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SPECIAL STRUCTURES OF MIXED LINEAR MODELS
WITH NUISANCE PARAMETERS

LUBOMIR KUBACEK

Introduction

A mixed linear model is characterized by a triple (¥, X8, £(&); Y is an
n-dimensional random vector, X a known n x k matrix, fan unknown k-dimen-
sional vector, fe #* (k-dimensional Euclidean space), £ ($) a covariance matrix

14
of the random vector ¥, £(9) = ) 9V,. The symmetric matrices V, ..., V, are

i=1
known, the vector $= (9, ..., ) of variance components is unknown,
3e8 <= #” and the topological interior of the set 8 is not empty.

In the following the vector fis usually considered in the form = (@, x')’,
where @ is a k;-dimensional vector of necessary parameters and x s a k,-dimen-
sional vector of nuisance parameters. Therefore the matrix X is usually written
in the form (A, S), where A corresponds to the necessary parameters and S to
the nuisance parameters.

The model (Y, XB, £(9)) is called regular if the rank of the matrix X is
RX) =k, + k, =k (i.e. 4(A) N 4 (S) = {0}, where .# (A) denotes the column
space of the matrix A and .#(8) is of analogous meaning) and the set 9§
possesses the property $e€ 9 = X () is positive definite.

Two typical situations occur in the process of estimating the parameter f.
Either there exists the uniformly best linear unbiased estimator of ff, when the
values of the parameters §,, ..., 9, are not required to be known for obtaining
the mentioned estimator of B or knowledge of some of them is required for
obtaining a locally best linear unbiased estimator of f. In the latter case the
variance components have to be estimated before estimating the parameter f.

As far as possible preference is given to invariant estimators (realizations of
such an estimator do not depend on f). However, in the former case the
parameters 9y, ..., , need not be known for estimating the f, their knowledge
is necessary for determining the covariance matrix of its estimator.

As in the model (Y, X, £(9)) the observation vector Y (according to the
assumption) is influenced by the nuisance parameter %, the transformed model
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(TY, A®, TE(H)T) is considered, where T is a transformation (elimination)
matrix with the properties TA = A and TS = 0.

Moreover, the transformation by the matrix T has to preserve full informa-
tion on the necessary parameter @ and the necessary variance components, i.e.
the estimators of @ obtained from the original and the transformed model
(irrespective of their being determined without means of the variance com-
ponents in the former case or with means of some of them in the latter case) have
to be the same and simultaneously the estimators of the covariance matrix
characterizing the obtained estimators of @ have to be the same.

Therefore it is reasonable to seek for such structures of mixed linear models
which ensure the existence of the transformation mentioned, or to investigate
the influence of a given structure of a model on some obtained estimators.

In the following the normality of the random vector Y is assumed.

1. Definitions and auxiliary statements

The mean value of a random variable (vector) & under a given parameter of
its probability distribution fis denoted E(&|f); analogously Var(&|8) denotes
its dispersion (covariance matrix).

Definition 1.1. The 3-LMVQUIE (the locally minimum variance quadratic
unbiased invariant estimator) of a function g(3) = '3, $€9, is YUY, U = U’
if
(1) V{Be#*} (Y — XPYU(Y — XP) = Y'UY (invariance),

2) V{IeQ}E(YUY| I = ' I and
3) Y{W = W": W fulfils (1) &(2)} Var(Y’UY|$,) < Var(Y'WY|3).
In what follows 3(Y, 9,) denotes the 8-LMVQUIE of 3.

Definition 1.2. The 3,-LBLUE (the locally best linear unbiased estimator) of a
Sfunction h(B) = p’p, pe &, is L'Y if
(1) V{Be ZYE(L'Y|p) = p'p and
(2) V{seR": s fulfils (1)} Var(L'Y|8,) < Var(s'Y|$,).

The symbol B(Y, %) denotes the 8-LBLUE of B; the UBLUE means the uniform-
ly (with respect to 9) best linear unbiasead estimator.

The generalized Moore-Penrose inverse of a matrix X is denoted X*(XX*X =
= X, XT*XX* = X*, XX* = (XX*)' (transposition), X*X = (X*X)"); ® means
the Kronecker multiplication of matrices; let {S},, = S, be the (i, j)th element
of 8§ and S = §’, then vech(S) = (S|, S35 -+o» S103 S22 Sa3s wvvs Sops wens
Sy tn—1sSu_ 13 S,,). If N is a positive semidefinite n x n matrix and A an
arbitrary n x k matrix, .#(A) = .#(N), then P} = A(A’'NA)*A’'N, M) =
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=1— P} (I is an identity matrix); for N = | the notation P, is used, i.e.
PA = PlA.

Lemma 1.3. Let (Y, (A, S) (f), 2 (9) be a regular model. If an elimination

matrix T (i.e. TA = A, TS = O) has a form | — SC, then (Y, &) = TY, &),
where B(Y, 8) is the 8-LBLUE of B in the original model and B(TY, $,) is the
$-LBLUE in the transformed model (TY, A®, TE($HT).

