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RANDOMLY H GRAPHS 
GARY CHARTRAND1, ORTRUD R. OELLERMANN2, SERGIO RUIZ 

Introduction and historical background 

In 1951 Ore [13] defined and then studied graphs that he called arbitrarily 
traceable but which were later to be referred to as randomly eulerian graphs. 
A graph G is randomly eulerian from a vertex v of G if every trail of G with initial 
vertex v can be extended to a v-v eulerian circuit. (See [2] or [12] for basic graph 
theory terminology.) A graph is randomly eulerian if it is randomly eulerian from 
each of its vertices. These graphs were studied further by B a b l e r [1] and H a r a r y 
[11]; this concept was later extended by C h a r t r a n d and Whi t e [6] E r i c k s o n 
[8]. 

In 1968 C h a r t r a n d and Kronk [3] introduced the concept of randomly 
hamiltonian graphs. A graph G is randomly hamiltonian from a vertex v if every 
path of G with initial vertex v can be extended t o a v - u hamiltonian cycle. A graph 
is randomly hamiltonian if it is randomly hamiltonian from each of its vertices. 
Randomly hamiltonian graphs were characterized in [3] as follows : 

Theorem A. A graph G of order p ( ̂  3) is randomly hamiltonian if and only if 
G is isomorphic to one of Kp, Cp and K(p/2, p/2) , the last being possible if and 
only if p is even. 

In 1973 D i r a c and T h o m a s s e n [7] determined, for given integers n and p with 
3 ^ n ^ p , all those graphs G of order p having the property that G contains paths 
of length n — 1 and every such path can be extended to an n-cycle. For a positive 
integer k and a nonempty set S of positive integers, P a r s o n s [14] studied those 
graphs G containing paths of length k and for which every such path can be 
extended to an s -cycle of G, for some s e S. 

In 1973 T h o m a s s e n [16] studied graphs G that are randomly traceable from 
a vertex v of G, i.e., every path of G with initial vertex v can be extended to 
a hamiltonian path with initial vertex v. T h o m a s s e n [17] also characterized those 
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graphs G of order P(^4) for which every path of length at most p — 2 can be 
extended to a (p - l)-cycle. 

In 1984 Fink [10] extended the concept of randomly traceable grahps to 
consider graphs he called randomly near-traceable, a graph G being randomly 
near-traceable if, in any depth-first search of that graph, whenever we backtrack to 
a previously visited vertex, that vertex is adjacent to at least one unvisited vertex. 

In 1979 Sumner [15] defined and characterized randomly matchable graphs, 
namely those graphs in which every set of independent edges can be extended to 
a /-factor. 

Thus far in literature, nearly all subgraphs that have been defined to occur 
randomly, in some sense, have been spanning subgraphs of the given graph (i.e., 
factors) and, with the exception of Sumner's randomly matchable graphs, all 
subgraphs have had some sequential aspect of them. In this article, we generalize 
these concepts in a manner so that neither of the above restrictions is required. 

We note in concluding this section that some of the concepts defined above have 
analogues in directed graphs (see [4], [5], [8], [9] and [11])-

Randomly H graphs 

Let G be a graph containing a subgraph H without isolated vertices. Then G is 
called a randomly H graph if whenever F is a subgraph of G without isolated 
vertices that is isomorphic to a subgraph of H, then F can be extended to 
a subgraph Hx of G such that Hx = H . Thus, every nonempty graph is randomly K2 

while every graph G without isolated vertices is a randomly G graph. The graph G 
of Figure 1 is not randomly 2K2 since the subgraph F, of G cannot be extended to 
a subgraph of G isomorphic to 2K2. Although this graph G is randomly P3, it is not 
randomly P4 since the subgraph F2 of G cannot be extended to a subgraph of G 
isomorphic to P4. 

Before proceeding further, we make a few comments regarding the definition 
given of randomly H graphs. In the definition it was stipulated that H and F be 
without isolated vertices. Suppose that H has order m and that <& is class of all 
randomly H graphs. Let H' = HunKx, where n^l. If, in the definition of 
randomly H graphs, we were to delete the requirement that H be without isolated 
vertices, then the class (Sf of all randomly H ' graphs consists of all those elements 
of ^ having order at least m-hrc. Hence it suffices to assume that H is without 
isolated vertices. 

