Remark 5. If S=<a) is the cyclic semigroup of infinite order, then
{afe N, (S) for all ae S, but A7, ,(S) # 2(S).

Theorem 11. Let S be a semigroup. Then the following statements are equi-
valent:

i) Ny(S, {a®) = {@®} for all a€S.
i) S is a band.

iit) N3y(S, M) =M forall M < S.

iv) Ny(S, {a}) = {a} for all a€S.

Proof. i) = ii). If ae S, then ae Ny(S, {a*}) = {a*}. Hence a = a’.

i) = iii) = iv) = 1) is evident.

Theorem 12: Let S be a semigroup. Then the following statements are equiv-
alent: ’

i) For every acS there exists a ke N such that Ny(S, {a*}) = {a"}.

i) S is a band.

iii) Ny(S, M) =M for all M < S.

Proof. Let aeS. Then d“e Ny(S, {d"}) = {d"} for some ke N. This means
that @ = (a*)" = d* holds for infinitely many ne N. Hence the semigroup <da*)
is a cyclic group with a unit e = &*" = ¢ and this equality holds for infinitely
many ne N. Therefore ae Ni(S, {e}) = {¢}. Hence a = e and this implies &’ = a.

We have proved i) = ii).

ii) = iii) = 1) is evident.

Theorem 13. Let S be a semigroup. Then the following statements are equiv-
alent:
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1) NS, {a}) = {a} for all a€S.
i) S is a band.
i) NS, M) = M for all M < S.
Proof. i)=ii). If a€ S, then ae N,(S, {a}) = {a}. Therefore there exists an

nge N such that ¢" = a for all n > n,. Hence
- ano — ano +1
band.

1) = iii) = i) is evident.

n, .
=a’a=aa=a’. We have a = & for all ae S, therefore S is a
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Pe3rome

C noMOLIIO MOHATHS HUJIBINOTEHTHOCTH ONpEAEsCHbl TPH pelIeTKH. JlaHa KOHCTPYKUHMsS ITHX
PELIETOK A TMOJYTPYNI, SBJISIOMMXCA O0BEIUHCHHEM HENEePECceKAOUIMXCS LHKIHYECKUX MOJy-
rpYNI, U XapakTepu3auus HEKOTOPBIX KJ1dCCOB NIEPHOANYECKHX MOJYTPYI.
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