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DIRECT P R O D U C T FACTORS IN GM^-ALGEBRAS 

JIŘÍ RACHŮNEK* — DANA ŠALOUNOVÁ** 

(Communicated by Anatolij Dvurečenskij ) 

ABSTRACT. GMV-algebras are non-commutative generalizations of MV-alge­
bras and by A. Dvurecenskij they can be represented as intervals of unital lattice 
ordered groups. Moreover, they are polynomially equivalent to dually residuated 
^-monoids (DP£-monoids) from a certain variety of DH^-monoids. In the paper, 
using these correspondences, direct product factors in GMV-algebras are intro­
duced and studied and the lattices of direct factors are described. Further, the 
polars of projectable GMV-algebras are described. 

1. Introduction 

The Lukasiewicz infinite valued propositional logic is one of the most impor­
tant logics behind the theory of fuzzy sets. It is well known that MV-algebras in­
troduced by C. C. C h a n g in [2] are an algebraic counterpart of the Lukasiewicz 
logic. Recently the first author in [14] and, independently, G. G e o r g e s c u and 
A. I o r g u l e s c u in [7], have introduced non-commutative generalizations of 
MV-algebras (non-commutative MV-algebras in [14] and pseudo MV-algebras 
in [7]) which are equivalent. Here, we will use for these algebras the name gen­
eralized MV-algebras, briefly GMV-algebras. 

By A. D v u r e c e n s k i j [4], GMV-algebras can be considered as intervals 
in unital lattice ordered groups (^-groups). Moreover, by [14], there is a mutual 
correspondence between GMV-algebras and dually residuated lattice ordered 
monoids (DR£-monoids) belonging to a certain variety of DR£-monoids. At the 
same time, the ideals of GMV-algebras correspond to the convex ^-subgroups 
of the corresponding unital ^-groups and also to the ideals of the induced 
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Di?£-monoids. These correspondences are used in the paper to studying di­
rect decompositions of GMV-algebras. Further, they make it possible to con­
sider direct factors of GMV-algebras in the form of their ideals, although 
ideals, in general, are not subalgebras of GMV-algebras. Moreover, projectable 
GMV-algebras are described here. 

The necessary results concerning the theories of M"V-algebras and of ^-groups 
can be found in [3], [9], [6] and in [1], [8], respectively. 

2. Basic notions, denotations and relations 

DEFINITION. Let A = (A;0 , -n ,~ ,0 ,1) be an algebra of type (2 ,1 ,1 ,0 ,0) . 
Set x 0 y = ~(-ix 0 -*y) for any x,y G A. Then A is called a generalized 
MV-algebra (briefly: GMV-algebra) if for any x, y, z G A the following condi­
tions are satisfied: 

(Al) x 0 (y 0 z) = (x 0 y) 0 z\ 
(A2) x®0 = x = 0®x\ 
(A3) £ 0 1 = 1 = 1 0 2 ; ; 
(A4) -il = 0 = ~ l ; 
(A5) i ( ~ x © ~ 2 / ) = ~( - ix0- .2 / ) ; 
(A6) x 0 (y 0 ~ x) = y 0 (x 0 ~ y) = (~^y 0 x) 0 y = (~^x 0 y) 0 x; 
(A7) (-ix®y)Gx = yO(x®~y)] 

(A8) ~->x = x. 

If we put x < y if and only if -*x 0 y = 1, then (A, <) is a bounded 
distributive lattice (0 is the least and 1 is the greatest element) with x V y = 
x (& (y O ~x) and x A i / = a ; 0 ( t / 0 ~ x ) . 

Let G = (G\ + , V, A) be a lattice ordered group (^-group) and 0 < u e G. 
For any x,y E [0,u] = {x e G : 0 < x < u} put x(By = (x + y) Au, -^x = u — x 
and ~x = -x + u. Then T(G,u) = ([0,u]; ©,-i ,~,0,tz) is a GMU-algebra. 