Proof. Cf. Corollary 2.4 in [3].

In the framework of the considered model (Y, Xf, £(¥)) the symbol K,
denotes a p x p matrix whose (i, j)th element is {K},, = Tr(V,V)) and K”
denotes a p x p matrix with the (i, j)th element {K”},; = Tr(MxV,MxV)), i,
j=1,..,p

Lemma 1.4. If the matrices V,, ..., V, are linearly independent, then K, is
regular.

Proof. The matrix K, is the Gram matrix of the p-tuple of the elements

Vi, ..., V, in the Hilbert space of symmetric p x p matrices with the inner
product {A, B> = Tr(AB).

Lemma 1.5. Let the matrices S, and S, be symmetric and p.s.d. Then .#(S,,
S, = M(S) + S,).
Proof. See p. 126 in [7].

Lemma 1.6. The LMVQUIE of a function g($) = '3, 9e9, exists iff
fe. . (K\").
Proof. Cf [8].

Lemma 1.7. Let V be an arbitrary symmetric p.d. matrix of the type n x n and
K=V —VAA'VA) 'A'V, where A is the matrix from the regular model (Y,

(A,S) <f>, E(S)). If T = M§, then the model (ME Y, A®, MEX(9) MY) enables

us to construct the $-LBLUE of @ and the 3,-LMVQUIE of each function
2(9) = F'9, 8¢9, possessing the §,-LMVQUIE in the original model. Moreover,
OY, 9,) = O(TY, 9)) and FI(Y, 8) = FHTY, 9.

Proof. Cf. Theorems 2.1 and 2.2 in [5].

Definition 1. 8 Ann x m matrix G is a minimum N-seminorm g-inverse of an

mxn matrix A _if AGA=A&V{yed(A}V{x:Ax=y} |GY|n < IX]|n-

Here | x|y = \/x Nx and N is a p.s.d matrix of the type n x n. The matrix G is
denoted by A y,.
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Lemma 1.9. Let N be an n x n p.s.d. symmetric matrix and A be an arbitrary
m X n matrix.

a) If #M(A') < H(N), then N"A'(AN~A")" is a minimum N-seminorm g-
inverse of the matrix A.

b) If R(A,.,)=m and #(A’) < #(N), then (AN-A)” = (AN-A")""

Proof. a) Cf. [7].

b) A (A)c #(N)<=3I{E, JA"=NE  Thus AN A"=ENE and
R(AN~A’) = R(E'NE). As N is p.s.d., there exists J, gy, such that N = JJ’.
Thus R(E'NE) = R(E'J) = R(E'N) = R(A) = m.

Lemma 1.10. Let S|.| be a p x p matrix, the (i, j)th element of which has the
Jorm {S|Al};; = Tr(AVAV), i,j =1, ..., p: Ais an arbitrary n x n matrix. Then
in the mixed linear model

a) M (K") = A[S|MxZ,My)"|];

b) #[Ky(m — 1) + K" = #[(m — 1)S|Z; '] + S|(MyZ,M,) "],

P
where Lo =3 S M, 8= (%, .... &,) €.
i=1

Proof. Cf[8].

Lemma 1.11. Let ( Y, (A, S) <f> Z(&)) be a regular model. Let T =1 — SC,
TA=A,TS=0.Then T = M§ — SU l\iIXMgMX, where V is an arbitrary but
fixed symmetric n x n p.d. matrix, K =V — VAA'VA) 'A'V and U is an
arbitrary k, x n matrix. Moreover the matrix $'KS is regular.

Proof. The regularity of §'KS is implied by Theorem 2.5 in [3]. As S is
of the full rank in columns, TA=A<«<CA =0 and TS=0<CS =1I;
CA = O« C = ZMj, where V is an arbitrary but fixed symmetric n x n p.d.
matrix and Zis an arbitrary k, x n matrix. Z has to fulfil the equation
ZMYS = | the solution of whichis Z = (§'KS)~'S'V + U(l — P‘,&,Xs), where U
is an arbitrary k, x nmatrix ((S’KS) 'S’V is a particular solution of the equation
ZMYS =1). As P}\’,,Xs = M} P§, we obtain C = (S'KS)"'S’K 4+ U(l — MXPY).
.M = SC = P§ + U(l — M} + M{M$) MY = P§ + UMMM} =T =
= M§ — SUMMEM)

Remark 1.12. As M§M} = MY and M§M}Y = Mg (Cf. Theorem 2.5 in

[3]), where L =V — V§(S'VS) 'S’V, the elimination matrix T can be written
in the form T = M§ — SUMYM¥.

Remark 1.13. In the following the transformation MY is considered on-
ly; namely, the term SUMY}MZE Yis of no use in the invariant estimation of the
vector 9.
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2. Structures generated by replications

The aim of this section is to study such structures of linear mixed models
which ensure the existence of the §-LMVQUIE of the whole vector 9. Then,
with respect to Lemmas 1.7 and 1.11, there exists a suitable transformation
T=M§ (K=V - VAA'VA)'A'V, V being an arbitrary symmetric p.d.
matrix of the type n x n) eliminating nuisance parameters. The basis for obtain-
ing the explicit formulae is the following lemma.

