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ABSTRACT. The aim of this paper is to present current results concerning the
Lefschetz Fixed Point Theorem for metric spaces. Some new results are included.
In particular, an abstract version and also the Lefschetz Fixed Point Theorem for
condensing mappings are proved.

0. Introduction

In 1923 S. Lefschetz formulated the famous fixed point theorem so which is
now known as the Lefschetz fixed point theorem. Later, in 1928 H. Hopf gave a
new proof of the Lefschetz fixed point theorem for self-mappings of polyhedra.
Let us remark that Lefschetz formulated his theorem for compact manifolds.
In 1967, A. Granas extended the Lefschetz fixed point theorem to the case of
absolute neighbourhood retracts. The proof of the theorem was based on the fact
that all compact absolute neighbourhood retracts are homotopically equivalent
with polyhedra. Then the case of noncompact absolute neighbourhood retracts
was reduced to the compact case by using the generalized trace theory introduced
by J. Leray. We recommend [4], [10], [14] for details.

In the present paper we would like to present current results concerning this
theorem for metric spaces. We shall prove an abstract version of the Lefschetz
fixed point theorem (comp. Theorem (2.12)) from which we shall deduce not only
well-known results but also some new results mainly connected with condensing
and k-set contraction mappings.

Morcover, relative versions of the Lefschetz fixed point theorem are discussed.

2000 Mathematics Subject Classification: Primary 556M20, 47H11, 47TH10, 54H25.
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LECH GORNIEWICZ
1. Topological and homological preliminaries

We shall restrict our considerations to metric spaces only. Following
K. Borsuk [1] we define:

(1.1) DEFINITION. A space X is called an absolute neighbourhood retract
(ANR) provided for every space Y and for every homeomorphism h: X — Y
such that h(XY) is a closed subset of Y there exists an open neighbourhood U
of h(X) in Y and a continuous map (called a retraction map) r: U — h(X)
such that r(u) = u for every u € h(X), i.e. h(X) is a retract of U; X is called
an absolute retract (X € AR) provided the above holds true for U = Y, i.c.
h(X) is a retract of Y.

In other words X € ANR (.Y € AR) if and only if X has the neighbourhood
extension (extension) property (comp. (2], [7]).
To understand better how large the class of ANR-s (AR-s) is we recall:

(1.2) PROPOSITION. ([2], [7])

(1.2.1) X € ANR if and only if there exists a normed space E and an opcn
subset U of E such that X is homeomorphic to a retract of U;

(1.2.2) X € AR if and only if there exists a normed space E and a convcr
subset W of E such that X is homeomorphic to a retract of V.

In particular, any open subset in a normed space or any finite polyhedron is
an ANR-space; respectively any convex subset of an arbitrary normed space is
an AR-space. Note that any AR-space is contractible and any ANR-space is
locally countractible.

We shall consider the category of pairs of metric spaces and continuous mp
pings. By a pair of spaces (X, .X;) we understand a pair consisting of a metiic
space X and one of its subsets X . A pair of the form (X, ) will be identified
with the space X. By amap f: (X, X,) = (},Y;) we understand a continuous
map f: X — Y such that f(.X) C ;. In what follows having a map of pai s

f: (X7‘Y0) - (),7)'0)
we shall denote by
fyi X =Y and fyv,t Xo = Y,
the respective mappings induced by f.

Let H be the Cech homology functor with compact carriers ([8] or [9]) and
cocfficients in the field of 1ational numbcrs Q from the categery of all pairs of
spaces and all maps between such pairs, to the catcgory of graded voctor spe «
over @Q and linear maps of degree zcro. Thu

H(X,X,) = {H, (X, Y}
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is a graded vector space, H (X,X,) being the g-dimensional Cech homology
with compact carriers of X. For a map f: (X,X,) = (Y,Y,), H(f) is the
induced linear map f, = {f*q}, where f, : Hq(X, X,) = Hq(Y, Y,).

A non-empty space X is called acyclic provided:

(i) H(X)=0forall ¢ >1,

(i) H,(X)=Q.

