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(Communicated by Milan Medvěd!) 

ABSTRACT. The existence of solutions for certain systems of ordinary differen­
tial equations is studied when they are not solvable in the highest-order deriva­
tives. Proofs of results are based on a theory of pseudomonotone operators and a 
generalized Leray-Schauder degree. 

1. Introduction 

In this paper, we shall study the initial value problem for two implicit systems 
of the forms 

F(x,x',t) = 0, x(0)=xo, (1.1) 

G(x,x',y,t) = 0, x(0) = xo, (1.2) 

where F: Rn+n+l -> Rn , G: ]g>n+n+m+i _> Rn+m a r e Caratheodory continuous 
[1; p. 76]. Problem (1.2) arises for example in modelling nonlinear electrical net­
works [13] by using Kirchhoff's laws. Problem (1.1) is a general implicit ordinary 
differential equation. The purpose of this paper is to derive Peano-like existence 
theorems for (1.1-2). 

At the end of this note, the method used for proving existence results for 
(1.1-2) is applied also to the boundary value problems 

F(x,x",t) = 0, x(-a) = x(a) = 0, (1.3) 

G(x, x", y,t) =0, x(-a) = x(a) = 0, (1.4) 

where F: R " + n + 1 -• Rn , G: R n + n + m + 1 -» R n + m are Caratheodory continuous 
and a > 0. 

AMS S u b j e c t C l a s s i f i c a t i o n (1991): Primary 34A09; 47H05, 47H17. 
Key words : implicit differential equation, pseudomonotone operator, generalized Leray-
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The method of this paper, based on a theory of pseudomonotone operators 
and a generalized Leray-Schauder degree [2], is very similar to those used in [6], 
[7]. Implicit ordinary differential equations are also studied in [9], [10], [11], [14] 
by using a generalized degree for _4-proper mappings. A theory of differential 
inclusions is applied in [3], [5], [8], [12] to treat equations like (1.1) and (1.3). 

As examples, consider the problems 

y" = g(y",t) + h(t,y), o < * < i , 

y(0) = y0, y'(0) = z0, yQ,z0eRn, 

y" = g(y",t) + h(t,y), o<t<\, 

y(0)=y(\) = 0, [ ' 

where g: Rn x [0,1] -> Rn and h: [0,1] x R n -> Rn are Caratheodory continuous, 
and moreover, h is bounded on [0,1] x R n . 

Problems like (1.5-6) are studied by many authors. In [11], [14], when n = \ 
and z — g(z, t) is strictly monotone in z E R uniformly with respect to (u.w.r.t. 
for short) t E [0,1]. In [5], when g(z, t) is nonexpansive in z E Rn (see [4; p. 69]) 
u.w.r.t. t E [0,1]. In [9], [10], when n = 1 and g(z,t) is contractive in z E R 
u.w.r.t. t E [0,1]. In [8], when g(z,t) = g(z,a(t)), where g: Rn x Rk -> Rn 

is continuous satisfying additional conditions (for instance, dim{r E Rn | r = 
g(r,a) + b} = 0, Va E Rk, V6 E R n ) and a: R -+ Rk is Lebesgue measurable. 
Finally, in [12], when n = 1, g, h are independent of t, and for every w E R 
the function z \—> z — g(z) — h(w) changes the sign on R, and int{r E R | r = 
g(r) + h(w)} = 0 . 

The results of this paper imply that (1.5) and (1.6) have weak solutions 
provided the mapping z — g(z,t) is monotone in z E Rn u.w.r.t. t E [0,1] 
and satisfying certain growth conditions in z E Rn u.w.r.t. t E [0,1] (see 
(Hl-2) below). Furthermore, if g, h are, in addition, independent of t satisfying 
int{r E Rn | r = g(r)} ^ 0 and h(0) = 0, then the result of [12; Theorem C] 
cannot be applied to those (1.5) with n = 1 neither [8; Main Theorem 1.1] is 
applicable to such (1.6). When n = 1, very simple equations with the above 
properties are explicitly given by 

2\y"-\\-\y" + \\ + 3y"-\ = siny 

with either the initial or the boundary value conditions of (1.5) and (1.6). 
Summarizing, our results do not follow from the above papers. On the other 

hand, those papers deal with much more general problems than we treat in 
this note. Finally, since the set of solutions of an equation with a continuous 
monotone operator is closed and convex, perhaps a method of [5] would give an 
alternative way for solving the problems of this paper. 
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2. Main results 

Let (•, •) be a scalar product on Rp with the corresponding norm | • | . 

Concerning (1.1), we assume the existence of a constant M > 0 such that 

(F(x, zvt)- F(x, z2,t),zx- z2)n > 0 

for any zv z2 E Rn and \x\n < M , \t\ < M. 

