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SOME PROPERTIES OF OSCILLATION 

PAVEL KOSTYRKO 

In this article we shall deal with some properties of oscillation. This function was 
introduced in connection with the notion of continuity of functions (see [1], 
p. 120). The set M(X) of all real locally bounded functions defined on a metric 

•space (X, Q) will be investigated. The set M(X) can be considered as a metric 

space with the metric o(f, g) = min {sup \f(x)-g(x)\, 1}. Further the map o: 
xeX 

M(X)->M(X) given by the formula o(f, x) = inf d(/(K(jc, 6))), where K(x, 6) = 

{y: Q(X, y)<<5}, d(A) = sup {\x —y\} and o(fy x) is the value of o(f) at x eX, 
x, y e A 

will be called oscillation. We shall deal with the sets C={fe M(X): o (f) is 
continuous} and S = {feM(X): o (/) = / } . It will be shown that the oscillation 
determines a natural decomposition of M(X). Under the assumption that X is 
a Baire space the characterization of classes of this decomposition will be given. For 
the Baire space X we shall also give a characterization of the set o(M(X)). 

Let feM(X). It is known that if for each cluster point x of X (x eXd) we put 
f~(x) = max {/(*), lim sup /(t)}, f-(x) = min {f(x)9 lim inf /(t)}, and f~(x) = 

t—*x f-wc 

f-(x)=f(x) for each isolated point x of X, then the function / " : M(X)-»M(X) 
(/_: M(X)—»M(X)) is upper (lower) semicontinuous and o(f) = f~ —f- (see [1], 
pp. 128 and 131). 

Theorem 1. Let f eM(X). 
(i) TTien o(/) is continuous if and only if f~ and /_ are continuous; 
(ii) Then the following statements are equivalent: 

a) o(f)=f; 

b) / is upper semicontinuous (use), lim inf f{t) — 0 for.each xeXd and 
t—*x 

f(x) = 0 for each x$Xd; 
c) f~=fandf- = 0; 

(iii) Let X be a Baire space. Then o(f) = f if and only if f is use and there exists 
a residual set RaX (R =Rf) such that R contains every isolated point of 
X and f(x) = 0 for each x in R. 
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Proof, (i): The sufficiency of the above mentioned condition for the continuity 
of o(f) is obvious. If o(f) is continuous, then the use function f~ = o(f)+f as the 
sum of lower semi continuous (lsc) functions is also lsc, hence it is continuous. The 
continuity of /_ can be shown analogously. 

(ii): a) —>b), Let o(f)=f. Since/ = / " - / _ , the function/ is use The necessity of 

the condition lim inf f(t) = 0 for each x eXd can be proved by contradiction. Since 
t—*x 

o(f, t)^0, we have f(t)^0 for each teX, hence lim inf f(t)^0. Let us suppose 
t—*x 

lim inf f(t) = a>0. The use of / at x implies / ( x ) ^ l i m inf f(t), consequently 
t—*x t—*x 

o(f,x) = f~(x)-f-(x) = f(x)-a<f(x), a contradiction. The equality f(x) = 0 in 
each isolated point of X is an immediate consequence of the continuity of / in x. 

b)-»c). The use of / implies f~=f. Conditions lim inf f(t) = 0 for xeXd and 
. - • * 

f(x) = 0 for x $ Xd imply /_ = 0. 
c ) ^ a ) . o ( / ) = / " - / _ = / - 0 = / . 
(iii): Let o(f)=f. The necessity of the use of / follows from (ii). Since / is Baire 1 

function the set Df of all its discontinuity points is of first category (see [1], p. 182). 
The complement R of Df is a residual set which obviously contains all isolated 
points of X. From the continuity of / on R it follows that f(x) = o(f, x) = 0 for each 
x eR. The mentioned conditions are also sufficient. The residual set R in the Baire 
space X is dense. Since / is use and f(x) = 0 for x e R, we have f(x) ^ 0 for each 

x e X. Hence lim inf / ( / ) = 0 holds for each x e Xd. The equality f(x) = 0 for x £ Xd 

t—*x 

is warranted by the inclusion X - Xd a R. Since the conditions of part (ii) b) are 
fulfilled, part (iii) is also proved. 

Theorem 2. Let (X, g) be a metric space, which has at least one cluster point. 
Then the sets C={fe M(X): o (f) is continuous} and S = {fe M(X) :o(f)=f} are 
perfect and nowhere dense in (M(X), o). 

Proof. Let / £ C. Then there exists a discontinuity point x of o(f). Hence x eXd 

and there is a sequence {xn}7,xn—*x,xn + x such that lim o(f,xn) = (3<o(f,x). If 

we put 6e^o(f, x) — ft, 0 < £ < 1 , then lim sup o(g, xn)<o(g, x) holds for each 
t-*x 

function g eK(f, _) and the point x is a discontinuity point of o(g). Consequently, 
K(f, e)czM(X) - C and the set C is closed in M(X). Let c be any real number. 
Since fe C if and only \i f+ceC, the set C is dense in itself. 