By a unital £-group we will mean a pair (G,u), where G is an ^-group and 
u is a strong order unit in G. (Recall that 0 < u G G is a strong order unit 
in G if for any a € G there is n G N such that — nu < a < nn, i.e., the 
convex ^-subgroup of G generated by u is equal to G.) Unital ^-groups and 
GMV-algebras are in a very close connection because A. D v u r e c e n s k i j in 
[4] proved that for any GMV-algebra A there is a unital £-group (G,u) such 
that A is isomorphic to T(G,u). 
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DEFINITION. An algebra M = (M; +, 0, V, A, - - , v-) of type (2, 0, 2, 2,2, 2) is 
called a DR£-monoid if ( M ; + , 0 , V, A) is a lattice ordered monoid satisfying 
the conditions (x, H, r, s G M ) : 

5 + y > x <£=> x —- H < 5 and H + r > x 4=> x T— ?/ < r ; 

((x - - j/) V 0) + 7/ < x V H , y + ((x v- j/) V 0) < x V y , 

x ^ x > 0, X v - X > 0 . 

GMF-algebras and .DJW-monoids are also in a close connection. Indeed, if 
A = (A; 0 , -i, ~ , 0,1) is a GMV-algebra and if we put x —- H = ->H 0 x and 
Xv-H = x 0 ~ y f o r any x,H G A, then by [14], M(A) = (A; 0 , 0, V, A, ---, v-) is 
a bounded K)it^-monoid (with 1 the greatest element and 0 the least) satisfying 
the identities 

(i) (Vx G A)(l v- (1 - - x) = x = 1 - - (1 v- x ) ) , 

(ii) (Vx G A)(Vy G A) ( l - ((1 v- x) + (l v- y)) = 1 v- ((1 - x ) + (l - ? / ) ) ) . 

Conversely, if M = (M; +, 0, V, A, —-, v-) is a bounded i}i?£-monoid with a 
greatest element 1 satisfying (i) and (ii) and if we put ->x = 1 —- x and ~ x = 
1 v- x for x G M , then by [14], A(M) = (M; + , -«, ~, 0,1) is a GMF-algebra. 

Recall that if A is a GMF-algebra and 0 ^ i i C A, then i i is called an 
ideal of A if H is closed under the operation 0 and y < x implies y G H for 
any x e H and y e A. An ideal is called normal if -ix 0 y G i i if and only 
if /̂ 0 ~ x G H for each x,H G A. The normal ideals are exactly the kernels of 
GMV-homomorphisms. 

For any 0 ^ i i C A we have that H is an ideal of A if and only if H is a con­
vex sub-DRl-monoid of M(A). (Convex sub-J3i?^-monoids of a Dit^-monoid 
M are also called ideals of M.) Further, if M is a DR£-monoid and I is a con­
vex sub-DR£-monoid of M , then I is called normal if and only if x + i = i + x 
for any x € M. One can prove that for a GMF-algebra A, an ideal H of 
A is normal if and only if H is a normal convex sub-DR£-monoid of M(A). 
(See [12].) We will use these relations when studying direct decompositions of 
GMV-algebras, because ideals of GMF-algebras, in contrast to convex sub-
DiZ^-monoids of DR£-monoids, need not be subalgebras of GMF-algebras. 

If A is a GMV-algebra, denote by C(A) and M(A) the set of ideals and 
of normal ideals of A, respectively. Analogously, if M is a K)i?£-monoid, then 
C(M) and N(M) will denote the set of convex sub-DR£-monoids and of normal 
convex sub-DR£-monoids, respectively. It is obvious that (C(A), c ) , (AT(A), C ) , 
(C(M),C) and (Af(M),c) are complete lattices. 

Let A = T(G,u) be a GMF-algebra and let (C(G),c) and (A/"(G),c) be 
the complete lattices of convex ^-subgroups and of ^-ideals of C?, respectively. 
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Let us consider the mapping ip\ C(A) —> C(G) such that (p(H) = {x £ G : 
\x\ A u £ H] for any H £ C(A). By [15; Theorem 2], cp is an isomorphism 
of C(A) onto C(G) and the inverse isomorphism to tp is the mapping rp such 
that ij>(K) = K H [0, w] for each K £ C(G) . Moreover, by [5; Theorem 6.1], the 
restriction of (p on M(A) is an isomorphism between Af(A) and M(G). 