Let u: E — E be an endomorphism of an arbitrary vector space. Let us
put N(u) = {z € E: u™(z) =0 for some n}, where u” is nth iterate of u
and E = ElN(u)‘ Since u(N(u) C N(u)), we have the induced endomorphism

u: E - E. We call u admissible provided dim E < co.
Let u = {u_}: E — E be an endomorphism of degree zero of a graded vector
spacc E = {E,}. We call u a Leray endomorphism if

(i) all u, are admissible,

(ii) almost all Eq are trivial.
For such u, we define the (generalized) Lefschetz number A(u) by putting

Aw) =) (1) tr(@,),
q
where tr(a,) is the ordinary trace of @, (comp. [9]). The following important
property of the Leray endomorphism is a consequence of the well-known formula
tr(u o v) = tr(vowu) for the ordinary trace.

(1.3) PROPOSITION. Assume that, in the category of graded vector spaces, the
following diagram commutes

E' v E"

N

E' —— E"

Then, if v’ or u" is a Leray endomorphism, so is the other; and, in that case,
A(u') = A(u").
An endomorphism u: E — E of a graded vector space E is called weakly

nilpotent if for every ¢ > 0 and for every z € E,, there exists an integer n such
that u:;(:c) = 0. Since, for a weakly nilpotent endomorphism u: E — FE, we
have N(u) = E, so:
(1.4) PROPOSITION. [fu: E — E is a weakly-nilpotent endomorphism, then
A(u) =0.

Let f:(X,X,) = (X,X,) beamap, f,: H(X,X,) - HX, X,) is a Leray
endomorphism. For such f, we define the Lefschetz number A(f) of f by putting
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A(f) = A(f,). Clearly, if f and g are homotopic, f ~ g, then f is a Lefschetz
map if and only if ¢ is a Lefschetz map; and, in this case, A(f) = A(g).

Let us observe that if X is an acyclic space or, in particular, contractible,
then for every f: X — X the endomorphism f,: H(X) — H(X) is a Leray
endomorphism and A(f,) =1.

Consequently, if X € AR or X is a convex subset in a normed space, then
for every continuous map f: X — X the Lefschetz number A(f) = A(f,) =1.
We have the following lemma (see: [3], [6], [10]).

(1.5) LEMMA. Let f: (X,X;) = (X,X,) be a map of pairs. If two of en-
domorphisms f,: H(X,X,) = H(X,X,), (fy).: HX) = H(X), (fy,).:

.

H(X,) - H(X,) are Leray endomorphisms, then so is the third; in that case:

A(f) = M(fx),) = A(fx,).)

or equivalently:

A(f) = A(f‘\’) - A(f_\'o)-

2. Lefschetz mappings

It is convenient to introduce the following notion.

(2.1) DEFINITION. A continuous map f: X — X is called a Lefschetz
map provided the generalized Lefschetz number A(f) of f is well defined and
A(f) # 0 implies that the set Fix(f) = {z € X : f(z) = x} is nonempty.

In 1969, A. Granas [10], (see also [11]) proved:

(2.2) THEOREM. Let X € ANR and let f: X — X be a continuous and
compact map (i.e., f(X) is a compact set), then f is a Lefschetz map.

To formulate the result proved in 1977 by R. Nussbaum [14] we need
some notations.

We shall need the following Kuratowski or Hausdorff (see [7] or [9]) mecasuie
of noncompactness. Let X be a complete metric space and A be a bounded
subset of X. We let:

¥(A) = inf{r > 0: there exists a finite covering of A

by subsets of diameter at most 7'}
or
7(A) = inf{r > 0: there exists a finite covering of A

by open balls with radius r} .
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We have the following properties (see [7] or [9]):

(2.3) 0 <v(A) <d(A), where §(A) is the diameter of A;

(24) 7(AU B) = max{(4),7(B)};

(2.5) ¥(V.(A)) < v(A) +2¢, where N, (A) = {z € E: d(z,A) <e};

(2.6) v(A) =0 if and only if A is relatively compact;

27 if K,DK,>---DK,D...,where K, is closed nonempty for any n

[o,<]
and nli’ngo v(K,) =0, then K = ﬂl K,, is compact and nonempty.
For a map f: X — X, a compact subset A C X is called an attractor

provided for any open neighbourhood U of A in X and for every z € X there
exists n = n, such that f"(z) € U. In what follows we shall denote family of
mappings with compact attractor by CA.

