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(Communicated by Anatolij Dvurečenskij ) 

ABSTRACT. Compressible groups generalize the order-unit space of self-adjoint 
operators on Hilbert space, the directed additive group of self-adjoint elements of 
a unital C*-algebra, and interpolation groups with order units. In a compressible 
group with general comparability, each element g may be wri t ten canonically as 
a difference g = g+ — g~ of elements in the positive cone G + , and the absolute 
value \g\ is defined by |g | := g+ + g~ . In such a group G, we define and study 
a "pseudo-meet" g f~l h and a "pseudo-join" g U h. If G is lattice ordered, g n h 
and gUh coincide with the usual meet and join; in the general case, they re tain a 
number of properties of the latter. We also introduce and study a so-called Rickart 
projection property suggested by an analogous property in Rickart C*-algebras. 

1. Compressible groups 

In this article we continue the study of compressible groups with the general 
comparability property as initiated in [3], focusing on the consequences of the 
fact that in such a group each element g has a canonical decomposition g = 
O+ — g~ with 0 < a+,g~. Also, we shall prepare the ground for subsequent 
articles in which, among other things, it will be shown that a sort of "spectral 
theory", suggested by Example 1.2 below, is available for this class of partially 
ordered abelian groups. For the reader's convenience, we begin with a brief review 
of pertinent definitions and nomenclature. 

Let G be an additively-written partially ordered abelian group with positive 
cone G+ = {g G G : 0 < g}. If G+ generates G, i.e., if G = G+ - G + , then G 
is said to be directed. We say that G is unperforated if and only if it satisfies the 
condition that if for all g G G and every positive integer n, 0 < ng =>• 0 < g. 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 06F20; Secondary 81P10, 03G12. 
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interpolation group, effect algebra, projection, general comparability, positive and negative 
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There are various definitions of "archimedean groups" in the literature. We use 
the definition in [6; p. 20], so that G is archimedean if and only if, whenever 
g, h G G and ng < h for all positive integers n , then g < 0. 

A unital group is a directed abelian group G with a distinguished element 
u G G + , called the unit, such that the set E := {e G G : 0 < e < u}, called the 
imz£ interval, generates G + in the sense that every element in G + is a finite 
linear combination with nonnegative integer coefficients of elements of E. The 
unit interval E in the unital group G forms a so-called effect algebra under the 
restriction of + to E ([1]). Thus, elements of the unit interval in a unital group 
are referred to as effects. 

As usual, we denote the ordered field of real numbers, the ordered subfield of 
rational numbers, and the ordered ring of integers by R, Q, and Z , respectively. 
Regarded as additive abelian groups, and with 1 as the unit, each of R, Q, and 
Z is an archimedean unital group with the standard positive cones R+ = {x2 : 
x G f } , Q+ = Q n R+ , and Z+ = Z n Q+ . 

Let G be a unital group with unit u and unit interval E. A mapping 
J: G —r G is called a retraction on G if and only if it is an order-preserving group 
endomorphism such that J(u) < u and, for all e G E, e < J(u) => J(e) = e. 
If J is a retraction on G, then J is idempotent, i.e., J o J = J. A retraction J 
on G is called a compression if and only if its kernel ker(J) = J_1(0) satisfies 
the condition ker(J) n E = {e e E : e + J(u) G E) ([4]). If J is a retrac­
tion on G, then J(u) is called the focus of J. Two retractions I and J on G 
are said to be quasicomplements of each other if and only if, for all g G G + , 
1(g) = g <?==> J(g) = 0 and J(g) = g ^==> 1(g) = 0. If I and J are 
quasicomplements, they are necessarily compressions. 

A compressible group is a unital group G such that every retraction on G 
has a quasicomplementary retraction, and every retraction on G is uniquely 
determined by its focus ([3]). If G is a compressible group with unit H, then an 
element p G G is called a projection if and only if it is the focus p = J(u) of a 
retraction (hence a compression) J on G. 