3. Direct factors of GM^-algebras 

In this part we will deal with direct decompositions of GMF-algebras 
which we will introduce by means of direct decompositions of the induced 
Dit^-monoids. 

DEFINITION. We will say that a DRl-mono\d M is an inner direct product of 
its convex sub-DRl-monoids (i.e. ideals) M 1 and M2 if there is an isomorphism 
ip of M onto the (external) direct product Mx x M2 of DRl-monoids Ml and 
M2 such that for each x £ M1 and each y £ M2 the relations (p(x) = (x, 0) 
and ip(y) = (0,2/) are valid. 

In such a case, we will also write M = Mx x M2 and say that M is a direct 
product of its sub-DRl -monoids M1 and M 2 . 

DEFINITION. If A is a GMV-algebra and H1,H2 £ C(A), then ,4 will be 
called a direct product of the ideals H1 and H2 if M = M(A) = M(H^xM(H2), 
where M(H{) is the convex sub-JDi?£-monoid of M induced by H^ i = 1, 2. 

We will write A = H1 x H2 and say that H1 and i i 2 are direct factors of 
the GMV-algebra A. 

Remark. 

a) By [16; Theorem 6], if M^M2e C(M), then M = M1x M2 if and only if 

1. M1 +M2=M, M1nM2 = {0}; 
2. (Vx1>y i £ M 1 ) ( V x 2 , H 2 £ M 2 ) 

(xx +x2=yx+y2 = > (a?! = ^ & x2 = H2)). 

Moreover, if M = M1 x M 2 , then M l 5 M 2 £ J\f(M) and Mx = M2
X and 

Ai2 = M j 1 , where M2 and M:1 are the polars of M2 and Mx, respectively. 

That means, if M = M(A) for a GMF-algebra A, then M is bounded 
(with the least element 0), and hence, for instance, M1 = M2 = {x £ M : 
( V b £ M 2 ) ( b A x = 0 ) } . 

b) If A is a GMF-algebra and H £ C(A), then we will not distinguish H 
and M(H). 
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THEOREM 1. Let A be a GMV-algebra and HX,H2 G C(A). Then A = 
Hx x H2 if and only if Hx and H2 satisfy condition 1. 

P r o o f . Let A = T(G, u) be a GMV-algebra and let H1,H2 e C(A) satisfy 
condition 1. If Kx = (p(Hx) and K2 = (f(H2), then (since HX,H2 G M(M) = 
M(A)) we get KvK2e Af(G). By [16; Proposition 7], Hl®H2=HlV H2 in 
C(M(A))=C(A). 

Hence we get: 

G = <p(A) = <p(Hx © tf2) = <p(H, V tf2) = <p{Hx) V <p(H2), 

and since (p(Hx), ^p(H2) ^ N(G), we have 

G = tp(H1)+<p(H2) = K1+K2. 

Moreover, from H1CiH2 = {0} it follows that K1f]K2 = {0}, thus G = KlxK2 

(and so also Kx = K2 and K2 = Kx). 
Let xx,yx G Hx, x 2 ,y 2 G H2 and xx 0 x2 = yx 0 y2. Since xx A x2 = 0 = 

2/T A y2 , xx 0 x2 = xx V x2 = x1 + x2 and y-_ © y2 = ^ V 2/2 = ^ + y2 , therefore 
xx + x2 = ^ + H2. Hence from G = Kx x K2 we obtain xx = yx and x2 = y2, 
i.e., Hx and H2 satisfy also condition 2 for direct factors in M , and therefore 
in A, too. 

The converse implication is trivial. D 

THEOREM 2. Let A = T(G,u) be a GMV-algebra and let G = KxxK2 be a 
direct decomposition of the £ -group G. If Hx = ip(Kx)

 and H2 = i^(K2), then 
A = HxxH2. 