Note that, if f: X — X has a compact attractor A, then Fix(f) C A.

A continuous mapping f: X — X is called condensing (k-set contraction)
map provided:

(2.8) if y(4) # 0, then 7(f(4)) < ¥(4), (v(f(4)) < k- ~(A4) for some
k € [0,1)), where we have assumed that X is a complete metric space
and ACX.

Of course, any compact map is a k-set contraction map and any k-set con-
traction map is a condensing map.

(2.9) THEOREM. ([14], [5], [7]) Let U be an open subset of a Banach space E .
Assume further that f: U — U is a condensing map which has a compact at-
tractor, then f is a Lefschetz map.

(2.10) DEFINITION. Let f: X = X be a continuous map and X, a subset
of X. We shall say that X, absorbs compact sets provided for any compact set
K C X there exists a natural number n =nj such that f*(K) C X.

It is easy to prove the following;:

(2.11) PROPOSITION. Assume that f: X = X is a continuous map and X,
is an open subset of X which absorbs points. Then X, absorbs compact sets.

For the proof see: [5], [7], [9].

Now we are able to prove the following important result:
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(2.12) THEOREM. (Abstract version of the Lefschetz fixed point theorem) Let
[ (X, Xy) = (X, X,) be a continuous map of pairs. Assume that fy : Xy — X

is a Lefschetz map and X, absorbs compact sets. Then fy: X — X is a Lef-
schetz map.

Proof. First, we shall observe that f,: H(X, X)) - H(X,X,) is weakly
nilpotent and hence A(f) = A(f,) =0.

We let

ir Xo - X, i(z) =z forevery re X,

H(X) = HX)/N((fy).)

H(X,) = H(Xo)/N((fx,).)

i, HX)) = HX), 1,(d)= [i,(a)] for every [a] € H(X,).

Since the considered functor H has compact carriers and f absorbs compact
sets we deduce that i, is an isomorphism. Consequently from the exactness of

the homology sequence for the pair (X, X)) we infer that H (X,X,) =0. Thus
A(f) = A(f,) = 0 and from (1.5) we obtain:

A(f) = A(f,) =0. (1)

By assumption, fy : X, — X, is a Lefschetz map. Thercfore, in view of

Lemma (1.5), we deduce that the Lefschetz number A(fy) of fy is well de-
fined and

A(f):():/\(f_\’) _A(fl\'o)- (2)

Now, if we assume that A(f,) # 0, then A(f.\'n) # 0 and hence Fix(f‘\-u) #0.
The proof is completed since Fix( f‘\»o) C Fix(fy). O

In the next section we shall show several applications of Theorem (2.12).

3. Consequences of Theorem (2.12)

In what follows all mappings are assumed to be continuous.
Following [6] we recall the notion of compact absorbing contractions.

(3.1) DEFINITION. A mapping f: X — X is called compact absorbing con-
tractions (CAC) provided the following conditions are satisfied:

(3.1.1) there exists an open subset U of X such that f(U) C U and f(U) is
compact,

(3.1.2) the set U given in (3.1.1) absorbs points.
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First, we are going to explain how large the class of CAC-mappings is. Evi-
dently, any compact map f: X — X is a CAC-mapping. In fact, the compact
set f(X) is an attractor of f and we can take X as an open neighbourhood U
of f(X). More generally, any eventually compact map, i.e., the map f: X —» X
such that there exists n for which f”(X) is compact, has a compact attractor
A to be equal f7(X). It is also easy to see that any CAC-map has a compact
attractor A, namely f(U) (see (3.1.1)).

We shall say that a map f: X — X is asymptotically compact provided for
each z € X the orbit {:r,f(m),...,f"(a:),...} is relatively compact and the

core: 00
c, =) X
is nonempty compact. n=1
As is observed in [6; Proposition (6.4)] any asymptotically compact map
f: X — X has a compact attractor A to be equal Cs.
If follows from the above that:

3.2) PROPOSITION.