Let x eXd, feC and K(f, e) be any sphere. From the definition of o(f, x) it 
follows that for each natural number n, yn and zn exist such that yn, zn eK(x, n~l) 
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and f(zn)-f(yn)>o(f, x)-n~\ The sequence {zn}7 can be found such that zn±zm 

whenever ni=m. Let us define a function g in the following way: g(z2n) = 
f(z2n) + e2~l for rz = l , 2 , ... a n d _ i ( 0 = / ( 0 for f^z2„. We have g(z2n) - g(ym) 
= f(z2n) + e2~1 - f(y2n)>e2-1 + o(f,x) - (2n)~\ d(g(K(x, (2n)-1)))>s2-1 

+ o(f,x) - (2n)-\o(g,x)^e2~x + o(f, x). Since z2„-i—>x and lim o(g, z2n i) 

= lim o(f, z2n-i) = o(f, x)<o(g, x), the point x is a discontinuity point of o(g), 

g ^ C. Hence the interior of the closed set C is void, i.e. C is a nowhere dense set. 
Let / £ S. Then according to Theorem 1 (ii) / is not use, or x e Xd exists such that 

lim inf / (O^O, or there is a point x ^Xd such that f(x)±0. If / is not use, then 

there is x eXd with the property f(x)<lim sup f(t) = (3. If we put 3e^/3-f(x), 
t-*x 

0<e < 1, then obviously each function g eK(f, e) is not use. If x eXd exists such 

that lim inf f(t) = a±0, then lim inf g(t)± 0 holds for each g eK(f, e) (e^ | « | 2 _ I , 
t—*x t—*x 

0 < e < l ) and g^S. If /(*)=£ 0 for a point x^Xd, then also ^ ( J C ) ^ O for each 
geK(f,e), £^ | / ( j t ) |2 _ 1 , 0 < £ < 1 , and again g^S. It follows from the above 
mentioned considerations that S is closed in M(X). Let x eXd and c be a positive 
real number. If feS, then also /c eS, where fc is defined in the following way: 
U(x) = f(x) + c and fc(t) = f(t) for «f =?= JC. Hence the set S is dense in itself. 

Let feS and K(f, e) be any sphere. The function g(g(t) = f(t) + e2~\ teX) 
belongs to K(f, e), but g £ S. Consequently, S is a nowhere dense set in M(X). 

R e m a r k . From the proof of Theorem 2 it follows that the assumption Xd=£0 
was used to prove that C is a nowhere dense set and S is dense in itself. If Xd = 0, 
then the space (X, g) has a discrete topology and each function / in M(X) is 
continuous. Hence C( = M(X)) is not a nowhere dense set. The unique function / 
for which the equality o (f) = f is fulfilled is the function / = 0 and hence the set S is 
not dense in itself. 

It is possible, by using the map o. J assign to each / e M(X) a sequence of 
functions {fn}n=i, /„ eM(X) in the^foiiowing way: fx = / , /„ =o(fn-i) for n > 1. 

Theorem 3. Let {/„ }̂ =i be a r.e^uence of functions which is assigned tofe M(X) 
in the above mentioned wax. Then fn = / 3 holds for each n>3. 

Proof. To prove Theorem 5 it is sufficient to show that/3 e S. We show that the 
conditions of Theorem 1 (ii^ are fulfilled. The functions f2 = o(f) and /3 = o(f2) are 

use and non-negative. If x eXd, then f3(x) = f2(x)-f2.(x) = f2(x) - lim inf / 2 (0 
t—*x 

= fi(x)~ -im f2(*k), where {xk}k=l is a suitably choosen sequence, xk—>x. The 
k—»><» 
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equality lim inf /3(t) = 0 will be proved by contradiction. Let lim inf f3(t) = a > 0. 
t-*X f-»UC 

Then lim inf f3(xk)^a and we can suppose xk eXd (k = l,2, ...). Hence there is k0 
k—K*> 

such that for each k^k0 we have f2(xk)- lim f2(xk
n)) = f3(xk)^a2~\ where 

n—»ao 

{x[n)}n=i is a sequence with the properties xk
n)-+xk and lim f2(x

(
k
n)) = lim inf f2(t). 

Consequently, for each k^k0 there is nk such that f2(xk)-f2(x
(
k
k))^a4~l and 

g(xk, x{
k
k))<k~l. Obviously x[nk)->x and from the ineqauality f2(xk

nk)) + a4~l =̂  
fi(xk) it follows that there is a subsequence {ym}Z=\ of the sequence {jt£nfc)}r=i such 

that lim /2(ym) + a4_ 1 ^ liminf/2(t), a contradiction. If x^Xd, then obviously 
m—»oo t—*x 

h(x) = o. 
Theorem 3 enables us to introduce the following decomposition of M(X). 

Definition. Let feM(X) and let {/„}"= i be the sequence determined by f. It is 
said that the function f belongs to the class O, (i = 1, 2, 3) if i is the smallest index 
with the property: fn = / holds for each n>i. 

