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WHICH DIRECTED GRAPHS HAVE A SOLUTION? 

BEHZAD M*.—HARARY F. 

I. Introduction and Preliminaries 

In this note, a digraph is a finite directed graph D with no loops or multiple arcs, 
as defined in the books [1], [5] and [6]. The point set and the arc set of D are 
denoted by P(D) and A(D). A subset S of P(D) is independent in D if a, b eS 

implies that neither arc ab nor ba is in A(D), while S is dominant in D if for each 
aeP(D)\S there exists at least one beS such that baeA(D). If S is both 
independent and dominant in D, then 5 is a solution of D. A subset 5 of P(D) is 
absorbent in D if for each aeP(D)\S there exists at least one beS such that 
abeA(D). The set 5 is a kernel of D if it is both independent and absorbent in D. 
The notions not defined here can be found in [2, 5]. 

The concepts of solutions and kernels of digraphs are directional duals [4] and 
hence the Principle of Directional Duality (P.D.D.) applies [6, p. 38]. Both 
concepts stem from the work of von N e u m a n n and M o r g e n s t e r n [8, Ch. 12], 
where the mathematical aspects of p-person games have been investigated. There, 
it is proved in the language of relations, that an acyclic digraph has a solution. 

Theorem A. Every digraph with no directed cycles has a unique solution. 
By the P.D.D., every acyclic digraph has a unique kernel. Later R i c h a r d s o n in 

a series of papers [9, 10, 11 ] generalized the problem to arbitrary digraphs D (finite 
or infinite). 

Theorem B. Every digraph with no odd directed cycles has at least one solution. 
H a r a r y and R i c h a r d s o n [7] posed the following questions: 

P r o b l e m I. Characterize digraphs with a unique solution. 
P r o b l e m II. Produce an algorithm for generating all the solutions of a given 

digraph if any exist. 

* On leave from Arya-Mehr University, Teheran, Iran. We thank Professor E. A. Nordhaus for his 
helpful comments. 
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The concept of a kernel of a digraph has been studied rather intensively by many 
authors. (For a list of works on the topic and related subjects, see the references in 
Chapter 14 of Berge [3].) Although Problem I has not yet been settled, the 
existence of kernels, and hence of solutions, was established for some special 
classes of digraphs. The following observations are immediate and their proofs are 
omitted. 

P r o p o s i t i o n 1. Every symmetric digraph has a kernel. 
P r o p o s i t i o n 2 . Every transitive digraph has a kernel. Moreover, all its kernels 

have the same cardinality. 
While the concept of a kernel is the dual notion of a solution, there are digraphs 

with a kernel and no solutions. Of course the converse of such a digraph has a 
solution and no kernels, see Figure 1. On the other hand, Figure 2 shows a digraph 
with both a kernel and a solution and a digraph with neither a kernel nor a solution. 

Fig. 1. A digraph with a solution but no kernels 

a) b) 

Fig. 2. One digraph with a kernel and a solution, and one with neither 

There is no characterization of digraphs with solutions or kernels in terms of 
forbidden subdigraphs and it is not likely that one can be found. We intend to 
investigate some new necessary or sufficient conditions for the existence of 
solutions or kernels, and to study special classes of digraphs. 

II. Conditions for a digraph to have a solution 

Without loss of generality we consider in what follows finite nontrivial connected 
digraphs. While Theorems 1 and 2 do give necessary and sufficient conditions for a 
digraph to have a solution, they cannot be regarded as settling the problem of 
characterizing such digraphs because the conditions are very close to the definition 
and not generally applicable. Let id(v, D) denote the indegree of point v in 
digraph D; similarly od denotes the outdegree. 
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Theorem 1. A digraph D has a solution if and only if D does not have an 
induced subdigraph E with no solution such that the indegree of each point of E is 
the same in E as in D. 

Proof. If D has a solution and if D has an induced subdigraph E with 
id (?\ E) = id (v, D) for all v e P(E), then E must have a solution. Conversely, if 
D has no solutions, then E = D is an induced subdigraph of D with no solutions in 
which the indegree condition holds trivially. 

Corollary 1. Let D' be the digraph obtained from a digraph D by removing all 
points v of D with id (v, D) = 1 and od (v, D) = 0. Then D -has a solution if and 
only if D' has a solution. 

When we interchange id (v) and od (v) as well as solution and kernel in the 
theorem and its corollary and apply the P.D.D., we obtain the corresponding result 
for kernels. 

Let a, b, c, d be points of a digraph D with b and c carriers so that 
id (b) = od (b) = id(c) = od (c)= 1 and let ab, be, cdeA(D). Before we state the 
next theorem we define an operation (a) on D involving these four points: 

(a) If arc adiA(D), remove points b, c, and arcs ab, be, and a/from D, and 

add arc ad', otherwise just remove the elements b, c, ab, be, and cd. 

Theorem 2. Let D' be a digraph obtained from a digraph D by repeated 
applications of the operation (a). Then D has a solution if and only if D' has a 
solution. 

Proof. Using mathematical induction we can confine ourselves to a single 
operation. Also, without loss of generality we assume that adeA(D). Let S be a 
solution of D. If beS, then c&S, and S\{b} is a solution for D'. If b&S, then 
ceS, aeS, and d£S. Hence S\{c} is a solution for D'. Conversely, let S' be a 
solution for D'. If a eS', then diS', and S' u {c} is a solution for D, and if a £Sf, 
then Su{b} is a solution for D. 

The following result provides a sufficient condition for the existence of 
a solution. It is extremal in nature because it shows that every digraph with 
"enough" arcs has a solution. 