(
(3.2.1) Any compact map has a compact attractor,

(3.2.2) any eventually compact map has a compact attractor,
(3.2.3) any asymptotically compact map has a compact attractor.

So the class of mappings with compact attractors is quite large.

To explain the connection between mappings with compact attractors and
CAC-mappings we need one more notion.

A map f: X — X is called locally compact (LC-map) provided for every
x € X there exists an open neighbourhood U, of z in X such that f(U,) is
compact.

We have:

(3.3) PROPOSITION. ([5], [6], [7]) Any locally compact map with compact at-
tractor is a CAC -mapping.

All obtained above information we can illustrate in the following:

CA+LC|C CAC|c|CA].

We recommend [15; Theorems 4.7, 4.8] for further information about considered
classes of mappings.
Let us mention the first application of (2.12):

(3.4) THEOREM. Let X € ANR and f: X - X be a CAC-map. Then f is
a Lefschetz map.

Proof. Let f: X - X be a CAC-map, where X € ANR. We choose
an open subset U C X according to the Definition (3.1). Then f(U) C U
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and f(U) c U is compact. Therefore, in view of (2.2), the map f: U->U,

f(z) = f(z) is a Lefschetz map. Now our claim follows from (3.1), (3.1.2) and
(2.12). O

(3.5) COROLLARY. If X € AR and f: X — X is a CAC-map, then
Fix(f) # 0.

(3.6) OPEN PROBLEM. Is (3.3) true for every CA -mapping f ?

Now, we are going to discuss the Lefschetz fixed point theorem for condensing
mappings.
We prove the following:

(3.7) PROPOSITION. Let (X,d) be a complete bounded space and let f:
X — X be a condensing map. Then f is an asymptotically compact map, in
particular f has a compact attractor.

Proof. According to [17; Proposition 2] we have:
Jim y(fr(X)) =0.

It implies, in view of (2.7), that the core

® D e ————
Cr =11
is compact and nonempty. n=
Moreover, let O(z) = {z, f(z), f?(z),...} be an orbit of z € X with respect

to f. Then we have: O(z) = {z}U f(O(z)) and consequently, if we assume that
7(0(z)) > 0, then we get:

7(0(2)) =(f(0(2))) <1(0(x)),

a contradiction. So f is asymptotically compact and therefore it has a compact
attractor. O

(3.8) COROLLARY. Let U be an open subset of a Banach space E and let
f:U = U be a condensing map. If there ezists a closed bounded subset B of E
such that f(U) C B C U, then f has a compact attractor.

In fact, by applying (3.7) to f: B - B, f(x) = f(x) for every € B, we
get (3.8).
Now, from (2.9) and (3.8) we get:

(3.9) COROLLARY. Let U and f: U — U be the same as in (3.8). Then f is
a Lefschetz map.

We need the following definition:
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(3.10) DEFINITION. A complete, bounded metric space (X,d) is called a
special ANR (written X € ANR,) provided there exists an open U of a Banach
space E and two continuous mappings r: U — X and s: X — U such that:
(3.10.1) ros=idy,
(3.10.2) r and s are nonexpansive, i.e., y(r(B)) < v(B) and v(s(4)) < y(4)
for every bounded sets A and B.

We are able to prove the following version of the Lefschetz fixed point theo-
rem:

(3.11) THEOREM. Let X € ANR, and let f: X = X be a condensing map.
Then f is a Lefschetz map.

Proof. From (3.7) we deduce that f has a compact attractor. Let U,
r: U — X and s: X — U are according to Definition (3.10).

We define the map f: U — U by putting:
f~= sofor.
In, view of (3.10.2), we deduce that f is a condensing map. Observe that if A

is a compact attractor of f, then s(A) is a compact attractor f (see: (3.10.1)).

Consequently f : U — U is a condensing with compact attractor map. From the
other hand we have the following commutative diagram:

U<"—X

"l

U('_s—xY

Thus A(f) = A(f) and our theorem follows from (2.9). a

(3.12) LEMMA. Let f: X — X be a map. Assume further that A is a compact
attractor for f and V is an open neighbourhood A in X . Then there exists an
open neighbourhood U of A in X such that

(3.12.1) f(U)cCU,

(3122) ACUCV.