Lemma 2.1. Let in the mixed linear model (Y, X, £(8)) (it need not be regular)
g9 = '8, 3€9, be a function such that fe M (K\"). Then there exists the

9-LMVQUIE of it and if #(X) < M (%), the estimator has the Sform F (Y,
P
%) = Y ALY (MyE M) V(MZ, M) Y, where A = (A, ..., A,) is a solution

i=1

of the equation S|(MyZ,My)*| 1 = F.
Proof. Cf. [8].

'4
Theorem 2.2. Let (Y, (A, S) <§) Y 9,\_/,) be an m-times replicated regular
/

i=1

-
mode1<v, (A, S)(f), 5 3,.\/,.) Ge. Y=(Y, .. Y'Y, ¥, ... Y, are iid.

i=1
random vectors, A= T@ A, T=(, ..., 1YeZA", =108, V=1 V,i=1,
ceoym). Let P, = 17"/m, M,, =1 — P,, V be an arbitrary symmetric p.d.matrix
of the type n x n, K=V — VAA'VA)'A'V and T=(P,@ M§ + M,,® ),

m

ie. TY=TQMEY +[(Y, - V), ... (Y, — V)], where ¥ = (1/m) Y Y. Then

i=1
a) OY, %) = O(TY, 9,
b) (Y, 8) = JTY, %).
Proof. a) The matrix T=1-§[S' (1 ® K)S] 'S (1 ® K) is of the form
I — SC. With respect to Lemma 1.3 this is sufficient for the validity of a).

™ 14
b) The model <Y, (A, S) (‘:), D .9,\_/,) is regular. Therefore the matrix K"

i=1
having in the replicated model the form K = (m — 1) K, + K (K,, K being
P
matrices for the model (Y, (A, S) (g), > .9,-\/,)) is regular with respect to
i=1
Lemmas 1.4 and 1.5. With respect to Lemma 1.6 the (Y, J,) exists. If
V=I®V,then K=M,®V + P,® K and T can be expresed in the form
Mg, which with respect to Lemma 1.7 proves the assertion b.
Remark 2.3. The explicit expression for the $-LBLUE of @ is

OTY. 8) =[(A&), ()| MEY = {(T"@ A) [P, ® (MSZ,Mg) +
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+ M, @] (T® A} (T"®A) [P, ® (MEMg)*" + M, ® E]".
ATOMSY + (Y, = V), ..., (Y, = )]} = [A(MSE,M5)* Al

A(MEE M Y,
Lemma 1.9 and the inclusion .#{(A) < .4 (MEX, M) were used here. The same
expression O(Y, %) = (I, O)(X'E,X) ' X'E; ' Y can be obtained for éY, %) in
the model before its transformation (in the model after the transformation the
matrix A’(M§X,ME)* A of the dimension k, x k, has to be inverted while a
substantially larger matrix XX, 'X of the dimension (k, + k,) x (k, + k,) has to
be inverted in the model before the transformation). Instead of (MEX,M§)* the
matrix ;' — £, 'S(S'E;'S) ' S’E; ' may be used for calculating @(TY, $,).
The explicit expression for (Y, 9,) is of the form

Y, ) = [SIZ;om — ) + SIUMEM) '™ 7,

7=1(%. 11
7i=(m—DTrE L, 'VED) + mY a0 V=1, .., p,
L=[lm—-1]Y, (Y= . Y=mY Y,

i=1 i=1
(ML E M) = E;! — 55 XD, X XSy (CE 1))

The estimator §(TY, 3,) can be expressed in the following way

ITY, 9)) = [SI(MEX,ME)* (i — 1) + SI(M,ME Z,MEML) (7' 7,
7= 77”)/1
7= (m — 1) Tr[E(ME Z,ME)" MEVME (MK £,ME) ] +
+ m(ME ¥y (M, ME Z,ME M, )" MEVRIE (M, ME Z,MEM,)* MEY,
i=1,..p;

the relationships (My Z,My)" = M, ® Z;' + P, ® (My £,M,)* and (My E,.
M) V(Mg E,My)* =M, ® £V, X7 + P, ® (My Z,My) " Vi(My ZM,)*
were used.

Another structure, occurring frequently in engineering experiments, is
generated by replications of a regular model (¥, Xf, Z(9)):

(Y. XB, £(9)), (2.1
where Y=(Y,, Y5, ..., Y.)., Y, ..., Y, are stochastically independent random

vectors,  EY = (1,04, 1,08) (9)=0,0X)8 varns -

\
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4
=Y 30,0V, 1, =(, .., YeR", Y= (Y], Y5 .., Yi,Y and ¥, ...,
s=1

Y., are i.i.d. n-dimensional random vectors. The matrix X; consists of those
rows of the matrix X which were replicated just r-times; analogously V¢
consists of those elements of the matrix V, which are determined as the points
of intersections of the rows and columns corresponding to the matrix X;. It is

assumed that r;, > 1 and X, = X.