Since a graph G without isolated vertices is a randomly H graph if and only if 
G u K i is randomly H, we assume that every randomly H graph is free of isolated 
vertices. In order to avoid a situation where only complete graphs would be 
randomly H for a variety of graph H, we have required F to be without isolated 
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vertices; otherwise, for example, only complete giaphs of order at least 2 would be 
randomly K2 (which can be seen by taking F = F2, where V (K2) = {x, y} and x and 
y are any two vertices of G). 

In this section we present characterizations of randomly H graphs for certain 
graphs H of small size as well as when H is complete or a star. A double star is 
a tree containing exactly two vertices that are not end-vertices. 

F r o-

Proposition 1. (i) A graph G is randomly 2K2 if and only if G is neither a star 
nor a double star, 
(ii) A graph G is randomly P3 if and only if no component of G is isomorphic to K2. 

Again, recall that we are considering only randomly H graphs that are free of 
isolated vertices. We now characterize randomly Kn graphs. 

Proposition 2. (i) A graph G is randomly K3 if and only if each component of 
G is a complete graph of order at least 3. 

(ii) A graph G is randomly Kn (n ^ 4 ) if and only if G = KP for some p^n. 
Proof, (i) The sufficiency is obvious. Assume that G is randomly K3. Certainly, 

then, every component of G has order at least 3. Suppose, to the contrary, that G 
contains a component Gx that is not complete. Then Gx contains nonadjacent 
vertices u and v having the distance d(u, v) = 2. Let u, w, v be a u — v path of 
length 2 in Gi. Then ({u,w,v})=P3, which is a subgraph of K3. This implies that 
uv is an edge of Gu producing the desired contradiction. 

(ii) Again, the sufficiency follows immediately. For necessity, let G be 
a randomly Kn graph, where n ^4. First we show that G is connected. If G were 
not connected, then selecting an edge from each of two components of G produces 
a subgraph F of G isomorphic to 2K2, which is a subgraph of Kn. However, F 
cannot be extended to a graph isomorphic to Kn. Thus G is connected, as claimed. 
Necessarily, G has order at least n. That G is complete follows by the same 
argument as that used in the proo of (i). 

We now present a characterization of randomly H graphs, where H is a star, i.e., 
where H=K(l, n) for some n ^ l . Since we have already considered the cases 
n = 1 and n = 2, we assume that n ^ 3 . 
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Proposition 3. A graph G is randomly K(l, n), n ^ 3 , if and only if G contains 
no component isomorphic to K2 and every vertex of G has degree I or degree at 
least n. 

Proof. Let G be a randomly K(l, n) graph, n^3. Certainly, G contains no 
component isomorphic to K2. Let v be a vertex of G such that deg v > 1. Then G 
contains a subgraph F=K(l, 2) such that v e V(F) and degF v =2. Since F can be 
extended to a subgraph Hx of G such that Hx = K(l, n), it follows that degHl v = n 
so that degG v^n. 

Conversely, suppose that G contains no component isomorphic to K2 and every 
vertex of G has degree I or degree at least n(^3). Since G has no component 
isomorphic to K2, the graph G must contain at least one vertex having degree at 
least n. Therefore, G contains a subgraph isomorphic to K(l,n). Let F be 
a subgraph of K(l, n) without isolated vertices. Then F^:K(l, m), where 1 ^ m ^ 
n. Assume first that 2^m^n. Suppose veV(F) such that deg F u-=m . Since 
degG v^n, we can extend F to a subgraph of G that is isomorphic to K(l, n). 
Next, assume that F — K(l, l) = K2. Since G contains no component isomorphic to 
K2, at least one vertex u of F has degree different from I in G . By hypothesis, 
degG u^n, implying that F can be extended to a subgraph of G that is isomorphic 
to K(l, n). Therefore, G is randomly K(l, n). 

We now present a characterization of randomly Cn graphs (n ^ 3 ) . Our proof will 
use the following result of Dirac and Thomassen [7]. 

Theorem B. Let G be a connected graph of order p containing an n-cycle (so 
that 3^n ^p). Then G has the property that every path of length n - I can be 
extended to an n-cycle if and only if G is isomorphic to one of the following: 

(i) Kp, (ii) Cn(p = n), (iii) K(r,s) is n is even, where r -F s = p and r, s^n/2. 

