
Mathematica Slovaca

Lech Górniewicz
On the Lefschetz fixed point theorem

Mathematica Slovaca, Vol. 52 (2002), No. 2, 221--233

Persistent URL: http://dml.cz/dmlcz/131012

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 2002

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/131012
http://project.dml.cz


K/tathematica 
Slovaca 

©2002 
.-.. -...* r««««x ... « -..-... />.•.-» Mathematical Institute 

Math. Slovaca, 52 (2002), No. 2, 221-233 siovak Academy oir Sciences 

Dedicated to Valter Seda 
on the occasion of his 70th birthday 

ON THE LEFSCHETZ FIXED POINT THEOREM 

L E C H GORNIEWICZ 

(Communicated by Milan Medved') 

ABSTRACT. The aim of this paper is to present current results concerning the 
Lefschetz Fixed Point Theorem for metric spaces. Some new results are included. 
In particular, an abstract version and also the Lefschetz Fixed Point Theorem for 
condensing mappings are proved. 

0. Introduction 

In 1923 S. Lefschetz formulated the famous fixed point theorem so which is 
now known as the Lefschetz fixed point theorem. Later, in 1928 H. Hopf gave a 
new proof of the Lefschetz fixed point theorem for self-mappings of polyhedra. 
Let us remark that Lefschetz formulated his theorem for compact manifolds. 
In 1967, A. Granas extended the Lefschetz fixed point theorem to the case of 
absolute neighbourhood retracts. The proof of the theorem was based on the fact 
that all compact absolute neighbourhood retracts are homotopically equivalent 
with polyhedra. Then the case of noncompact absolute neighbourhood retracts 
was reduced to the compact case by using the generalized trace theory introduced 
by J. Leray. We recommend [4], [10], [14] for details. 

In the present paper we would like to present current results concerning this 
theorem for metric spaces. We shall prove an abstract version of the Lefschetz 
fixed point theorem (comp. Theorem (2.12)) from which we shall deduce not only 
well-known results but also some new results mainly connected with condensing 
and k-set contraction mappings. 

Moreover, relative versions of the Lefschetz fixed point theorem are discussed. 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Primary 55M20, 47H11, 47H10, 54H25. 
K e y w o r d s : Lefschetz number, fixed point, CAC-map, condensing map, ANR-space. 
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1. Topological and homological preliminaries 

We shall restrict our considerations to metric spaces only. Following 
K. B o r s u k [1] we define: 

(1.1) DEFINITION. A space A" is called an absolute neighbourhood retract 
(ANR) provided for every space Y and for every homeomorphism h: A" —» Y 
such that h{X) is a closed subset of Y there exists an open neighbourhood U 
of h{X) in Y and a continuous map (called a retraction map) r: U -> h{X) 
such that r{u) = u for every u G h{X), i.e. h{X) is a retract of U; X is called 
an absolute retract {X G AR) provided the above holds true for U = Y, i.e. 
h{X) is a retract of Y. 

In other words X G ANR {X G AR) if and only if Ar has the neighbourhood 
extension (extension) property (comp. [2], [7]). 

To understand better how large the class of ANR-s (AR-s) is we recall: 

(1.2) PROPOSITION. ([2], [7]) 

(1.2.1) X G ANR if and only if there exists a normed space E and an open 
subset U of E such that X is homeomorphic to a retract of U; 

(1.2.2) X G AR if and only if there exists a normed space E and a convex 
subset W of E such that X is homeomorphic to a retract of W. 

In particular, any open subset in a normed space or any finite polyhedron is 
an ANR-space; respectively any convex subset of an arbitrary normed space is 
an AR-space. Note that any AR-space is contractible and any ANR-space is 
locally contractible. 

We shall consider the category of pairs of metric spaces and continuous m ip 
pings. By a pair of spaces {X,X0) we understand a pair consisting of a metiic 
space X and one of its subsets X0. A pair of the form {X, 0) will be identified 
with the space A". By a map / : (Ar,X0) -> (F, 10) we understand a continuous 
map / : X -» Y such that f{X0) C YQ. In what follows having a map of pai s 

f:(X,XQ)^(Y,YQ) 

we shall denote by 

/ v : X -> Y and / V Q : XQ -> YQ 

the respective mappings induced by / . 
Let H be the Cech homology functor with compact earners ([8] or [9]) and 

coefficients in the field of lational numbers Q fiom the categc ry of all pairs oi 
spaces and all maps between such paiis, to the catcgoiy of graded \cctoi sp<- ( 
over Q and lineai maps of degree zero. Thu 

H(X,X0)-{Hq(X,\0)} 
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is a graded vector space, H (X,X0) being the ^-dimensional Cech homology 
with compact carriers of X. For a map / : (X,X0) -> (Y,Y0), H(f) is the 
induced linear map /„ = { / ^ } , where / ^ : Hq(X,X0) -> Hq(Y,Y0). 

