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SOME PROPERTIES OF OSCILLATION

PAVEL KOSTYRKO

In this article we shall deal with some properties of oscillation. This function was
introduced in connection with the notion of continuity of functions (see [1],
p. 120). The set M(X) of all real locally bounded functions defined on a metric

*space (X, @) will be investigated. The set M(X) can be considered as a metric

space with the metric o(f, g)=min {sup |f(x)—g(x)|, 1}. Further the map o:
xeX
M(X)— M(X) given by the formula o(f, x) = f&f] d(f(K(x, 8))), where K(x, 8) =

{y:0(x,y)<8},d(A) = sup {|x—y|} and o(f, x) is the value of o(f) at x € X,

X, y€A

will be called oscillation. We shall deal with the sets C={feM(X): o(f) is
continuous} and S = {fe M(X): o(f)=f}. It will be shown that the oscillation
determines a natural decomposition of M(X). Under the assumption that X is
a Baire space the characterization of classes of this decomposition will be given. For
the Baire space X we shall also give a characterization of the set o (M(X)).
Let f e M(X). It is known that if for each cluster point x of X (x € X*) we put

f~(e)=max {f(x), limsup (1)}, f-(x)=min {f(x), liminf (1)), and f(x)=
f-(x)=f(x) for each isolated point x of X, then the function f~: M(X)—M(X)

(f-: M(X)—>M(X)) is upper (lower) semicontinuous and o(f)=f"—f- (see [1],
pp- 128 and 131).

Theorem 1. Let f e M(X).
(i) Then o(f) is continuous if and only if f~ and f_ are continuous;
(ii) Then the following statements are equivalent :

a) o(f)=f;
b) f is upper semicontinuous (usc), lirp inf f(t)=0 for.each x e X* and
f(x)=0foreachx & X*;
¢ f=fand f-=0;
(iii) Let X be a Baire space. Then o(f)=f if and only if f is usc and there exists

a residual set R = X (R = R;) such that R contains every isolated point of
X and f(x)=0 for each x in R.

157



Proof. (i): The sufficiency of the above mentioned condition for the continuity
of o(f) is obvious. If o(f) is continuous, then the usc function f~=o(f) +f as the
sum of lower semi continuous (Isc) functions is also Isc, hence it is continuous. The
continuity of f_ can be shown analogously.

(ii): a)—>b). Let o(f) =f. Since f =f~ — f_, the function f is usc. The necessity of

the condition lim inf f(¢) =0 for each x € X* can be proved by contradiction. Since
o(f, t)=0, we have f(t)=0 for each ¢t € X, hence lim inf f(¢)=0. Let us suppose

Iirp inf f(t)=a>0. The usc of f at x implies f(x)=lim inf f(¢), consequently

o(f,x) = ff(x)—f-(x) = f(x)— a <f(x), a contradiction. The equality f(x)=0in
each isolated point of X is an immediate consequence of the continuity of f in x.

b)—c). The usc of f implies f~=f. Conditions lim inf f(¢) =0 for x € X* and

f(x)=0 for x ¢ X* imply f_=0.

c)—a). o(f)=f —f-=f-0=Ff.

(iii) : Let o (f) =f. The necessity of the usc of f follows from (ii). Since f is Baire 1
function the set D; of all its discontinuity points is of first category (see [1], p. 182).
The complement R of Dy is a residual set which obviously contains all isolated
points of X. From the continuity of f on R it follows that f(x) = o(f, x) = 0 for each
x € R. The mentioned conditions are also sufficient. The residual set R in the Baire
space X is dense. Since f is usc and f(x)=0 for x € R, we have f(x)=0 for each

x € X. Hence lim inf f(¢) = 0 holds for each x € X*. The equality f(x) =0 for x ¢ X*

is warranted by the inclusion X — X“ < R. Since the conditions of part (ii) b) are
fulfilled, part (iii) is also proved.

Theorem 2. Let (X, 0) be a metric space, which has at least one cluster point.
Then the sets C = {f e M(X): o(f) is continuous} and S = {f e M(X): o(f)=f} are
perfect and nowhere dense in (M(X), o).

Proof. Let f ¢ C. Then there exists a discontinuity point x of o(f). Hence x € X*

and there is a sequence {x,}7, X.—x, x, # x such that lim o(f, x.) = B<o(f, x). If

we put 6e<o(f, x)—f3, 0<e <1, then lim sup o(g, x.)<o(g, x) holds for each

function g € K(f, £) and the point x is a discontinuity point of 0(g). Consequently,
K(f, €)cM(X)— C and the set C is closed in M(X). Let ¢ be any real number.
Since fe C if and only if f+ ¢ € C, the set C is dense in itself.