Theorem 3. Let D be a digraph with p^3 points and at least p2 — 2p + \ arcs. 
Then D has a solution and a kernel. Moreover, there exists a digraph with 
p2 — 2p arcs which has neither a solution nor a kernel, hence this bound is sharp. 

Proof. The digraph D has a point of outdegree p — \, and a point of indegree 
p — 1, since otherwise the number of arcs is q = 2 od(v)= 2 id (v)^ 

veP(D) p e P ( O ) 
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p(p —2) = p2 — 2p, which is a contradiction. Now, consider the complete symmet­
ric digraph with p^3 points vx, v2, ..., vp, and remove the arcs of the Hamiltonian 

cycle vxv2, v2v^, ..., vp-xvp, vpvx from it to obtain a digraph D. Although every two 
points are adjacent, D has neither a transmitter nor a receiver. Hence D has 
neither a solution nor a kernel. 

Before we proceed in another direction, it is worth mentioning that if a digraph 
D consists of two odd cycles with a common directed path, then D has no solutions. 
Figure 2(b) provides one such example, where the common path has just one point. 

In the light of Theorems A and B of Section I, it seems natural to investigate the 
existence of solutions for unicyclic digraphs, i.e., asymmetric digraphs whose 
underlying graphs contain exactly one cycle. If such a digraph contains no odd 
directed cycle, then it has a solution by Theorem B, and if it is an odd directed 
cycle, then it has no solutions. Hence in the next theorem we exclude these cases 
from the class of unicyclic digraphs. 

Theorem 4. Let D be a unicyclic digraph different from a directed cycle whose 
unique cycle is the odd directed cycle C: vx, v2, ..., v 2t+2 = vx, t^\. Then D has a 
solution if and only if the solution of at least one of the components 
Dx, D2, ..., D2t+2 = DX, ViEP(Di) of D\A(C), say S(DX), does not contain vx. 

Proof. Assume D has a solution S(D). Since L>, is acyclic, S(Dt) exists for each 
/ and is unique. There exists two consecutive v\s, say v2t+x and vx, neither of which 
are in S(D). Hence S(D)nP(Dx) = S(Dx) is a solution for D, with the desired 
property. 

Conversely, define Sf(Dx) = S(DX), and S'(D2) = S(D2). For each value of / such 
that 3 ^ / ^ 2 / + 1 , let S,(D,) = S(Dt) if viiS(Di) or if vieS(Dl) but 
v,-xiS(Dt ,), and let S'(Di) = S(Di\vi) otherwise. Note that if P(Di)={v,}, then 
5(D,W,) = 0, and that 5(D,\L>,) exists otherwise. Then the set 

5=UV(A) 
1 = 1 

is a solution for D. 
There are several classes of digraphs, some but not all of which have solutions. 

These include tournaments and also digraphs which are flexible, eulerian, 
unipathic, stron, strictly unilateral, and strictky weak. Aside from tournaments, it is 
not yet explicitly known which digraphs in each such class have solutions. 

It is clear that the number s(D) of solutions of a disconnected digraph can be 
much larger than its order. Concerning connected digraphs we have the following 
theorem. 

Theorem 5. For each arbitrary positive integer m there exists a connected 
digraph D of order p such that s(D)>mp. 
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Proof. Consider k copies of a symmetric complete digraph K of order n, where 
n> \, and a digraph K,,*with point set {a}v{bu ..., bk} such that od(a) = k, 
id(a) = (), od (bi) = 0, and id(bi) = \ for all X^i^k. In a one-to-one manner, 
join a sink of K,,A by an arc to a point of a copy of K, and denote the resulting 
digraph by D. Then D has AZ* solutions and has the order p = kn + k + 1. It is clear 
that nk/(kn + k + 1) approaches infinity as k—•<*>. Hence there exists an h such 
that nh>m(hn + h + 1), completing the proof. 

Our final results provides a characterization of digraphs having the same set as 
their solution and kernel. 

Theorem 6. Let L be an independent set of points of a digraph D. Then L is both 
a solution and a kernel for D if and only if D contains a set .<& of directed paths or 
cycles containing all points not in L, which start and end with a point of L and 
alternately contain points of L. 

Proof. If P(D)\L = 0, then the implication is vacously true. Assume 
a e P(D)\L. Then there exists c, b eL, not necessarily distinct, such that ca and ab 
are in -4(D). It is clear that all such pairs of arcs form the desired set ?. Conversely 
the set L is both dominant and absorbent as well as independent. Hence L is both a 
solution and a kernel for D. 
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KOTOPЫE OPИEHTИPOBAHHЫE ГPAФЫ OБЛAДAЮT PEШEHИEM ? 

Mexди Б e x з a д Фpeнк X a p a p и 

P e з ю м e 

B paбoтe изyчaютcя пвrtятия peшeний и ядep opиeнтиpoвaнныx rpaфoв, пpoиcxoждeниe 
кoтopыx cвязaнo c paбoтoй фoн Hoймaнa и Mopгeзштepнa o игpax p лиц. Xoтя эффeктивнaя 
xapaктepизaция opиeнтиpoвaнныx гpaфoв oблaдaющиx peшeниeм или ядpoм пoкa нe извecтнa, 
здecь ycтaнoвлeннo нecкoлькo нeoбxoдимыx и дocтaтoчныx ycлoвий для cyщecтвoвaния peшeний 
в opиeнтиpoвaнныx гpaфax и oпиcaнo cтpoeниe нeкoтopьғx cпeциaльныxклaccoв гpaфoв имeющиx 
peшeниe. 
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