A non-empty space X is called acyclic provided: 

(i) H (X) = 0 for all q> 1, 
(ii) H0(X) « Q . 

Let u: E -) E be an endomorphism of an arbitrary vector space. Let us 
put N(u) = {x G E : un(x) = 0 for some n } , where un is n t h iterate of u 
and E = E\pjf \. Since u(N(u) C N(u)), we have the induced endomorphism 

u: E -> E. We call u admissible provided d imE < oo. 
Let u -= {i* } : E —> J5 be an endomorphism of degree zero of a graded vector 

space E = {E } . We call u a Leray endomorphism if 

(i) all u are admissible, 

(ii) almost all E are trivial. 

For such u, we define the (generalized) Lefschetz number A(u) by putting 

A(u) = £(-l)tr(u,) , 

where tr(S ) is the ordinary trace of u (comp. [9]). The following important 
property of the Leray endomorphism is a consequence of the well-known formula 
tx(u o v) = tx(v o u) for the ordinary trace. 

(1.3) PROPOSITION. Assume that, in the category of graded vector spaces, the 
following diagram commutes 

E' — ^ - E" 

E ' - ^ E " 

Then, if u' or u" is a Leray endomorphism, so is the other; and, in that case, 
A(u') = A(u"). 

An endomorphism u: E —•> E of a graded vector space E is called weakly 
nilpotent if for every q > 0 and for every x G Eq, there exists an integer n such 
that un(x) = 0. Since, for a weakly nilpotent endomorphism u: E -> E, we 

have N(u) = E, so: 

(1.4) PROPOSITION. If u: E -> E is a weakly-nilpotent endomorphism, then 
A(u) - 0 . 

Let / : (A",-Y0) -r (X,X0) be a map, / + : tf(A", A'0) -» H(X,X0) is a Leray 
endomorphism. For such / , we define the Lefschetz number A(/ ) of / by putting 
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A(/) = A ( / J . Clearly, if / and g are homotopic, / ~ g, then / is a Lefschetz 
map if and only if g is a Lefschetz map; and, in this case, A(/) = A(g). 

Let us observe that if X is an acyclic space or, in particular, contractible, 
then for every f:X —> X the endomorphism / # : H(X) —> H(X) is a Leray 
endomorphism and A ( / J = 1. 

Consequently, if X G AR or X is a convex subset in a normed space, then 

for every continuous map / : X -> Ar the Lefschetz number A(/) = A ( / J = 1. 

We have the following lemma (see: [3], [6], [10]). 

(1.5) LEMMA. Let f: (X, Ar

0) —> (Ar, Ar

0) be a map of pairs. If two of en-
domorphisms fy H(X,XQ) -> H(X,XQ), (fx)t: H(X) -> H(X), (fXo)t: 
H(XQ) -> H(A"0) are Leray endomorphisms, then so is the third; in that case: 

or equivalently: 

A(Д) = A ( ( / д . ) . ) - A ( ( / л . o ) . ) 

A(/) = A(/X)-A(/ЛJ. 

2. Lefschetz mappings 

It is convenient to introduce the following notion. 

(2.1) DEFINITION. A continuous map / : I -> I is called a Lefschetz 
map provided the generalized Lefschetz number A(/) of / is well defined and 
A(/) ^ 0 implies that the set Fix(/) = [x G X : f(x) = x} is nonempty. 

In 1969, A. G r a n a s [10], (see also [11]) proved: 

(2.2) THEOREM. Let X G ANR and let f:X -> X be a continuous and 
compact map (i.e., f(X) is a compact set), then f is a Lefschetz map. 

To formulate the result proved in 1977 by R. N u s s b a u m [14] we need 
some notations. 

We shall need the following Kuratowski or Hausdorff (see [7] or [9]) measuie 
of noncompactness. Let AT be a complete metric space and A be a bounded 
subset of X. We let: 

j(A) = inf {r > 0 : there exists a finite covering of A 

by subsets of diameter at most r } 
or 

7(A) = inf [r > 0 : there exists a finite covering of A 

by open balls with radius r } . 
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We have the following properties (see [7] or [9]): 

(2.3) 0 < *y(A) < 8(A), where 6(A) is the diameter of A; 
(2.4) 7(-4uB) = max{7(-4),7(-5)}; 
(2.5) i(Ne(A)) < 7(-4) + 2s, where N£(A) = {x G E : d(a;, A) < e}; 
(2.6) 7(.4) = 0 if and only if .4 is relatively compact; 
(2.7) if K1 D K2 D • • • D Kn D ... , where Kn is closed nonempty for any n 

oo 

and lim j(Kn) = 0, then K^ = f] Kn is compact and nonempty. 