Proof.Let U = () f~"(V). Then f(U) C U and A C U. We only

n=0
need to show that U is an open subset of X. On the contrary, suppose that

there exists a sequence {z,,} C X \U such that lim =, =z and = € U. Let
n—o0

K = {r,} U{z}. Then K is a compact set and consequently there exists m

such that f{(K) Cc V for all ¢ > m. Hence z, € n f74V).But z, ¢ U

=m
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m

so z, ¢ ﬂ f74V) and from the continuity of f follows that z ¢ ﬂ 71 (V)

m
which contradlcts the fact that z € U. O
We prove:

(3.13) THEOREM. Assume that X is nonewp(msive retract of some open subset
W in a Banach space E. Assume further that f: X — X is CA-mapping with
a compact attractor A. If there exists an open nezghbourhood VofAinX suh
that the restriction f]V: V= X of f to V is a condensing map, then f is a
Lefschetz map.

Proof. For the proof consider the following diagram:

X—>Ww

fl for liofor

.X—'T*W

in which r: W — X is the nonexpansive retraction and i: X — W is the
inclusion map. Let us put g==io for.

From the commutativity of the above diagram it follows that f is a Lefschetz
map if and only if g is a Lefschetz map. Observe also that A is an attractor
for g and moreover, g|T_1 (V): 7~Y(V) — W is a condensing map. By applying
Lemma (3.12) we get an open subset U of W such that g: U — U, g(u) = g(u)
is a condensing map with compact attractor A. Consequently it follows from
(2.9) that g is a Lefschetz map.

Now, in view of (2.12), we deduce that g is a Lefschetz map and the proof is
completed. O

(3.14) Remark. Observe that any k-set contraction map is condensing, <o
Theorems (3.11) and (3.13) remain true for k-set contraction mappings.

4. The relative version

From the point of view of applications in dynamical systems the relative
version of the Lefschetz fixed point theorem is important (see: [1], [3], [10]. [16] .
In the relative version we get not only the existence of fixed points but also so ne
information of their localization. For the proof of the relative ver ion instead of
the Lefschetz number we need the fised point index for the « ppropii tc e ot
mappings.
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We shall follow the ideas contained in [1]. First we would like to remark the
following two facts:

(4.1) the fixed point index is well defined for CAC-mappings on ANR-s
(sec [1]),

(4.2) the fixed point index is well defined for condensing CA-mappings on open
subset of Banach spaces (see [14] or [7]).

We have the following thrce versions of the relative Lefschetz fixed theorem:

(4.3) THEOREM. ([1]) Let X, C X and X,X, € ANR. Assume that f:
(X, Xy) = (X, X,) is a map such that fy and f are CAC-mappings. Then
the Lefschetz number A(f) of f is well defined and A(f) # 0 implies that

Fix(f) N (X\ X, ) #0.

(4.4) THEOREM. Let W be an open subset of a Banach space E and W, be
an open subset of W and let f: (W, W,)) = (W, W,) be a mapping such that:

(44.1) f,, and fw, are condensing mappings with compact attractors.
Then the Lefschetz number A(f) of f is well defined and A(f) # 0 implies that

Fix(f) 0 (W\;) £0.
Similarly, for k-set contraction mappings we get:

(4.5) THEOREM. Let W and W, be the same as in (4.4) and f:
(W, W,) = (W, W,)) be a mapping such that:

(4.5.1) fy,, and fw, are k-set contractions with relatively compact orbits.
Then the Lefschetz number A(f) of f is well defined and A(f) # 0 implies that

Fix(f) N (W\W,) #0.

Note that the proof of (4.4) and (4.5) is strictly analogous to the proof of
(4.3) which is presented in full generality in [1].

Finally, let us add some concluding remarks. We would like to point out
that the following topics concerning the Lefschetz fixed point theorem are still
possible:

(i) non metric case, i.e., for retracts of open sets in admissible spaces in the
sense of Klee (comp. [6] and also [18]),
(i) periodic fixed point theory (comp. [1], [3]),
(iii) the multivalued case (comp. [8], [9], [7], [6])-
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