Proposition 4. The randomly Cn graphs are 

(i) IJ Kn,, where k ^ 1 and nt^3 (l^i^k) if n - 3; 

(ii) Kp, where p ^ 4 , and K(r,s), where 2^r^s if n~4; 
(iii) Kp, where p^n, and Cn if n^5 and n is odd; and 
(iv) Kp, where p^n, and K(n/2, n/2) if n ^ 6 and n is even. 

Proof. First, randomly C3 graphs are synonymous with randomly K3 graphs 
which were characterized in Proposition 2 (i). Thus we consider randomly Cn 

graphs, where n^4. Since 2K2 is a subgraph of Cn for n^4, these graphs are 
necessarily connected. Let G be a randomly Cn graph, where n^4. Then G is 
connected and every path of length n — 1 in G can be extended to an n-cycle. 
Therefore, by Theorem B, the graph G is isomorphic to Kp, Cn (p = n), or K(r, s) 
for even n, where r + s=p and r, s ^ n/2. That Kp(4^n^p) and Cn (if p = n) are 
randomly Cn follows immediately. Also, it is not difficult to verify that for 2 ^ r ^ s 
the graph K(r, s) is randomly C4. 
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We now show that for even n ^ 6 the graph K(r, s), where r^n/2 and s>rc/2,is 
not randomly Cn. To see this, consider K(r, s) with partite sets U and W, where 
\U\ = r^n/2^3 and \W\ = s>n/2^3. The graph P3up„_3 is a subgraph of Cn. 
Let F = P 3 uP n _ 3 be a subgraph of K(r, s) with the property that the four 
end-vertices of F belong to W. Then W contains (n + 2)/2 vertices of F. (Note that 
the cardinality of W guarantees the existence of such a subgraph F in K(r, s).) 
Since no two vertices of W are adjacent, F cannot be extended to an n-cycle. 

It remains only to show that for n = 2 r ^ 6 the graph K(r, r) is randomly Cn. 
Suppose, to the contrary, that K(r, r) is not randomly Cn. Among the subgraphs of 
K(r, r) that are subgraphs of n-cycles and that cannot be extended to an n-cycle, 
let F be one of maximum size q. Since any path of length at most n — 1 can be 
extended to an n-cycle in G, the subgraph F must be a linear forest with at least 
two components (nontrivial paths). Let U and W be the partite sets of K(r, r). 

Since 
V degF v = V degF v = q , 

veU veW 

if one of U and W, say U, contains a vertex u that does not belong to F, then W 
must contain a vertex w that either does not belong to F or is an end-vertex of F. 
Then F + uv is a subgraph of an n-cycle. Since the size of F + uv is q + 1, the graph 
F+wi> can be extended to an n-cycle in K(r, r), which implies that F can be 
extended to an n-cycle in K(r, r), contrary to the hypothesis. Therefore, F is 
a spanning subgraph of K(r, r). Then U and W contain end-vertices u and w, 
respectively, of F belonging to different paths of F. However, F + uv is a subgraph 
of an n-cycle, implying, as above, that F can be extended to an n-cycle, which 
produces a contradiction. 

A consequence of this result is the following. 

Corollary. A graph G of order n(^3) is randomly Cn if and only if G is 
randomly hamiltonian. 

Graphs that are randomly H for every subgraph H 

In this section we characterize those graphs G (without isolated vertices) that are 
randomly H for every subgraph H of G (without isolated vertices). 

Theorem 1. A graph G is randomly H for every subgraph H of G if and only if 
G is isomorphic to one of the following: nK(l, m) (n, m^l), nK3 ( r c ^ l ) , Kp 

(p^4), C4, C5, K(3,3). 
Proof. We note that it is not difficult to show that each of the graphs listed in 

the statement of the theorem has the desired proprty. For the converse then, we 
assume that G is a graph (without isolated vertices) that is randomly H for every 
subgraph H (without isolated vertices) of G. 
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Assume first that G is disconnected. Then no component of G contains 
a subgraph isomorphic to P4; for otherwise, we could select an edge from each of 
two components of G, producing a subgraph F isomorphic to 2K2. Since F is 
isomorphic to a subgraph of P4, it follows that F can be extended to a path of 
length 3, but this is impossible. We conslude therefore that 

G = nK(l,m), n^2, m^l, or G = nK2, n^2. 

