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WHICH DIRECTED GRAPHS HAVE A SOLUTION?

BEHZAD M*.—HARARY F.

1. Introduction and Preliminaries

In this note, a digraph is a finite directed graph D with no loops or multiple arcs,
as defined in the books [1], [S] and [6]. The point set and the arc set of D are
denoted by P(D) and A(D) A subset S of P(D) is independent in D if a, be S

implies that neither arc ab nor ba isin A(D), while S is dommant in D if for each
a € P(D)\S there exists at least one b€ S such that bae A(D). If § is both
independent and dominant in D, then S is a solution of D. A subset S of P(D) is
aqbsorbent in D if for each a e P(D)\S there exists at least one b €S such that

abe A(D). The set S is a kernel of D if it is both independent and absorbent in D.
The notions not defined here can be found in [2, 5].

The concepts of solutions and kernels of digraphs are directional duals [4] and
hence the Principle of Directional Duality (P.D.D.) applies [6, p. 38]. Both
concepts stem from the work of von Neumann and Morgenstern [8, Ch. 12],
where the mathematical aspects of p-person games have been investigated. There,
it is proved in the language of relations, that an acyclic digraph has a solution.

Theorem A. Every digraph with no directed cycles has a unique solution.

By the P.D.D., every acyclic digraph has a unique kernel. Later Richardsonin
a series of papers [9, 10, 11] generalized the problem to arbitrary digraphs D (finite
or infinite).

Theorem B. Every digraph with no odd directed cycles has at least one solution.
Harary and Richardson [7] posed the following questions:

Problem I. Characterize digraphs with a unique solution.
Problem II. Produce an algorithm for generating all the solutions of a given
digraph if any exist.

* On leave from Arya-Mehr University, Teheran, Iran. We thank Professor E. A. Nordhaus for his
helpful comments.
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The concept of a kernel of a digraph has been studied rather intensively by many
authors. (For a list of works on the topic and related subjects, see the references in
Chapter 14 of Berge [3].) Although Problem I has not yet been settled, the
existence of kernels, and hence of solutions, was established for some special
classes of digraphs. The following observations are immediate and their proofs are
omitted. '

Proposition 1. Every symmetric digraph has a kernel.

Proposition 2. Every transitive digraph has a kernel. Moreover, all its kernels
have the same cardinality.

While the concept of a kernel is the dual notion of a solution, there are digraphs
with a kernel and no solutions. Of course the converse of such a digraph has a
solution and no kernels, see Figure 1. On the other hand, Figure 2 shows a digraph
with both a kernel and a solution and a digraph with neither a kernel nor a solution.

Fig. 1. A digraph with a solution but no kernels

a) b)

Fig. 2. One digraph with a kernel and a solution, and one with neither

There is no characterization of digraphs with solutions or kernels in terms of
forbidden subdigraphs and it is not likely that one can be found. We intend to
investigate some new necessary or sufficient conditions for the existence of
solutions or kernels, and to study special classes of digraphs.

II. Conditions for a digraph to have a solution

Without loss of generality we consider in what follows finite nontrivial connected
digraphs. While Theorems 1 and 2 do give necessary and sufficient conditions for a
digraph to have a solution, they cannot be regarded as settling the problem of
characterizing such digraphs because the conditions are very close to the definition
and not generally applicable. Let id(v, D) denote the indegree of point v in
digraph D similarly od denotes the outdegree.
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Theorem 1. A digraph D has a solution if and only if D does not have an
induced subdigraph E with no solution such that the mdegree of each point of E is
the same in E as in D.

Proof. If D has a solution and if D has an induced subdigraph E with
id (v, E)=id (v, D) for all v € P(E), then E must have a solution. Conversely, if
D has no solutions, then E = D is an induced subdigraph of D with no solutions in
which the indegree condition holds trivially.

Corollary 1. Let D' be the digraph obtained from a digraph D by removing all
points v of D with id (v, D)=1 and od (v, D)=0. Then D -has a solution if and
only if D' has a solution.

When we interchange id (v) and od (v) as well as solution and kernel in the
theorem and its corollary and apply the P.D.D., we obtain the corresponding result
for kernels.

Let a, b, ¢, d be points of a digraph D with b and ¢ carriers so that
id (b)y=o0d (b)=id(c)=o0d (c)=1 and let ab, bc, cde A(D). Before we state the
next theorem we define an operation (a) on D involving these four points:

() If arc adéA(D) remove points b, ¢, and arcs ab bc and cd from D, and
add arc aa’ otherwise just remove the elements b, c, ab bc and cd

Theorem 2. Let D' be a digraph obtained from a digraph D by repeated
applications of the operation (a). Then D has a solution if and only if D' has a
solution.

Proof. Using mathematical induction we can confine ourselves to a single

operation. Also, without loss of generality we assume that ade A(D). Let S be a
solution of D. If b€ S, then c¢ S, and S\{b} is a solution for D'. If b ¢S, then
ceS,aeS, and d¢S. Hence S\{c} is a solution for D’. Conversely, let S’ be a
solution for D'. If ae S’, thend ¢ S', and S' U {c} is a solution for D, and if a ¢ S’,
then Su {b} is a solution for D.

The following result provides a sufficient condition for the existence of
a solution. It is extremal in nature because it shows that every digraph with

“enough” arcs has a solution.