Let x € X?, fe C and K(f, £) be any sphere. From the definition of o(f, x) it
follows that for each natural number n, y, and z, exist such that y,, z, e K(x, n™")
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and f(z.) - f(y.)>o(f, x) — n~'. The sequence {z.}1 can be found such that z, # z.
whenever n#m. Let us define a function g in the following way: g(z:.)=
f(z2n)+€27 for n=1, 2, ... and g(t) = f(¢) for t# z,,. We have g(z:.) — g(y2n)
= f(za) +€27" = f(y2n)>€27" + o(f, x) — (2n)7", d(g(K(x, (2n)7")))>€2""

+o(f,x) — (2n)",0(g9,x)=€2"" + o(f, x). Since zz,-1—x and lim 0(g, 2. 1)

= lim o(f, z2.-1) = o(f, x)<o0(g, x),'the point x is a discontinuity point of o(g),

g ¢ C. Hence the interior of the closed set C is void, i.e. C is a nowhere dense set.
Let f ¢ S. Then according to Theorem 1 (ii) f is not usc, or x € X exists such that

lim inf f(¢) # 0, or there is a point x ¢ X? such that f(x)# 0. If f is not usc, then

there is x € X? with the property f(x)<lim sup f(t)=p. If we put 3¢ <p — f(x),
0<e <1, then obviously each function g € K(f, €) is not usc. If x € X“ exists such
that lir'h inf f(t) = a# 0, then lim inf g(¢) # 0 holds for each g e K(f, €) (e <|a|27',

0<e<1) and g ¢S. If f(x)#0 for a point x ¢ X?, then also g(x)#0 for each
geK(f,e), e<|f(x)|27", 0<e<1, and again g ¢S. It follows from the above
mentioned considerations that S is closed in M(X). Let x € X? and ¢ be a positive
real number. If fe S, then also f. € S, where f. is defined in the following way:
f{(x)=f(x)+c and f.(¢t)=f(¢t) for t+x. Hence the set S is dense in itself.

Let feS and K(f, €) be any sphere. The function g(g(¢)=f(t)+£27", te X)
belongs to K(f, €), but g ¢ S. Consequently, S is a nowhere dense set in M (X).

Remark. From the proof of Theorem 2 it follows that the assumption X+ ¢
was used to prove that C is a nowhere dense set and S is dense in itself. If X* =0,
then the space (X, ¢) has a discrete topology and each function f in M(X) is
continuous. Hence C(= M(X)) is not a nowhere dense set. The unique function f
for which the equality o (f) = f is fulfilled is the function f = 0 and hence the set S is
not dense in itself.

It is possible, by using the map o. J assign to each fe M(X) a sequence of
functions {f,}.-, f. e M(X) in thezfullowing way: f,=f, f. =o(f.-;) for n>1.

Theorem 3. Let {f, }.-, be a ;e uence of functions which is assigned to f € M(X)
in the above mentioned wav. Then f, =f; holds for each n>3.

Proof. To prove Theorem 3 it is sufficient to show that f; € S. We show that the
conditions of Theorem 1 (i:) are fulfilled. The functions f,=o(f) and f; =o(f:) are

usc and non-negative. If x € X, then fy(x) = f;(x)—fo_(x) = fa(x)— lim inf f2(¢)
= fz(x)—'!in; f2(x«), where {x.}s-, is a suitably choosen sequence, x,—x. The
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equality lim inf f3(t) =0 will be proved by contradiction. Let lim inf f3(f) = a>0.
Then lim inf f3(x)=a and we can suppose x, € X* (k =1, 2, ...). Hence there is k,

such that for each k=>ko, we have f(x.)— lim f2(x”) = fs(x)=a2™', where

{x{}_, is a sequence with the properties x{’—x, and lim f(x)= =lim inf f2(2).

Consequently, for each k=k, there is n, such that f,(x.)— fa(x "’)>a4 d
0 (x, x™)<k™'. Obviously x{*’—x and from the ineqauality f,(x{*) + a4~
f2(x:) it follows that there is a subsequence {y,, }..-1 of the sequence {x™'}i-, such

that lim frym)+ad™ < lim inf f,(¢), a contradiction. If x ¢ X“, then obviously
fs(x)=0.

Theorem 3 enables us to introduce the following decomposition of M(X).

Definition. Let f € M(X) and let {f,}.-, be the sequence determined by f. It is
said that the function f belongs to the class O, (i =1, 2, 3) if i is the smallest index
with the property: f, = f; holds for each n>i.

From the definition of S it follows immediately that O,=S. In the following
there will be given a characterization of O, and O; for the case when X is a Baire
space.

Lemma. Let X be a Baire space, fe M(X) and D;cX be the set of all
discontinuity points of f. Then the following statements are equivalent:

a) o(f)eS;

b) Dy is of first category in X;

¢) D; has the dense complement in X.

