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ON |T|ib SUMMABILITY AND 
ABSOLUTE NORLUND SUMMABILITY 

M . ALI SARIGOL 

ABSTRACT . This paper gives the necessary and sufficient conditions in order 
that a series ^2 an should be summable |T|jt , k > 1 , whenever J^ \an\ < oo , 
and so extends the known results of [2] and [3] to the case k > 1 . 

1. Definitions and notations 

Let ^2 an be an infinite series with the sequence of its partial sums (sn) and 
let T = (anv) be an infinite matrix. Suppose that 

oo 

Tn = J2anvSv, (V = 0 , 1 , 2 , . . . ) (1) 
v=0 

exists (i.e., the series on the right-hand side converges for each n). If (Tn) G bv, 
i.e., 

oo 

Y^Fn-Tn-ilKOO, ( T - i = 0 ) (2) 
n=0 

the series £^ an is said to be absolutely summable by the matrix T or simple 
|T | . As known, the series ] P a n is said to be |N,p n | summable if (2) holds 
whenever T is a Norlund matrix, [2]. By a Norlund matrix, we mean one that 

anv = n~v for 0 < v < n, and anv = 0 for n > v , 
Fn 

where (pn) is a sequence of real or complex numbers for which 

- D n = P o + P i + - - ' + P n ^ O > P - i = 0 . 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Primary 40C05, 40D25, 40F05, 40G05. 
K e y w o r d s : Absolute summability, Norlund summability, Infinite series. 

325 



M. ALI SARIGOL 

Let ( T n ) be given by (1 ) . If 

oo 

Yt^Tn-Tn-rfKOO, (3) 
n=l 

then 53 an is said to be |T|jt summable, k > 0 , [5], and for k = 1 this is the 
usual definition of |T | summability. Moreover, when T is a Nor lund mat r ix , this 
definition reduces to the customary definition of absolute summabi l i ty | N , p n | * , 
as given by B o r w e i n and C a s s [1], for example. 

M e a r s [2] established the necessary and sufficient conditions in order t ha t 
53 «n should be summable |T | whenever 5_]la«l < ° ° • Also M c F a d d e n 
[3] obta ined some comparison theorems between the summabil i t ies | N , p n | and 
| N , a n | , using Mears 's result . But , since |T|jt summabil i ty includes the | T | 
summabil i ty, this also raises the problem: what are the necessary and sufficient 
condit ions in order tha t 5 Z a n should be |T|fc summable whenever 5Z l a " l < ° ° > 
which enables us to extend Mears 's and McFadden 's results to the case k > 0 . 

We give an affirmative answer to the problem for k > 1 . 

Let ( N , p n ) and (N,<jn) be regular Norlund means, and let tn and un denote 

( N , p n ) and (N,qn) means of 53 an , i-e., for n = 0 , 1 , 2 , . . . , 

*» = £ Hp'- W 
r. r n v=0 

and 
n 

un = y^^rsv' (5) 
v=0 ^n 

T h e n 

Pn 
ť n = 2 ^ — 5 — u » > ( 6 ) 

v=0 

where Rk is determined such t h a t 

Po = qoRo, pi = q\Ro + qoR\,.-,Pk = qkRo H \-qoRk. (7) 

2. M a i n resu l t s 

We now prove t h e following theorems: 

T H E O R E M 2 . 1 . The necessary and sufficient conditions in order that y~] av 

should be \T\k summable, k>\, are, whenever 5 3 l a u l < ° ° > 
oo 

(i) 5Z anv converges for all n, 
v=0 

(ii) 53 nk ^ІJЗ í^ni-an-i.i) 
n=l 

< M < oo for all v. 
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The case k = 1 of this Theorem was proved by Mears. 

We require the following result of M a d d o x ([4], Theorem 5, p. 167) for 
the proof of the Theorem. 

THEOREM 2.2. C = (cnv) e (-?i, h) if and only if 

sup y^ \cnv\ < oo, for the cases 1 < k < oo . 
v 

n 

P r o o f of T h e o r e m 2.1. 
oo 

Sufficiency. Since, by (i), Anv = ]T ani converges for each n, v, Anv —» 0 
i=v 

as u - > o o , and so there exists a sequence (/?n) such that \Anv\ < fin for all v. 
oo 

Therefore Tn = ^2 Anvav converges for each n , since 
v = 0 

Y^ \Anvav\ < /3n ^2 M < °° • 
v=0 v=0 

On the other hand we have, for n > 0, 

T n - T „ _ i = _ ^ ( Л в в - . 4 „ _ i , , ) a - . (A-i,v=0). (8) 
t>=0 

Now, denote vn = nl~llk(Tn - T n _i) = £ nl~llk(Anv - An-i,v)av, n > 1, 
. = 0 

and vo = ^2 Aovav . Then (un) is the C-transform sequence of (av) e £i , 
v=0 

where, for all v > 0, 

I -40v 

nl~llк(Anv-An-lìV) îf n > І 

if n = 0. 

Therefore, it follows from Theorem 2.2 and (ii) that C E (^i, £k), A; > 1, i.e, 
J ^ a n is |T|jt-summable, whenever ]>^|an| < °° • 

oo 

Necessity. Choosing sv = 1 for all v, we have that Tn = ^2 an v converges. 
v=0 

Thus (i) of the Theorem is necessary and Anv is defined for all v , n . Now, 
by Theorem 2.2 and (8), we complete the proof of the Theorem as the above 
discussion. 
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T H E O R E M 2 . 3 . The necessary and sufficient conditions in order that 

| N , g n | ==> |N,p„|fc, k>\,are 

E k-l Sh( Rn-v Rn-l-v\^ 

" M~~~~--p-rr 
n = l v=i x ' 

< M < o o , ( Л _ ! = 0 ) (9) 

/or a/Z i. 

The case fc = 1 of the theorem is due to M c F a d d e n (see [3]). 

P r o o f . If we define the matrix T = (anv) in the following way: 

_ / Rn-p

v

n

Qv if 0<v<n, 

0 if v > n, 

t h e n the conditions of Theorem 2.1 reduce to the conditions of T h e o r e m 2.3. 

Therefore the Theorem is proved by considering (6). 

C O R O L L A R Y 2.4 . Fork>l, | N , p n | = ^ | N , p n | j b , and so |C,1 | =^\C,l\k, 

i.e., there exists a series that is summable | N , p n | but not summable | N , p n | f c . 

In this case, since by (7), RQ = 1 and Rv = 0 for all v > 1, condit ion (9) is 

reduced to 

E k — l V"^ ( I^n — v -Kn — l—v \ ,-, 

,n M"-~—~crr 
n=l v=i N ' 

+ E n*'1Ž(%:i-%_f)p' 
n=»- |- l v = t v n 

; f c - l ІÎQ -R-l 

I~~~гг p. 

= ѓ f c _ 1 < M foг all г > 2 , 

which is impossible. 

The author sincerely thanks the referee for comments. 
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