We henceforth assume that G is connected. If all vertices of G have degree at 
most 2, then G = Pn for some n^2 or G = Cn for some n ^ 3 . We show that 
G-^P4. Suppose, to the contrary, that G = P4. Since G contains a subgraph 
isomorphic to 2K2 and, consequently, is randomly 2K2, by Proposition 1 G is not 
a double star. However, P4 is a double star and a contradiction has been reached. 
That G-^P„, n ^ 5 , and G ^ - C n ^ 6 , follows by applying an indirect proof and 
using the fact that G is randomly P4 and that every subgraph of G isomorphic to 
2K2 can be extended to a subgraph isomorphic to P4. 

We may now assume that G has some vertices with degrees at least 3 . Suppose 
that G has maximum degree r ( ^ 3 ) . Then, by Proposition 3, every vertex of G has 
degree r or degree l. 

Next we show that the diameter of G is at most 3 ; for suppose, to the contrary, 
that diam G ^ 4 , Then G contains vertices u and v with distance d(u, v) = 4. Let P 
be a u — v path of length 4, and let F be the subgraph of G induced by the terminal 
edges of P. Since G is randomly P4 and F is isomorphic to a subgraph of P4, it 
follows that F can be extended to a subgraph isomorphic to P4, implying that 
d(u, v)^3, thereby producing a contradiction. If diam G = 1, then G = KP for 
some p ^ 4 . Hence we assume that diam G = 2 or diam G = 3 . 

Suppose that G contains a vertex of degree l. If diam G = 2, then G = K(l, r); 
while if diam G = 3, then G is a double star. In the latter case, G is randomly 2K2, 
contrary to Proposition 1. 

Henceforth we assume that G is r-regular for some r ^ 3 . Suppose that 
diam G = 3 . Then G contains vertices u and v such that d(u, v) = 3 . Let u, U\, w, 
y b e a u - u path of length 3 in G . Suppose further that the neighborhood of u is 
{ui, u2, ..., ur), and let e, = uui (i = 1, 2, ..., r) and / = vw (see Figure 2). For i = 2, 
3, ..., r), let F, be the subgraph induced by the two edges e, and /, so that F, =2K 2 . 
Since G is randomly P4, and P4 contains a subgraph isomorphic to each such F,, we 
conclude that F, can be extended to a subgraph of G that is isomorphic to P4. This 
implies that w is adjacent to u, (i = l, 2, ..., r) as well as to i>, but then 
deg w^r+l, which is a contradiction. 

Finally, then, suppose that diam G = 2. Let v be a vertex of G and let V, 
(i = l ,2 ) be the set of those vertices of G at distance i from v. Then V(G) = 
{ D } U V I U V 2 and | Vj = r. We note that G contains no triangle; for otherwise G is 
randomly K-,, which implies by Proposition 2 that G is complete, contradicting the 
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fact that diam G = 2. In particular, this shows that no two vertices of V! are 
adjacent. 

Suppose two vertices u2 and v2 of V2 are adjacent. Then G contains a 5-cycle v, 
Mi, u2, v2y Vu v (see Figure 3). Therefore, G is randomly C5, which, by 
Proposition 4, implies that G = Kpy for some p ^ 5 , or G = C5, neither of which is 
possible. 

v Ö 

Fig.2 

F: 

Fig.З 

Hence we conclude that no two vertices of V2 are adjacent, implying that 
G = K(r, r), r ^ 3 . W e now show that G = K(3, 3), for suppose that G = K(r, r), 
r ^ 4 , where G has partite sets U= {uu w2, ..., ur} and W= {wu w2, ..., wr). Let H 
be the subgraph of G shown in Figure 4. Since the subgraph F of G shown in 
Figure 4 is isomorphic to a subgraph of H and G is randomly H, it follows that F 
can be extended to a subgraph of G isomorphic to H, which is not the case (since 
wxw2±E(G)). 

This completes the proof. 
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СЛУЧАЙНО Н ГРАФЫ 

Сагу С п а т а п а ' — О г ! г и с 1 К. О е П е г т а п п — 5 е г ^ ю К ш г 

Р е з ю м е 

Граф С содержающий субграф Н без изолированных вершин называется случайно Н графом, 
если из того, что Г является подграфом графа С без изолированных вершин изоморфным 
подграфу графа Н, вытекает, что Р может быть расширен на некоторый подграф графа О 
изоморфный графу Н. Случайно Н графы охарактеризованные для всех циклов и для несколько 
малых графов Н. Найдены все графы, которые являются случайно Н графами для всех своих 
подграфов Н без изолированных вершин. 
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