Proof. a)—b). By contradiction. Let D, be of second category in X. Then

D= O A,, A,={x€eDys: o(f, x)=n""}, and some of the sets A,, e.g. A, is of
n=1
second category in X. Obviously A,, = X“. The set A,, is closed (see [1], p. 120)

-and it has a non—empty interior. Hence there is x € X* and 6 >0 such that

1

K(x,8)cA,.. Consequently, lim info(f,t)=m"

Theorem 1 (ii).

The implication b)—c) is an immediate consequence of the assumption that X is
a Baire space.

c)—a). The function o (f) is obv1ously usc and o(f, t)=0 holds for each t € X. If

and o(f)¢S according to

x € X?, then lirp inf o(f, t) =0, because o(f, t) =0 for each ¢ of a dense set X — Dy.

If x ¢ X?, then obviously x ¢ D, and o(f, x) = 0. Consequently, o(f) € S according
to Theorem 1 (ii).
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Theorem 4. Let X be a Baire space and let O, and O, be introduced classes of
functions. Then

(i) f € O, if and only if Dy is of first category, or it has a dense complement in X,
and f¢Oy;

(ii) f € O, if and only if Dy is of second category, or its complement is not dense in
X.

Since o(f)e S if and only if fe O,U0,, the statement of Theorem 4 is an
immediate consequence of Lemma.

In the following a characterization of the set o (M (X)) for a Baire space X will be
given.

Theorem 5. Let X be a Baire space. Then

(i) for a function g € M(X) there is a function f € M(X) such that o(f) = g if and
only if
a) g is non-negative,
b) g is usc, and
¢) g(x)=0 for each x ¢ X*;

(ii) the set o(M(X)) is perfect and nowhere dense in (M(X), o), whenever
X“+0.

Proof. (i): The necessity of the conditions a), b) and c) is obvious. They are also
sufficient. Really, since the function g is Baire 1, the set of all its discontinuity
points D, is of first category and according to the assumptions of Theorem 5 the set
C, =X —D, isdense in X. The set C, is dense in each open subset of X, hence also
in the set Y =X — (X — X“)” (Z~ means the closure of Z). Since Y < X*, there are
disjoint sets C; and C,, both dense in Y such that YNnC, = C,uC, (see [2]).
Consequently, the set X can be expressed as the following sum of mutually disjoint
summands X =C,uC,u(Y-C,) u (X - X9)".

Let f be a real £unction defined on X in the following way: f(x)=0 for x € C,
and f(x)=g(x) for x e X - C,. Obviously fe M(X). We show o(f)=g. First

lim inf f(¢) =0 for each x € X, since C,u(X — X“) is dense in X and f(¢) = 0 holds

for each te C,u(X — X?). If x € Y, then g(x)=lim f(t,), where {t.};_,, t,—x, is

a suitable chosen sequence of elements of Y — C,. Hence o(f, x) =g (x). Since g is
usc in x for each £ >0, there is a sphere K(x, 8) such that g(y) <g(x)+ ¢ holds for
every y e K(x, d). The ineqalities 0<f(¢)<g(¢t) hold for each teX and so
d(f(K(x, 8))) < g(x)+¢,hence o(f, x) =g (x).If x e (X — X*)"nX?, then f(x) =

g(x) = limsup g(¢) = lin} sup f(t) = lixp inf f(t)=0 and again o(f, x)=g(x).

(ii) : This part of statement of Theorem 5 can be proved by using a characteriza-
tion of the set o(M(X)) given in part (i), by the method used in the proof of
Theorem 2.
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O HEKOTOPEIX CBOVMICTBAX OCLIMIISILIUH
. ITaBen KocThIpko
Pe3ome

B pa6Gote paccMaTpuBaeTCs MHOXeCTBO M (X) Bcex BeLIECTBEHHBIX JIOKAJIbHO OrpaHHYEHHbIX
cbyukumii OnpeneneHHbIX B METPHYECKOM NpocTpaHcTBe X (X He SABASETCS JUCKPETHBLIM TOMOJIOTHYEC-
KHM MPOCTPAHCTBOM). MHOXecTBO M (X) cHaGXeHO METPHKOH paBHOMEPHOI CXOAMMOCTH. PaccMmar-
puBaeTcst oTobpaxenue o : M(X)— M(X), kotopoe kaxuo# dyuxkuuu f u3 M(X) cTaBut B COOTBET-
crBHe ee ocuwaumio o (f). [Tokasano, yTo MHOXecTBa {f: o (f) HenpepwiBHa} U {f: o(f) =f} aBmsaroTCH
BOOOIIE COBEPIIEHHBIMA M HUITIE HE IUIOTHBIMA B M(X). [JaHa Takke XapaKTepu3alus MHOXECTBA
o (M(X)), B cnyyae, koraa X sBnseTcs npocrpaHctBoM Bapa.
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