Theorem 3. Let D be a digraph with p <3 points and at least p>—2p + 1 arcs.
Then D has a solution and a kernel. Moreover, there exists a digraph with
p’ — 2p arcs which has neither a solution nor a kernel, hence this bound is sharp.

Proof. The digraph D has a point of outdegree p — 1, and a point of indegree

p — 1, since otherwise the number of arcs is g= = od (v)= X id(v)<
. veP(D) veP(D)
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p(p —2)=p>—2p, which is a contradiction. Now, consider the complete symmet-
ric digraph with p =3 points v,, v,, ..., v,, and remove the arcs of the Hamiltonian

cycle v,v,, v,vs, ..., V,_,V,, Vv, from it to obtain a digraph D. Although every two
points are adjacent, D has neither a transmitter nor a receiver. Hence D has
neither a solution nor a kernel. )

Before we proceed in another direction, it is worth mentioning that if a digraph
D consists of two odd cycles with a common directed path, then D has no solutions.
Figure 2(b) provides one such example, where the common path has just one point.

In the light of Theorems A and B of Section I, it seems natural to investigate the
existence of solutions for unicyclic digraphs, i.e., asymmetric digraphs whose
underlying graphs contain exactly one cycle. If such a digraph contains no odd
directed cycle, then it has a solution by Theorem B, and if it is an odd directed
cycle, then it has no solutions. Hence in the next theorem we exclude these cases
from the class of unicyclic digraphs.

Theorem 4. Let D be a unicyclic digraph different from a directed cycle whose
unique cycle is the odd directed cycle C: v,, v,, ..., Vs, =v,, t=1. Then D has a
solution if and only if the solution of at least one of the components
D, D,, ..., D,,.,=D,, v,e P(D;) of D\A(C), say S(D,), does not contain v,.

Proof. Assume D has a solution S(D). Since D, is acyclic, S(D,) exists for each
i and is unique. There exists two consecutive v's, say v,,,, and v,, neither of which
are in S(D). Hence S(D)n P(D,)=S(D,) is a solution for D, with the desired

property. '
* Conversely, define S'(D,)=S(D,), and S'(D,) = S(D,). For each value of / such
that 3<i<2t+1, let S'(D)=S(D;)) if v, ¢S(D) or if v,eS(D,) but
v,._,¢S(D; ), and let §'(D;) = S(D;\v;) otherwise. Note that if P(D,)= {v,}, then
S(DA\v;)=0, and that S(D;\v;) exists otherwise. Then the set

2r+1

s=Us D)

is a solution for D.

There are several classes of digraphs, some but not all of which have solutions.
These include tournaments and also digraphs which are flexible, eulerian,
unipathic, stron, strictly unilateral, and strictky weak. Aside from tournaments, it is
not yet explicitly known which digraphs in each such class have solutions.

It is clear that the number s(D) of solutions of a disconnected digraph can be
much larger than its order. Concerning connected digraphs we have the following
theorem.

Theorem 5. For each arbitrary positive integer m there exists a connected
digraph D of order p such that s(D)>mp.
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Proof. Consider k copies of a symmetric complete digraph K of order #n, where
n> 1, and a digraph K, ,with point set {a} Uu{b,, ..., b} such that od (a) =k,
id (a)=0, od (b;))=0, and id (b;)=1 for all 1<i<k. In a one-to-one manner,
join a sink of K, , by an arc to a point of a copy of K, and denote the resulting
digraph by D. Then D has n* solutions and has the order p = kn + k + 1. It is clear
that n*/(kn + k + 1) approaches infinity as k— . Hence there exists an # such
that n" > m(hn + h + 1), completing the proof.

Our final results provides a characterization of digraphs having the same set as
their solution and kernel.

Theorem 6. Let L be an independent set of points of a digraph D. Then L is both
a solution and a kernel for D if and only if D contains a set .4 of directed paths or
cycles containing all points not in L, which start and end with a point of L and
alternately contain points of L.

Proof. If P(D)\L=@, then the implication is vacously true. Assume
a € P(D)\L. Then there exists ¢, b € L, not necessarily distinct, such that ca and ab
are in A(D). It is clear that all such pairs of arcs form the desired set ?. Conversely
the set L is both dominant and absorbent as well as independent. Hence L is both a
solution and a kernel for D.
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KOTOPBIE OPUEHTUPOBAHHBIE T'PA®BI OBJIAJAIOT PELIEHUEM?
Mexau Bex3apn__®penk Xapapwm

Pesome

B pabore M3y4yaroTCs NMOMITHS PELIEHUA W Sep OPUEHTUPOBAHHBLIX TPAdOB, NMPOUCXOXKIEHUC
KOTOPbIX CBA3aHO ¢ paboTtoit ¢oH Hoiimana u MopreswtepHa o urpax p aui. XoTs apdekTuBHas
XapaKTepu3auns OPUEHTUPOBAHHBIX rpacdoB 06NAJAIOILNX PELIEHUEM WM SAPOM MOKA HE W3BECTHA.
3n€ech YCTaHOBJIEHHO HECKOJBKO HEOOXOAMMBIX U AOCTATOYHBIX YCIOBHI /1S CYLIECTBOBAHUS PEIICHUA
B OPMEHTUPOBAHHBIX rpadax M OMHUCAHO CTPOEHHE HEKOTOPBIX CMELHANLHBLIXKIACCOB rPahOB UMEKOLIUX
pelueHue.
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