P r o o f . Let a G A. Then there exist ax G Kx and a2 G K2 such that 
a = ax + a2 . Since 0 < a l 5 a 2 < a < ^ , we have ax 0 a2 = ax + a2 , and so 
a = ax 0 a2 . Hence A = Hx 0 H2. Condition Hx n H2 = {0} is satisfied too, 
and therefore, by Theorem 1, A = Hx x H2. D 

The following theorem is now an immediate consequence. 

THEOREM 3. If A = T(G,u) is a GMV-algebra, then H G C(A) is a direct 
factor of A (and also of the DR£-monoid M(A)) if and only if ip(H) is a direct 
factor of the £ -group G. 

Remark. Let A = T(G,u) be a GMV-algebra, H1,H2 G C(A) and let A be 
the direct product of Hx and H2. If u = x̂1 + u2 = ux 0 u2, where ux G Hx 

and u2 G H2, then u{ is the greatest element in Hi, i = 1,2, and thus ux and 
H2 are additively idempotent elements in A, i.e. H{ = C(u{) = [0 ,^J , i = 1,2. 

For any CMF-algebra A, the DR£-monoid M(A) induced by A satisfies 
the condition 

(MV) x^(x^-y) = x/\y = x^-(x-^y). 

403 



Jlftl RACHUNEK — DANA SALOUNOVA 

Hence the sub-DR£-monoid in M(A) induced by any ideal in A satisfies con­
dition (MV), too. By [13], the bounded Di^-monoids satisfying (MV) are just 
those induced by GMV-algebras. Therefore A is isomorphic to the direct prod­
uct of the GMV-algebras with underlying sets H1 and H2 . 

(The fact that if a is an idempotent element in a GMF-algebra A, then 
the interval [0,a] can be considered as a GAfV-algebra was proved in [10], and 
that the operations in the GMlZ-algebra [0, a] can be expressed explicitly as 
x ®a y = x ® 2/J ~ a x = n X / ^ a a n d ~ a x = ~ x A a (x,y G [0, a]) was proved 
in [14].) 

Therefore we now get as a consequence the following theorem, which was 
proved by different methods in [10; Sections 4, 5]. 

THEOREM 4. Let A, A1 and A2 be GMV-algebras. Then A is isomorphic to 
the direct product Ax x A2 if and only if there is an idempotent element a £ A 
such that Ax = C(a) and A2 = C(-.a) = C(~ a). 

Moreover, the remark after Theorem 3 together with the fact that the idem-
potent elements in A form a subalgebra B(A) of A which is a Boolean algebra 
and in which -ia = ~ a = a' for each a G B(A) (see [14]) imply: 

THEOREM 5. The direct factors of a GMV-algebra A form a Boolean sublat-
tice of the lattice C(A) and also of the lattice of polars in A, which is isomorphic 
to the Boolean lattice of idempotent elements in A. 

Now, we will describe even more exactly the connections between the direct 
factors of a GMF-algebra A = T(C7, u) and of those of the corresponding unital 
^-group (G,u). 

PROPOSITION 6. Let A = T(G,u) be a GMV-algebra, let A = HY x H2 

be a direct decomposition of A and let Ki = (p(H{), i = 1,2. If a G A and 
a = ax © a2, where ai G H{, i = 1,2, then 

a2/H1 = (a2/Kl) n A and a>i/H2 = (a1/K2) n A . 

P r o o f . Let x G / 4 . Then x G a2/H1 if and only if (x —- a2)(&(a2 —^x)GH1, 
wrhich holds if and only if 

(Or - a2) V 0) + ((a2 - x) V 0)) A u G Hx , 

hence if and only if 

((x - a2) V 0) + ((a2 - x) V 0) G Kx , 

and this is equivalent to 

((x - a2) + (a2 - x)) V (a2 - x) V (x - a2) V 0 G Kx . 
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Therefore x E a2/Hx if and only if \a2 — x\ E Kx, which is equivalent to 
a2 — x E Kx, that means, to x E a2 + Kx. 