0 < lim \F(x,z,t)\J\z\n< M \F(x,z,t)\J\z\n <oo 
Wn-OO l Z l ^ ° ° (H2) 

uniformly with respect to |x | n < M , |£| < M . 

The following definitions will be needed in what follows (see [2; p. 946]). Let 
H be a Hilbert space with an inner product (•, • ) , and let ft be a bounded 
open convex subset of H. A mapping T: ft —*• H is: 

- pseudomonotone (T G PM) if for any sequence {ui}
<^:1 C ft with 

u{ —- u £ Cl (weak convergence) and lim ( T ^ ) , ^ — u) < 0, it follows that 

T(Ui)-T(u) and (T(^),n.) -> (T(u),u); 

- of class S+ (T E S+) if for any sequence { i^}?^ C f2 with u{ —- u E ft 

and lim (T(u{),u{ — u) < 0, it follows that i^ —> n; 
t—^oo 

- bounded if it takes any bounded set of Ct into a bounded set. 

It is not hard to see that T 6 PM => T + el e S+ V e > 0 , where 
I : H —> H is the identity map. 

We are interested in weak solutions of (1.1-4) in the sense that their highest-
order derivatives are integrable, and, in addition, they satisfy (1.1-4) almost 
everywhere with respect to t. 

THEOREM 2 . 1 . Under the assumptions (Hl-2), for any xQ G lRn satisfying 
\xo\n < M, there is an a > 0 such that problem (1.1) has a weak solution on 
(-a, a). 

P r o o f . The assumption (H2) implies the existence of positive constants a., 
/3, 7 such that 

mi--i)<\n*,*s)\i<a{\z\i+i) 
for any z and \x\n < M , \t\ < M. 

By taking 

H = L 2 ( [ - o , o ] , R " ) , 
t 

Tx{z){t) = F(X(X0+JZ{S) da),z(t),Xt) , X G [0,1], 
o 
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problem (1.1) is equivalent to the equation Tx(z) = 0 in H. Let (•, • ) L = 
a . 

J (zx(t), z2(t))n dt be the inner product on H with the norm \z\L = -./(z, z)L . 
—a * 

We take 

í î = { z Є Я | И L a < i } . 

From 2 G f J , w e obtain 

t 

I z(s) ds 

-Ví \ 
z z 

J\Z(s)\lds Jlds <V\i\-\z\L2<VZ 

Hence, for any z E $1, we have 

X0+ Z(S) dS
 n - \Xo\n + V*-

If \xQ\n < M , then we take a fixed a such that 

0 < a < m i n { ( M - | x 0 | n ) 2 , ^ , M } . 

Now we prove that Tx G PM. So let { z j g j C Cl with zi - - z and 

{ * > OO 

J z{(s) ds > 
t 

converges to J z(s) ds in H. Since { z j ? ^ is bounded, and Tx is bounded 
o 

by (2.1), we can assume Tx(z{) —- z 6 H. Let u E H be arbitrary, then (HI) 
implies 

a t 

J(F(\(X0 + JZi(s) ds),Zi(t),\?j 
-a 0 

t 

-F(\(X0+ J Zi(s)dsyu(t),\t\ , Zi(t)-u(t)\ dt>0. 
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t t 
Since J z{(s) ds —> J z(s) ds in H and z{ - A z, we have 

o o 

(Tx(z{), zt - z)L2 + (Tx(zt), z - u)L2 = (Tx(Zi), zt - u)L2 

t 

>(F(X(X0+ fz^dsYu^xX^-u) 

t 

--> ( F ( X ( x0 + / z(s) ds J, u, X • J, z - u J 

By using lim (Tx(zi)1zi — z)L < 0 and Tx(z{) —- z, we have 

(z,z-u)L2 > (F(X(X0+ I z(s) dsVu^xXz-u) . 

Setting CJI; = z — w for u > 0, we obtain 
t 

(5,w)La > ( W A ( X 0 + / z(s) dsJ ,z-o;v ,A.J ,vJ , 
o 2 

and letting CJ —• 0"1", we arrive at 

^v)L2>(Tx(z),v)L2 VveH. 

So z = Tx(z), i.e., TA(z4) -- Tx(z). Furthermore, by taking z = u in (2.2), 
we obtain lim (Tx(zi)Jzi — z)L > 0. Hence lim (Tx(zi),zi — z)L < 0 gives 

t—>00 2 - - + 0 0 2 

.lim (TA(^),z . - z ) L a = 0, and consequently, Hm ( T ^ ) , * . ) ^ = (T A (s) , s ) L a . 
The pseudomonotony of Tx is proved. 

Now, (2.1) implies for z G fi that 

2 
dť ITxWiL = J\F(X(X0 + JZ(S) ds),z(t),Xt) 

- a 0 
a 

>pj(\z(t)\2
n-7)dt = /3(\z\l2-2ay). 