Theorem 2.4. There exists the $-LMVQUIE of $ in the model (2.1) and has
the form

3(!, ‘90) = S*_‘(’i}h ney 7’}p)/’
p
S$* = Z {(r; — 1)SIE(I1'| + S|26ff -t Eg:iXiN_IX;EJiI -
i=1

— S|, E({ixiN_lx;):'(;L.il} +T,

Th,= Y Y rTrES XN DXCES VO LG XN X/ EF VD), s, t=1,..,p,

0,j4%)
i=1 j=1

7= Y [TrE 5 VO L5 — 1) + (V= X £ VO EH(Y — XD,
i=1

s=1,..,p, ‘-1:(1/",‘) Z Kj’

i=1

i 4 ]
L=0/ri— D1 Y (Y,— DY, — ¥, =2, %V
ji=1 i=1

{SIZS ., = Tr (VO L VO ES), N= Y rX/ I X, f=N" Y rX LV,
i=1 i=1
Proof. First it has to be proved that S|(My Z,My)*| = S*. With respect
to Lemmas 1.10 and 1.4 and to thg assumption r, > 1, X; = X, the matrix S*
is obviously regular and thus the 9(Y, $)) has to exist.
Using the relationship

Bl,l’ ceey B].m
(My E Myt =5 — E' XX 2 'X) ' X &' = ( P >
B, .-, B,

B.=1® z:0_,:'1 - riPr,~® E(I,’X,.N"IXZE(I},
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N=Y rX/% !X, P =(/r)11

i=1

B,=—11T QL XN XX/, i#jij=1,

[

after a simple but time-consuming calculation we obtain the relationship
Y, L YIB! - 'X(X X)X VIR — I XX X)L
XE'TWY, ... ) = z (r— DTrE X,/ VO I ) + Z RV S IVO L Y

i=1 i=1
+ Y Y rnVIESKNT Y n X E VO ZOXNTIX R —
i=1j=1 k=1
— Z VO XX N-X B — XN X E VO E D Y.

The right side does not change if ¥ — X ﬂ i=1, ..., m, is substituted for Y,

i

i=1, ..., m. Then the right side attains the form Z [(r;, — DTr(E, Z VO,
i=1

D)+ (Y — Xﬁ) VO Xy ,(Y X[b] Now, respecting Lemma 2.1, the

proof can be finished in a standard but rather time-consuming way.

Remark 2.5. In many cases it is reasonable to utilize for a numerical
determination of the §-LMVQUIE of & the fact that the matrices V|, ..., V, in
the model (2.1) or in the model after an elimination transformation are sparse.
The following theorem can be useful here.

Theorem 2.6. Let in the regular model (Y, XB, X(9)) the matrix Z(9) be of the
form

@, o0 .., 0

0, X, ..., 0

£(9) - — Y Y Hemem @ HY,

~ ~
0, 0. ... T (9
where €™ = (0, ...,0,_,, 1,0, , ...,0,) and HY is a known symmetric n, x n,

matrix; $= (3", ..., 9,5:), 9P, L, 9P, L9, L, 3;:’)’. Let a function

g(P = 'Y, €9, have the property fe J{(K‘”). Then the $-LMVQUIE of g(.)
is
m Py
=73 ¥ AVIEIH Ly,
s=1 t=1

where v, = K—Xﬁ(Y 3),
ﬁ(),’ 80)2 NO z X ZOYYS" NO"’ Z X 20 Xss Z(}c Z S(V)H(‘)

s=1 s=1 t=1
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the decomposition of X into (X1, ..., X)) corresponds to the decomposition of X
into Xy 1, ..., Xy, and the vector A = (AP, ..., Ay ooy A7) is a solution of the

equation S|(My Z,My)*| A = f. The matrix S|(My X,My)*| is given by the
Sformula

Sl.h ey Sl,m
SI(MXEOMX)+‘= e v e 3
Sm,l’ ceey sm,m

where
Si,i = SIE(L'I - E({i'XiNO“'X;Z&,-'|, i=1,..,m,

{Si b = Tr (X XiNG "X E HP B XNG ' X, Zg [ HY), i, /=1, ..., m,
t=1,.,p,u=1,..,p,i#]

Proof. Regarding Lemma 2.1 we proceed in the same way as in the
proof of Theorem 2.4. Because of its being tedious and lenghty, it is omitted.

Remark 2.7. The numbers m and p are significantly smaller than the
number n = n; + ... + n, and the same holds in many cases for the dimensions
of matrices H. Thus the calculation of the elements of the matrices S, ; requires
significantly less time and occupies significantly less of the memory of computers
than the calculation respecting directly Lemma 2.1.

A further important structure of a mixed linear model arises in such experi-
ments of technical sciences the aim of which is to determine positions of stable
and non-stable points of the investigated constructions in m epochs when the
model has the form

Y ﬁl
1 ﬂ2(1) p
L (1L,®X,L,@X) | 7T ] X sieV) |, (2.2)
Kn pim) i=1
2

B, being a k,-dimensional vector of coordinates of stable points, f a k,-dimen-
sional vector of coordinates of non-stable points in the jth epcch.