From the definition of S it follows immediately that Oi = S. In the following 
there will be given a characterization of 0 2 and 0 3 for the case when X is a Baire 
space. 

Lemma. Let X be a Baire space, feM(X) and DfczX be the set of all 
discontinuity points of f. Then the following statements are equivalent: 

a) o(f)eS; 
b) Df is of first category in X; 
c) Df has the dense complement in X. 
Proof, a)—>b). By contradiction. Let Df be of second category in X. Then 

Df= (J An, An = {x eDf: o(f,x)^n~1}, and some of the sets An, e.g. Am, is of 
n = l 

second category in X. Obviously Am c~Xd. The set Am is closed (see [1], p. 120) 
and it has a non—empty interior. Hence there is x eXd and d > 0 such that 

K(x, d) <= Am. Consequently, lim inf o (f, t) ̂  m _1 and o (f) £ S according to 
t—*x 

Theorem 1 (ii). 
The implication b)—»c) is an immediate consequence of the assumption that X is 

a Baire space. 
c)-»a). The function o(f) is obviously use and o(f,t)^0 holds for each t eX. If 

x^Xd, then lim inf o(f, t) = 0, because o(f, 0 = 0 for each t of a dense set X-Df. 
t—*x 

If x ^ Xd, then obviously x ^ Df and o (f, x) = 0. Consequently, o(f)eS according 
to Theorem 1 (ii). 
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Theorem 4. Let X be a Baire space and let 02 and 0 3 be introduced classes of 
functions. Then 

(i) / e 0 2 if and only if Df is of first category, or it has a dense complement in X, 
andf^Ox\ 

(ii)/e 0 3 if and only if Df is of second category, or its complement is not dense in 
X 

Since o(f)eS if and only if feO\u02, the statement of Theorem 4 is an 
immediate consequence of Lemma. 

In the following a characterization of the set o (M(X)) for a Baire space X will be 
given. 

Theorem 5. Let X be a Baire space. Then 
(i) for a function g e M(X) there is a function f e M(X) such that o(f) = g if and 

only if 
a) g is non-negative, 
b) g is use, and 
c) g(x) = 0 for each x^Xd; 

(ii) the set o(M(X)) is perfect and nowhere dense in (M(X),o), whenever 
Xd±0. 

Proof, (i): The necessity of the conditions a), b) and c) is obvious. They are also 
sufficient. Really, since the function g is Baire 1, the set of all its discontinuity 
points Dg is of first category and according to the assumptions of Theorem 5 the set 
CQ = X - Dg is dense in X. The set Cg is dense in each open subset of X, hence also 
in the set Y = X-(X-Xd)~ (Z~ means the closure of Z). Since YaXd, there are 
disjoint sets C, and C2, both dense in Y such that ynC 0 = CiuC2 (see [2]). 
Consequently, the set X can be expressed as the following sum of mutually disjoint 
s u m m a n d s X = d u C 2 u ( y - Q ) u ( X - X d ) " . 

Let / be a real function defined on X in the following way: f(x) = 0 for x e Cx 

and f(x) = g(x) for j c e X - d . Obviously feM(X). We show o(f) = g. First 

lim inf /(/) = 0 for each xeXd, since du(X - Xd) is dense in X and f(t) = 0 holds 
t—*x 

for each f e C , u ( X - X d ) . If x e Y, then g(x) = hmf(tn), where {fc-KT-i, tn-*x, is 

a suitable chosen sequence of elements of Y—Cx. Hence o(f,x)^g(x). Since g is 
use in x for each £ >0, there is a sphere K(x, 6) such that g(y)<g(x) + e holds for 
every yeK(x,6). The ineqalities 0=^/ (0^0(0 h°k- for each teX and so 
d(f(K(x, 6))) ^ g(x) + e,henczo(f,x) = g(x).Ifxe(X-XdynXd,thenf(x) = 

g(x) ^ limsup0(t) ^ lim sup/(r) ^ liminf/(r) = 0 and again o(f, x) = g(x). 
t—*x t—*x t—*x 

(ii): This part of statement of Theorem 5 can be proved by using a characteriza­
tion of the set o(M(X)) given in part (i), by the method used in the proof of 
Theorem 2. 
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О НЕКОТОРЫХ СВОЙСТВАХ о с ц и л я ц и и 

Павел Костырко 

Резюме 

В работе рассматривается множество М(Х) всех вещественных локально ограниченных 
функций определенных в метрическом пространстве X (X не является дискретным топологичес­
ким пространством). Множество М(Х) снабжено метрикой равномерной сходимости. Рассмат­
ривается отображение о: М(Х)—>М(Х), которое каждой функции / из М(Х) ставит в соответ­
ствие ее осциляцию о (/). Показано, что множества {/: о(/) непрерывна} и {/: о(/) = /} являются 
вообще совершенными и нигде не плотными в М(Х). Дана также характеризация множества 
о (М(Х)), в случае, когда X является пространством Бэра. 
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