— a 

Hence, if | z | L 2 = 1 and 2a<y < 1, then JTA(^) ^ 0. Since Tx e PM, then 
Tc A = T A - r d e 5 + for any e > 0. It is clear that TcA(z) ^ 0 for any z e dtt 
and a sufficiently small e > 0. Consequently, 

deg(T£l,fi,0) = deg(T£O,f.,0), 
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where deg is the generalized Leray-Schauder degree in the sense of [2]. We note 
that Te0(z) = F(0, z, 0) + ez, and by (HI), we have 

^(F(0,zv0)+ez1)-{F(0,z2,0)+ez2))z1-z2)L2> \/z19z2eH. 

So Te0(z) is strongly monotone, and consequently, it is a homeomorphism (see 
[4; p. 100]). Finally, by using 

l-;o(-)lL = \T0(z)+ez\l > (\T0(z)\L2 -e\z\Lf > | |T 0 (z ) | | a - £
2 | , | | 2 

> \p{\z\l2 - 2aj) - e*\z\l2 = § ( ( l - f ) \z\\2 - 2a7) , 

we see that for any sufficiently small e > 0, the equation Te0(z) = 0 has a 
unique solution that is in ft. Hence we obtain that deg(T£0, £2,0) ^ 0, and so 
Tel(z) = 0 has a solution ze E ft for any sufficiently small e > 0. By using 
Tj 6E P M and letting £ —> 0 + , we obtain the solvability of Tx (z) = 0 in ft. The 
proof is finished. • 

Concerning (1.2), we assume the existence of a constant M > 0 such that 

(G(x,zvyvt) - G(x,z2,y2,t), (zvyx) - (z2>%))n-rm - ° 

forany (z1,y1),(z2,y2)GlRn+m and | x | n < M , | t | < M . 

0 < lim \G(x,z,y, t ) | n + m / | ( z ,y ) | n + m , 
| (^,I/) |n+m->00 

HE \G(x,z,y,t)\n+J\(z,y)\n+m <oo (A2) 
l(*,y)|n+m-»oo 

uniformly with respect to | x | n < M , |£| < M . 

THEOREM 2.2. Under the assumptions (A 1-2), for any x0 G lRn satisfying 
\x0\n < M, there is an a > 0 such that problem (1.2) ftas a weak solution on 
(-a, a). 

P r o o f . By taking 

H = L2([-a,a],Rn+m) 
t 

Tx(zyy)(t) = G(\(XQ + Jz(s) ds) , z(t),y(t), XtY A e [0,1] , 
o 

problem (1.2) is equivalent to the equation Tx(z,y) = 0 in H. Now we can 
repeat the proof of Theorem 2.L The proof is finished. D 
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R e m a r k 2 .3 . If M can be arbitrarily large under the conditions (Hl-2) , re­
spectively (Al-2), then problem (1.1), respectively (1.2), has a weak solution on 
any finite interval with any initial value x0. 

Finally, we note that the method used in the above proofs can be directly 
applied to the boundary value problems (1.3) and (1.4). Indeed, let tpa be the 
Green's function of the problem x —» x" , x(—a) = x(a) = 0. Then, by taking 

H = L2{[-a,a],Rn), 
a 

Tx(z)(t) = F(\J ^a(t, s)z(s) ds, z(t), At) , A 6 [0,1], 

—a 

for (1.3), respectively 

H = L2([-a,a],Rn+m) 
a 

Tx(z,y)(t) = G(\Jil>a(t,s)z(s) ds, z(t), y(t), \t\ , A G [0,1], 

— a 

for (1.4), problem (1.3), respectively (1.4), is equivalent to the equation Tx (z) = 0, 
respectively Tx(z,y) = 0, in H. Moreover, it is not hard to see that 

a 

sup \ J ijja(t,s)h(s) ds < \ / o V | / i | L 2 VheL2([-a,a],Rn). 
t€[—a,a] I J n 

—a 

Now, similarly as above, for Theorems 2.1-2 we obtain: 

THEOREM 2.4. The assumptions (Hl-2) , respectively (Al-2) , imply the exis­
tence of a weak solution for (1.3), respectively (1.4), for any sufficiently small 
a > 0 . 

R e m a r k 2.5. If M can be arbitrarily large under the conditions (Hl-2) , re­
spectively (Al-2) , then problem (1.3), respectively (1.4), has a weak solution for 
any a > 0. 

R e m a r k 2.6. Similarly, we can prove the solvability of the problems 

F(x,x",t) = 0, x(0) = x0, x'(0) = z0, 

G(x,x",y,t)=0, x(0) = x0, xf(0) = z0, 

where F, respectively G, satisfies (Hl-2) , respectively (Al-2) . 
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