Theorem 2.8. a) The (i, j)ti: elemeri of the matrix K for the regular model
(2.2) is

{Km}i,j =(m-— 1T '{W‘;tz\*ﬁ}gﬁ’\‘-’%xz\/j) + Tr(CI,XI,MXZ\/iCX,X,,MXZ\/j)a
Lj=1,..p, Cl.z',.mm = M‘xz - szxl(X;szxl)_]Xisz-

b) If a function g($) = .7, & . fulfils the condition fe .U (K"), then the
3-LMVQUIE of it is & 7,
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5;: (7!9 T fp)/’
7= (m — ) Tr[W(My, Z,My )" V(My, Z,My ) "] +
+ mV(C) x, .my, BoCrx my,) " VIUCix, My, Z0Cixom, ) 7 i=1, ..., p,

W, =[1/on — D] ¥ (v~ D) (v~ 9, 7= (Um) 3 v,

(V;s cres V’m)’ = (Y;s cees Y:n), - (1®Xh i®X2) (ﬁ;a [EXS} ﬁ;m)’)’

and B,, B, ..., B are arbitrary unbiased linear estimators of the vector par-
ameters B, B", ..., B™. The vector A = (A,, ..., 4,,) is a solution of the equation
[(m — 1) S|(My,EMy )| + S|C, x, m,, 14 = F.

Proof. a) According to Lemma 2.1 the (i, j)th element of the matrix K"
for the model (2.2) is Tr(MyV,MyV)). The matrix My can be expressed as

mRX; X, T®XX,\"' /T ®X;
POI+M, @1 -(T®X,1®X .
L1 M. 81~ (16X, 16 e o) (ox)

If the known formula
(A, B)“' _( (A-BC'B), —(A—BC'B) 'BC! )
B, C —-C'B(A-BC'B), C'+C'B'(A—-BC'B)'BC'
is utilized, we obtain
My =P,®C, xm, + M, ® My,

Thus MX\—-/’MX\—/J = Mm ® sz\/isz\/j + Pm ® C]‘XI' MXz\/fC"XIMXZ\/j and
Tr(M)_(\_I,M)_(\_/,) =(m-—1) {S|sz|}i.j + {S!cl,xl,sz‘}i,}
b) Regarding Lemma 2.1 and applying the same procedure as in a) we obtain

(MyL,My)" = [(M,, @ My, + P, ® C, x m, ) (M, ®L, + P, ®L,).
(M, @My, +P,® C,.xl,,\,.)(z)]+ = (M,, ® My L, M, +
+ P ® Cx g, EoCrxmny) = M, ® (My EMy )™ +
+ P, ® (Cy x,.my, EoCrox, )"
If the equality
Y, ...V, )M, U, +P,@U) (Y, ..Y,) =

== )T {lon =01 3 (%= D) (Y= DU+ PP
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and the invariance of the estimator are taken into account, the proof can easily
be finished.

Remark 2.9. Another expression for (MxZ,My)* can be obtained in the
following way:

(MyEMy)* = E7' — Z5' XX Z5' X)X E5' = M,, @ (My, E,My)* +
+ P, @ {(My, EgMy )" — (My, My )" X, X[ (My, £, My )" X,]7'X].
(M, Eo My )"},
where
(My, EMy )" = Z5' — 25 "X, (K3 Z5 ' X,) ' X5 2!
and

(My, ZoMix,) ™ — (M, Zo M) " X X0 (M, ZgMy ) X, 17X (My, 2 My ) =
= Cl,xl,(MX2zOMx2)+-

Thus (cx,xl,Mx2 EOCLXI.MXZ)+ = CI,X,,(MXZEOM,Q)*'

3. Sensitivity and invariance

Consider the special structure of the linear mixed model (Y, Xg, () with
(9 of the form E(§) = o’l + XGX' + ZAZ’, where &= (o7, [vech(G)],
[vech(A)]), ZX =0, #(Z)=Ker(X’). If next in accordance with [6]
1e{2(9): 98}, then V{33 BY, H=X'Z'@PDX) 'XEZ(PHY=XX)".
. XY, i.e. there exists the UBLUE of the vector f.

This example shows that a determination of some locally best estimator of f#
does not always require to estimate 8. (However, when Var[(X'X)"'X’ Y| 9] =
= o?(X’X)~' + G is to be estimated, then it is quite clear that some function of
# must be estimated.)

For the mentioned structure it is typical that the parameter f is uniformly
non-sensitive on § (see further). It will be shown that a structure with some
non-sensitiveness of #on $implies the existence of an invariant estimator of 3.
Further, it will be shown that in this case the (£, $,)-LMVLQUE (the locally
minimum variance linear quadratic unbiased estimator) of a function
g(9 = 'Y, 3¢9, becomes the §-LMVQUIE. (Let us recall that the (B, %)-
LMVLQUE has the form

P
X ALY = XB)Y [ 'V — E¢ XX Eg X)X BV EG XX E )7
i=1
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X ES(Y = XBy),
where the vector A=(A, ..., A) is a solution of the equation

-1
(SIE;'| — SIE;! Pi )4 = £.) Analogously the $-mLMVQE (the modified loc-
ally minimum variance quadratic estimator) given by the formula

p -~
Y ALY = XBY [E5'V.E; — 55 XX E7 X)X BTV E XX E5 ' X)

XL 'Y - XP),

where = (X'2;'X)"'X"X; ' Yand 4 is the same as in the (f,, 9,)-LMVLQUE,
becomes the §-LMVQUIE.