The second equality is analogous. • 

The direct factors of a GMV-algebra are its normal ideals, hence we can 
construct corresponding factor GMF-algebras. 

Using Proposition 6, now we will easily prove the following theorem. 

THEOREM 7. If A is a GMV-algebra and if A = Hx x H2 is a direct decom­
position of A, then Hx = A/H2 and H2 = A/Hx. 

P r o o f . Let A = T(G,u) and let Kx and K2 be as in Proposition 6. Let 
f: K2^r G/Kx be the isomorphism of £ -groups such that f(c) = c/Kx = c-\-Kx 

for each cE K2. Let / = f\H . Let us denote by / ' : H2 —> A/Hx the mapping 

such that f(x) = x/Hx for each x E H2. By Proposition 6, / ( # ) = /(H) 
if and only if f(x) = f(y) for any x,H E JI2 • Thus / is a bijection of if2 

onto A/Hx. At the same time, / is a restriction of the natural homomorphism 
v: A —r ̂ 4/H! of GMF-algebras, hence / is an isomorphism of H2 onto ^4/H!. 
Therefore H2 = . 4 / ^ . 

The second assertion is analogous. • 

4. P ro jec t ab le GMX^-algebras 

Projectable ^-groups form an important class of ^-groups. Recall that an 
I -group G is called projectable if the polar a x is a direct factor in G for each 
a E G. Now we will introduce an analogous notion also for GMV-algebras. 

DEFINITION. A GMV-algebra A is called projectable if A = a1- x a±L for 
each a E A. 

Remark. 

a) By Theorem 1, A is projectable if and only if A = a1- © a-1-1 for each 
ae A. 

b) If a GMV-algebra A is projectable, then every polar in A is a normal 
ideal in yl. Hence by [5], every projectable GMV-algebra, similarly as 
in the case of ^-groups, is representable. 

In the next theorem, we will show connections between principal ideals and 
polars in projectable GMV-algebras. 

THEOREM 8. Let A be a projectable GMV -algebra. Then every polar in A 
is an intersection of principal (normal) ideals of A generated by elements from 
the set B(A) of all idempotent elements of A. 
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P r o o f . If A is a projectable GMF-algebra, then for any element a G A 
there is an element b G B(A) such that a1 = C(b) and aL1- = C(-^b). Let 
C C A be a polar in A. Then 

c= nd±= n ^ ) > 
where cd is an element in 2?(.A) such that dL = C(cd). Thus every polar in 
4̂ is an intersection of principal (normal) ideals generated by elements of B(A) 

(i.e., an intersection of intervals in the form [0,x] where x G B(A)). D 

LEMMA 9. Let A = T(G,u) be a GMV-algebra and let H G C(A). Then H 
is the principal ideal CA(a) in A generated by an element a G A = [0, u] if and 
only if (f(H) is the principal convex £-subgroup CG(a) in G generated by a. 

P r o o f . Let ae A, J € C(A) and a G J. Then obviously a G (p(J) G C(G). 
Conversely, if L G C(G) and a G L (thus CG(a) C L) , then a G F n [0,u] = 

-0(F), that means (^(a) C ^(L) = (7O~1(F). 
Therefore ^ ( ^ ( a ) ) = CG(a). D 

PROPOSITION 10. Let A = r(G,w) be a GMV-algebra. Then A is a pro­
jectable GMV-algebra if and only if G is a projectable £-group. 

P r o o f . Let a G A. Then a±A is the pseudo-complement of the ideal CA(a) 
in the lattice C(A), and hence, (f(a±A) is by Lemma 9 the pseudo-complement 
of the convex ^-subgroup CG(a) in the lattice C(G). Therefore if(a-LA) — aL° . 

The assertion now follows from Theorem 3. D 

The following theorem is a consequence of Theorem 8, Lemma 9 and Propo­
sition 10. 

THEOREM 1 1 . Let (G, u) be a projectable unital £ -group. Then every polar in 
G is an intersection of principal convex £-subgroups (which are £-ideals) of G 
generated by elements x G G + satisfying the condition (x -f x) A u = x. 
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