For a map / : X —> X , a compact subset A C X is called an attractor 
provided for any open neighbourhood U of A in X and for every x € X there 
exists n = nx such that / n (x) G CI. In what follows we shall denote family of 
mappings with compact attractor by CA. 

Note that, if / : X -> X has a compact attractor A, then Fix(/) C A. 

A continuous mapping / : X -» X is called condensing (k-set contraction) 
map provided: 

(2.8) if 7(A) T-: 0, then -f(f(A)) < 7(A), (7v/(-4)) < k • 7(A) for some 
k G [0,1)), where we have assumed that X is a complete metric space 
and A C X. 

Of course, any compact map is a A>set contraction map and any fc-set con­
traction map is a condensing map. 

(2.9) THEOREM. ([14], [5], [7]) Let U be an open subset of a Banach space E. 
Assume further that f:U->U is a condensing map which has a compact at-
tractor, then f is a Lefschetz map. 

(2.10) DEFINITION. Let / : X -> X be a continuous map and X0 a subset 
of X. We shall say that X0 absorbs compact sets provided for any compact set 
K C X there exists a natural number n = nK such that fn(K) C X0. 

It is easy to prove the following: 

(2.11) PROPOSITION. Assume that f: X -> X is a continuous map and X0 

is an open subset of X which absorbs points. Then X0 absorbs compact sets. 

For the proof see: [5], [7], [9]. 

Now we are able to prove the following important result: 
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(2.12) THEOREM. (Abstract version of the Lefschetz fixed point theorem) Let 
f: (A", Ar

0) —•> (A, A"0) be a continuous map of pairs. Assume that fx : A"0 -» A"0 

is a Lefschetz map and X0 absorbs compact sets. Then / v : X -> X is a Lef­
schetz map. 

P r o o f . First, we shall observe that / + : H(X,X0) -> H(X,X0) is weakly 
nilpotent and hence A(/) = A ( / J = 0. 

We let 

i: Ar
0 -> X , i(x) = x for every x G A"0 , 

H(X) = H(X)/N((fx),), 

H(X,) = H(X,)/N((fXo\) , 

i . : H(XQ) -» J J ( X ) , 7, ([a]) = [ . » ] for every [a] € H(.Y0). 

Since the considered Junctor H has compact carriers and / absorbs compact 
sets we deduce that i^ is an isomorphism. Consequently from the exactness of 
the homology sequence for the pair (X,X0) we infer that H(X,X0) = 0. Thus 
A(/) = A ( / J = 0 and from (1.5) we obtain: 

M / ) = A ( / J = 0. (1) 

By assumption, / v : A"0 —> X0 is a Lefschetz map. Therefore, in view of 
Lemma (1.5), we deduce that the Lefschetz number A ( / v ) of / v is well de­
fined and 

A(/) = 0 = A ( / A . ) - A ( / A . o ) . (2) 

Now, if we assume that A ( / v ) ^ 0, then A ( / V J ^ 0 and hence F i x ( / v J / 0. 
The proof is completed since F i x ( / V ) C F i x ( / V ) . • 

In the next section we shall show several applications of Theorem (2.12). 

3. Consequences of Theorem (2.12) 

In what follows all mappings are assumed to be continuous. 
Following [6] we recall the notion of compact absorbing contractions. 

(3.1) DEFINITION. A mapping / : X -> X is called compact absorbing con­
tractions (CAC) provided the following conditions are satisfied: 

(3.LI) there exists an open subset U of X such that f(U) C U and f(U) is 
compact, 

(3.1.2) the set U given in (3.LI) absorbs points. 
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First, we are going to explain how large the class of CAC-mappings is. Evi-
dently, any compact map / : X —> A" is a CAC-mapping. In fact, the compact 
set /(A r) is an attractor of / and we can take X as an open neighbourhood U 
of / (A r ) . More generally, any eventually compact map, i.e., the map / : X -> X 
such that there exists n for which fn(X) is compact, has a compact attractor 
A to be equal fn(X). It is also easy to see that any CAC-map has a compact 
attractor A, namely f(U) (see (3.1.1)). 