Definition 3.1. 4 parameter P is Sy-locally non-sensitive on a variance com-
ponent 3, if ¥y R"}0 f(y. 9)/08y_q = 0.

Lemma 3.2. In a regular mixed model a parameter f; is $y-locally non-sensitive

on 8 iff
-1
(OCET X)X I LV E MY = 0;

the vector B is .90-loca11y non-sensitive on 3, iff

1 -1

- -1

P,("vz0 My’ =0< Py VM, =0,
Proof. 3fi(y, H/a4 =X L' (H)X) BIIX'L (W y+ XL (HX)'X .
PE(9/09]y; as X' L' (HX)"'/09 = X'E(HX) X L (HV,E'(9).
XXz 1(.9)X) "and 9L7'($)/09 = —E7'($)V,E (¥, it can be easily ob-
tained that 9f(y, 8)/03/,. g = — (X E7'X)” 1)( L' VE (v — XBly, %)),
where ﬂ(y, 3)=XE"X)'XE'y. As RX)=k<n and y XB(y,

3) = %y, the equivalence V{ye %"} 0f(y, P0G,y = 0= Px VZO )
—1
. My X =0 is obvious.

1

—1
Corollary 33. If .#(V)< #(X), then Py VMY =0 (obviously

~1 —1 —1
V, = XUX', U = U’ and Py XUX'M ' = Py’ XUO = 0).

Remark 3.4. If #(V,) = .4 (X), then the ith column and the ith row of
the matrix K are zero. With respect to Lemma 1.10 the same is true for the
matrix S|(MyZ,M,)*|. Therefore there does not exists the $-LMVQUIE for
g

1D

Definition 3.5. A parameter B, in a regular mixed model is uniformly non-
sensitive on the variance component 3, if V{8 9}V {ye #"}0 B(y, $/03; = 0.
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Remark 3.6. If X =0+ XGX +2ZAZ, 8={c% [vech(G)],
[vech(A)]}’, then the vector f#is obviously uniformly non-sensitive on $.

i=1
sensitive on 3, then in the regular model V, = PXS,PX + MyS;My,S,=S,i=1,
vy Dy and 2($) = 0’1 + XGX' + ZAZ', Z’X = O, .4 (Z) = Ker(X).
Proof. V{$€9}P5y 'VE "M ' =0=P,VMy=0=V,=
=Z —PZMy=2—MZPy=V, = (1/2)(2Z,+2Z) — Py(1/2).(Z, + Z)).
My — My (1/2) (Z]+ Z) Py. If (1/2) (2, + Z) = S,, then V, = (Px + M,) S,.
.(Px + My) — PyS, My — MyS,P = PSP, + MyS,My. Thus ZI(§ =

)4 P
Y 98P+ My 3 39S My. Let 6, G, A(G = G/, A = A') be arbitrary. It is

i=1 i=1

P

to be shown that there exists a matrix U= ) 98, such thar PxUPy +
i=1

+ MyUMy = ol + XGX' + ZAZ'. Let U=0cl+H, H=H. Then

P UPy + MyUM, = ¢l + P(HPy + MyHMy,; thus the matrix H must be a

solution of the equation

XX'X)"'X'HXX'X)"'X' + 2(2'Z)"'2ZHZ(Z'Z2)"'Z = XGX' + ZAZ(3.1)

If H fulfils the equations
X'X) ' X'HXX'X) ' =G, (3.2)
(Z’2)"'ZHZ(Z'2)" " = A, (3.3)

then it is a solution of (3.1). The class of all solutions of (3.2) is
{X)XXCGX' XX + T — (X)X TXX*: T arbitrary}. The choice T = ZAZ’
makes H a solution of (3.3) as well. Thus such an H is a solution of 3.1.
Remark 3.8. The assertion of Lemma 3.7 can be found in [6] or in [4]
(Theorem 5.7.3); here another way of prowng it is given. If|¢{2(.9) Je 3}, then

1
SO Y SMLO ' 8,=8,

Lemma 3.7. Ifle{E(.?):E(S) Z 3V, V, Je Q} and B is uniformly non-

1t can easily be shown that V, = Px SP
=E(%), $ed.

Theorem 3.9. If the vector B is 3y-locally non-sensitive on the variance com-
ponent 9, then v, = (Y —XP) [E5'V.E; "' — L5 XX E5 ' X)X E5 'V, E7'X.
CXESX) X ES (Y — XP), which is a term of the (B, $,)-LMVLQUE and it
equals for each fe B 7" = Y (My E,My)* V(M Z,My)*" Y which is a term of
the $-LMVQUIE.
Proof. (MyZ,My)" V(MyX,My)" = [E;' — X5 ' XX’ 20 ’X) X'y ']V

1
BT EGIXXNET'X) TS =X SIVES MY — B¢ Py VEO‘M =
203



—1 —1 -1 1
= 5'VE'MY = za‘vz:a' — (MY + PR VEIVESPY =55V,
—1

—1 "‘
B PP U VE PR because of P VMY = O,

Theorem 3.10. a) If the vector B is 3-locally non-sensitive on the whole vector

—1
9, then S|MyZ,M,)*| = S|Z5!| — SIZ:'PY° |.
b) Let 3 = (9], &) If the vector B is 3ylocally nonsensitive on the subvector

9., then
_ A, B
SIMXZOMX)+| = (B,, C)

SIZ | — SIE P | = <A g).

The decomposition of these matrices corresponds to the decomposition of the
vector & into 8, and 92

and

| -

Proof. a) P VM (=0, =1 . p=Tr(MEMy V.
(Mg Z,My)* V)] = Tr[E;" M vzo—'(i— Pi—])V] Tr[E; (1 PE )V, |
E5 V] = Tr(E Vg V) - Tz PY VI (MY 4+ PY )V = Tr(E 'V,
E7'V) - Tr(Ey| PR VI 'PD V).

b) Let P2 VM - = 0. Then Tr(Z; 'V,E;'V, - &' ph v g Piv]V) =
= Tr[5 ' VE 'V, - B (Px +Mx )vz Py V]~Tr(Eo‘VL0‘IVIX V) =
~THEF (M + PEOVEMY V) = Tr(E ' MY VE MY V).

Corollary 3.11. All functions g(3) = '3, €3, with the property

£

possess (B, 9,)-LMVLQUE:s identical with $,-LMVQUIEs for each fe #*. These
Sfunctions can be invariantly estimated in the model after a transformation of the

type M (V arbitrary) and the estimators in the original and in the transformed
model are identical.

As the 3-mLMVQE is usually used instead of the (4, 3,)-LMVLQUE, the
following theorem can be of some interest.

—1

Theorem 3.12. Let g(9) = 1’9, 9 9, where fe M (S|X;"| — SIEO“P;:(0 |) and
let the vector B be 9y-locally non-sensitive on 9. Then the §-mLMVQE of the
Sfunction g(.). is unbiased and is identical with the 3-LMVQUIE.
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-1

—1
'=0 and Y—Xf=M Y ap-
/] -1
plied in the expression 7,(V, §) = ) A(V — XBy (5 'V.E; ' — Eo—lpio \V/

i

-1
Proof. The relationships Pi‘) V,.Mi

i=1

PRI (Y= XP) give 7Y, %)= Y 4 V(MyE,My)* V(My E,My)" V.
i=1

As the vector 4 for the $-mLMVQE is a solution of the equation

-1
SIE, ' — SIEO"Pi" [)A = f and the vector A for the $-LMVQUIE is a solu-
tion of the equation S|(M,; Z,M,)*| 1 = f, the assertion is obvious with respect
to Theorem 3.10.
The unbiasedness can be proved directly as well. The bias of the $-mLMVQE

: -1
is b9 = E[t(Y, )8 — FI=—20{Tr[(McEM)*V,Z5'PY X, ...,

-1 —1 -1
cny Tr(MyEMy) "V, 0P £V My ViEg'PY =0 obviously implies
b(9) = 0, I

4. Estimators of variance components in the structure with a uniform
non-sensitiveness of fon 4

In the regular linear mixed model (Y, XB, L(&) = o’l + XGX' + ZAZ),
Be #*, 8 = (07, [vech(G)], [vech(A)]')’ € 9 there exists the UBLUE of a function
h(B) = p'B, Pe Z#*, but there does not exist an unbiased and invariant estimator
of its dispersion Var[p/(X'X)™'X’'Y|6?, G, Al = Tr{pp'[c*?X'X)~' + G]}. (If
UX = QO — invariance, then E(Y'UY]o?, G, A) = o’Tr(U) + Tr(Z'UZ) #
# Tr{pp'[a*(X'X)~' + G]}.) If a replication of the experiment is possible, then
the structure of the replicated model ensures the existence of the sought estima-
tor.

Theorem 4.1. Let (Y, (1@ X)B, 1 ® (6l + XGX + ZAZ)) be a regular
replicated linear mixed model and let g(o?, G) = Tr{F[c?(X'X)"" + G]}; then
there exists the uniformly minimum variance quadratic unbiased invariant estima-
ior of the function g(.) and has the form Tr[EXOX'X) 'F(X'X)"'X’], where

n

E=[lm— DY (Y= D= V). V=(m) Y. ¥, Y= (¥, .., Vo).

i=1 i=1
Proof. As, in accordance with [2], for every unbiased estimator of the
form Y’U,, ... Y there exists an unbiased estimator of the form
(V) =YM,®U +P,@U,)Y=(m—1)Tr(EU,) +mV'U.¥,
where
(m — 1) Tr(U)) + Tr(U,) = Tr[FCUX) '],
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(m—DXUX+XUX=F,
m-NZUZ+2U,2=0

(unbiasedness) and U,X = O (invariance), whose dispersion is not larger than
that of Y’U,,, ... Y, we confine ourselves to the latter form.