We shall say that a map / : X -> X is asymptotically compact provided for 
each x e X the orbit {x,f(x),... , / n ( x ) , . . . } is relatively compact and the 
core: oo 

cf=f]nx) 
is nonempty compact. n=1 

As is observed in [6; Proposition (6.4)] any asymptotically compact map 
/ : X -> A" has a compact attractor A to be equal Cf. 

If follows from the above that: 

(3.2) PROPOSITION. 

(3.2.1) Any compact map has a compact attractor, 
(3.2.2) any eventually compact map has a compact attractor, 
(3.2.3) any asymptotically compact map has a compact attractor. 

So the class of mappings with compact attractors is quite large. 
To explain the connection between mappings with compact attractors and 

CAC-mappings we need one more notion. 
A map / : X —> X is called locally compact (LC-map) provided for every 

x G X there exists an open neighbourhood Ux of x in X such that f(Ux) is 
compact. 

We have: 

(3.3) PROPOSITION. ([5], [6], [7]) Any locally compact map with compact at­
tractor is a CAC -mapping. 

All obtained above information we can illustrate in the following: 

CA + LC C CAC c CA 

We recommend [15; Theorems 4.7, 4.8] for further information about considered 
classes of mappings. 

Let us mention the first application of (2.12): 

(3.4) THEOREM. Let X G ANR and f: X -> X be a CAC-map. Then f is 
a Lefschetz map. 

P r o o f . Let / : X -> X be a CAC-map, where X G ANR. We choose 
an open subset U C X according to the Definition (3.1). Then f(U) C U 
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and f(U) C U is compact. Therefore, in view of (2.2), the map / : U —» £7, 
f(x) = f(x) is a Lefschetz map. Now our claim follows from (3.1), (3.1.2) and 
(2.12). • 

(3.5) COROLLARY. If X G AR and f:X -» A" is a CAC -map, then 
F i x ( / ) ^ 0 . 

(3.6) OPEN PROBLEM. IS (3.3) true for every CA -mapping f ? 

Now, we are going to discuss the Lefschetz fixed point theorem for condensing 
mappings. 

We prove the following: 

(3.7) PROPOSITION. Let (X,d) be a complete bounded space and let / : 
X —> X be a condensing map. Then f is an asymptotically compact map, in 
particular f has a compact attractor. 

P r o o f . According to [17; Proposition 2] we have: 

lim 7 ( / " ( A ' ) ) = 0 . 
n->oo 

It implies, in view of (2.7), that the core 

oo 

c,=ri wy 
n = l 

is compact and nonempty. 
Moreover, let O(x) = {x*, f(x), / 2 ( # ) , . . . } be an orbit of x G X with respect 

to / . Then we have: 0(x) = {x}\Jf(0(x)) and consequently, if we assume that 
7(0(x) ) > 0, then we get: 

7(OW)=7( / (0(x)))<7(OW), 

a contradiction. So / is asymptotically compact and therefore it has a compact 
attractor. • 

(3.8) COROLLARY. Let U be an open subset of a Banach space E and let 
f': U —r U be a condensing map. If there exists a closed bounded subset B of E 
such that f(U) C B C U, then f has a compact attractor. 

In fact, by applying (3.7) to / : B —» J5, f(x) = f(x) for every x G B, we 
get (3.8). 

Now, from (2.9) and (3.8) we get: 

(3.9) COROLLARY. Let U and f: U -> U be the same as in (3.8). Then f is 
a Lefschetz map. 

We need the following definition: 
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(3.10) DEFINITION. A complete, bounded metric space (X, d) is called a 
special ANR (written X G A N R J provided there exists an open U of a Banach 
space E and two continuous mappings r : U -> X and s: X -> U such that: 

(3.10.1) r o s = i d x , 
(3.10.2) r and s are nonexpansive, i.e., ^(r(B)) < "y(B) and ^^(A)) < j(A) 

for every bounded sets A and B. 

We are able to prove the following version of the Lefschetz fixed point theo­
rem: 

(3.11) THEOREM. Let X G ANR5 and let f: X -> X be a condensing map. 
Then f is a Lefschetz map. 

P r o o f . From (3.7) we deduce that / has a compact attractor. Let [/, 
r : U —• X and s: X -) U are according to Definition (3.10). 

We define the map f:U-±Uby putting: 

/ = so/or. 

In, view of (3.10.2), we deduce that / is a condensing map. Observe that if A 
is a compact attractor of / , then s(A) is a compact attractor / (see: (3.10.1)). 
Consequently / : U -> U is a condensing with compact attractor map. From the 
other hand we have the following commutative diagram: 

U+^} 

„ /i°r , 
f 
' 

U^—} 

Thus A(/) = A ( / ) and our theorem follows from (2.9). • 

(3.12) LEMMA. Let f: X —» X be a map. Assume further that A is a compact 
attractor for f and V is an open neighbourhood A in X. Then there exists an 
open neighbourhood U of A in X such that 

(3.12.1) f(U)cU, 
(3.12.2) AQUCV. 

oo 

P r o o f . Let U = f] f~n(V). Then f(U) C U and A C U. We only 
71 = 0 

need to show that U is an open subset of X. On the contrary, suppose that 
there exists a sequence {xn} C X \U such that lim x = x and x G U. Let 

n—>-oo 

Iv = {xn} U {x}. Then K is a compact set and consequently there exists in 
oo 

such that f(K) C V for all i > m. Hence xn e fl f'KV). But xn £ U 
i=m 
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oo m 
so xn ^ p | f~l(V) and from the continuity of / follows that x £ f] / _ 7(V ) 

i=m i=0 
which contradicts the fact that x G U. • 

We prove: 

(3.13) THEOREM. Assume that X is nonexpansive retract of some open subset 
W in a Banach space E. Assume further that f: X -» X is CA -mapping with 
a compact attractor A. If there exists an open neighbourhood V of A in X sue h 
that the restriction f\y:V-*X of f to V is a condensing map, then f is a 
Lefschetz map. 

P r o o f . For the proof consider the following diagram: 

iofor 

in which r : W -> X is the nonexpansive retraction and i: X -> W is the 
inclusion map. Let us put g = i o / o r . 

From the commutativity of the above diagram it follows that / is a Lefschetz 
map if and only if g is a Lefschetz map. Observe also that A is an attractor 
for g and moreover, g\ _i (V): r~~l(V) —> W is a condensing map. By applying 
Lemma (3.12) we get an open subset U of W such that g: U -» U, g(u) = g(u) 
is a condensing map with compact attractor A. Consequently it follows from 
(2.9) that g is a Lefschetz map. 

Now, in view of (2.12), we deduce that a is a Lefschetz map and the proof is 
completed. • 

(3.14) Remark. Observe that any k-set contraction map is condensing, so 
Theorems (3.11) and (3.13) remain true for A;-set contraction mappings. 

4. The relative version 

From the point of view of applications in dynamical systems the relatiu 
version of the Lefschetz fixed point theorem is important (see: [1], [3], [10], [1G] . 
In the relative version we get not only the existence of fixed points but also so ne 
information of their localization. For the proof of the relative vei ion instead of 
the Lefschetz number we need the fixed point index for the < ppropii t( (L ( i 
mappings. 
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We shall follow the ideas contained in [1]. First we would like to remark the 
following two facts: 

(4.1) the fixed point index is well defined for C AC-mappings on ANR-s 
(see [1]), 

(4.2) the fixed point index is well defined for condensing CA-mappings on open 
subset of Banach spaces (see [14] or [7]). 

We have the following three versions of the relative Lefschetz fixed theorem: 

(4.3) THEOREM. ([1]) Let X0 C X and X,XQ e ANR. Assume that f: 
(X,XQ) —> (X,X0) is a map such that fx and fx are CAC -mappings. Then 
the Lefschetz number A( / ) of f is well defined and A( / ) ^ 0 implies that 

Fix(f)n(X\X0)?Q. 

(4.4) THEOREM. Let W be an open subset of a Banach space E and WQ be 
an open subset of W and let f: (TV, WQ) -» (TV, WQ) be a mapping such that: 

(4.4.1) fw and fw are condensing mappings with compact attractors. 

Then the Lefschetz number A( / ) of f is well defined and A( / ) ^ 0 implies that 

F i x ( / ) n ( T V \ J V o ) ^ 0 . 

Similarly, for k-set contraction mappings we get: 

(4.5) THEOREM. Let W and W0 be the same as in (4.4) and f: 
(IV, W0) -» (TV, TV0) be a mapping such that: 

(4.5.1) fw and fw are k-set contractions with relatively compact orbits. 

Then the Lefschetz number A( / ) of f is well defined and A( / ) ^ 0 implies that 

F i x ( / ) n ( T V \ T V o ) ^ 0 . 

Note that the proof of (4.4) and (4.5) is strictly analogous to the proof of 
(4.3) which is presented in full generality in [1]. 

Finally, let us add some concluding remarks. We would like to point out 
that the following topics concerning the Lefschetz fixed point theorem are still 
possible: 

(i) non metric case, i.e., for retracts of open sets in admissible spaces in the 
sense of Klee (comp. [6] and also [18]), 

(ii) periodic fixed point theory (comp. [1], [3]), 
(iii) the multivalued case (comp. [8], [9], [7], [6]). 
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