The matrices U, and U, satisfying these conditions can be obtained in the
following way: U, =U{&(m — DX'U X =F<U, = XXX)'"FX'X)"'X"/
[(m —1) + W, — PBLW, P W, = W1, U,=U&¢U,X=0<«U,=P,W,P,
W,=Wjand (m — 1)Z’'W,Z + ZW,Z = O, (im — 1) Te(W,P,) + Tr(W,P;) =
=0.

The variance of the estimator is

Var[r,(V)|$] = (m — 1) Tr(U, LU, X)) + Tr(U, EU, E) = (m — 1).
{Log/m — DI Tr[FX'X) ' FOXX) 1] + {o7/(m — 1)) Tr[(X'X)'FG,F] +
+ Tr(W}) — Tr(PyW,P,W,) + Tr(W, XG X' W,) — Tr(P,W,XGX'W,) +
+ Tr(W,Z A Z'W)) + [og/(m — 1] Te[F(X'X) 'FG,] + Tr(XG,X'W7) —

— Tr(W, Py W, XG X") + T“r(W,Z AZ' W XG X') + Tr(W3Z A,Z') +

+ Tr(W, XG X' W, ZAZ) + Tr(ZAZW,ZAZ')} + of Tr(MyxW,M,W,) +
+ o3 Te(MyW,Z A Z'W,) + o5 Tr(M,W,M,W,Z A Z") +
+ Tr(MW,Z A Z'W,Z A Z).

The Lagrange method of indefinite multipliers is used in order to find out the
minimum of this dispersion under the conditions (m — 1)Z'W,Z + Z’W,Z = O
and (m — 1) Te(W,P,) + Tr(W,P,) = 0;

D(W,, W,) = Var[r,(V)| o7, Ag] — 2A[(m — D) Tr(W,P;) + Tr(W,P,)] —
= 2Tr{y’Z'[(m — HW, + W,] Z},
where A (a scalar) and y’ (a matrix) are indefinite multipliers.

OD(W,, W,))/dW, = O = (m — 1) (4W, — 4P, W, P + 2XG X'W, + 2W, XG X' —
— 2XG X' W, Py — 2P,W, XG X' + 2Z A Z'W, + 2W,Z A, 2" + 2W, XG X' +
+ 2XG X' W, — 2PxW XG X' — 2XG X' W, Py + 4Z A Z’W, XG X" +
+AXGX'W,ZA\Z" + 2W ZAZ" + 2ZAZ'W, +4Z A Z'W,ZA2Z") —

= 2Am — 1)2P; — 2[(m — ) 2Zy'2Z" + (m — 1) ZyZ'] = O;

a¢(W], Wz)/aWZ = 0 340’3MxW2Mx + 20_022 Aoz/WzMx + 20’(‘}MXWZZ Aoz, +
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+ 20 MWL Z A Z' My + 202 My Z A, Z' W, My + 2Z A, 2’ W,Z A,Z' M, +
+ 2MyZ A Z’W,ZA,Z' — 4AP, — 2272’ — 22yZ’ = O.

AsW,=0,W,=0,A= —1/2and y + y’' = (2'Z)"' satisfy the given equations
we see that U, =XXX)"'"FX'X)"'X/m—1), U,=0 and thus
7,(Y) = (m — D Tr[EX(X'X)~"F(X’X)~'X’/(m — 1)]. This estimator does not
depend on 9, therefore it is uniform.
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OCOBBIE CTPYKTYPbl CMEIIAHHbIX JIMHEVHBIX MOJEJEN
C MEIMAKOIMMHU [MTAPAMETPAMM

Lubomir Kubadek
Pesome

PaccMOTpeHb! CMeEIaHHbIe JIMHEHHbIE MOAEIM C MCLIAIOIMMH NapaMeTpaMu B CpEJHEM
3HaYeHuu HabronaemMoro Bektopa. Ocobbie CTPYKTYPBI MO3BOJISIOT HCKIIOYATD MEIAIOIIME Map-
aMeTpbl €3 3aTpaThi KHGOPMAIUH O TOJIE3HBIX MAPAMETPAX U O BAPHALMOHHBIX KOMIIOHEHTAX.
DTH CTPYKTYpbl TNOPOXAEHBI JIHOO KAKUMM-TO MOBTOPEHHSIMH, JHOO Tak Ha3bIBaeMOi
HEYYBCTBUTEILHOCTRLIO TIOJIE3HBIX NApaMETPOB HAa BapHAlMOHHBIE napaMeTpel. B cTpykType ¢
PaBHOMEPHOH HEYYBCTBUTEILHOCTBIO HalijleHA OllEHKAa BApPUALMOHHBIX KOMIIOHEHTOB.
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