Let G be a compressible group with unit u and let P be the set of projections 
in G. In what follows, we shall denote by J the unique compression on G with 
the projection p G P as its focus. If p G P, then the unique compression on 
G that is quasicomplementary to J is Ju_ , whence p G P => u — p G P. 
Also, 0, u G P and, under the restriction of the partial order on G, P forms 
an orthomodular poset ([10]) with p i-> u — p as the orthocomplementation. As 
such, P is a sub-effect algebra of the unit interval E in G, hence, if p, q G P , 
then p-i- q e P ^=> p + q e E ([3; Theorem 5.1]). Therefore, by induction on 

n 
ra, if p 1 5 p 2 , . . . , p n G P and p := J_Pii t n e n P < ^ ^=^ P ^ P -

i = l 

If p, q G P and the infimum r (respectively, the supremum s) of p and g 
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as calculated in P exists, we write r = p A q (respectively, s = pV q). Existing 
infima and suprema as calculated in other subsets of G, e.g., E, G + , or G itself, 
will be denoted by using appropriate subscripts. For instance, if a, b G G and c 
is the infimum of a and b as calculated in G, we write a AG b = c. If M C G, 
a,b,c G M , and we write a AM b = c, we mean that the infimum a AM b of 
a and b, calculated in M , exists and equals c. A similar convention applies to 
a V M b . 

The unital groups M, Q, and 7L are compressible groups, and in all three 
cases the set of projections is P = {0,1}, which may be regarded as the two-
element Boolean algebra. The following additional examples will provide much 
of the motivation for the developments in this article. 

E X A M P L E 1.1. Let A be a C*-algebra with unit 1 and let G be the additive 
group of self-adjoint elements in A. Then G forms an archimedean unital group 
with unit 1 and positive cone G + := {aa* : a G A}. The unital group G 
is a compressible group, the orthomodular poset P consists of all idempotent 
elements of G, and p G P , g G G ==> Jp(g) = pgp ([4]). 

E X A M P L E 1.2. In Example 1.1, suppose that A is a von Neumann algebra. Then 
A is a Rickart C*-algebra, i.e., there is a uniquely determined mapping ': A —•> P 
such that, for all a, b G A, ab = 0 <=> b = a'b. Evidently, a' = (a*a)', so 
the mapping a i-> a' is determined by its restriction g ^ g' to elements g € G. 
In this case, the orthomodular poset P is a complete orthomodular lattice, and 
if p,q G P , then p' = 1 — p and p A q = (qp'q)'q = q(qp'q)' • If e G F, then 
e" := (e') ; = 1 — e' £ P is the projection cover of the effect e in the sense that 
e" is the smallest projection that dominates e ([3; Definition 6.1]). 

Let g G G . The absolute value, the positive part and negative part of g 
are defined by |a| := y ^ , #+ := (|g| + g ) / 2 , and g~ := (\g\-g)/2 = ( - g ) + , 
respectively. Then g = g+-g~ with 0 < g+,g~, and g" = (g + ) " + (g~)" = \g\". 
Define P±(g) to be the set of all projections p G P such that p commutes 
with every projection in P that commutes with g (hence, p and p ' commute 
with g) and p'g < 0 < pg. The set P±(g) has a smallest element (g+)" and 
a largest element (g~)' = (g+)" + g'. If p £ P±(g)1 then g+ = gp = pg and 

9~ =p'(-g) = - V -

EXAMPLE 1.3. An interpolation group is a partially ordered abelian group such 
that, for all a,b,c,d G G with a, b < c, rf, there exists t £ G such that a, b < 
t < c, d ([6]). Let G be an interpolation group with an order unit u. Then G 
is a compressible group and the orthomodular poset P of projections consists 
of all the effects p G E = {e G G : 0 < e < i t } such that p A G ( w - p ) = 0, 
i.e., the so-called characteristic elements of G ([6; p. 127]). In this case, P 
forms a Boolean algebra ([3; Theorem 3.5]). If p G P , let Gp = {h G G : 
(3n G Z+)(—np < h < np)}. Then G is a subgroup of G and, under the 
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restriction of the partial order on G, Gp forms an interpolation group writh p 
as an order unit; in fact, G is a compressible group in its own right. If p G P , 
then G is the internal direct sum of G and Gu_ as partially ordered abelian 
groups, and J : G —r Jp(G) = G is the corresponding projection mapping 
([6; Lemma 8.2]). If p G P and e G _7, then J (e) = p AE e = p AG e is 
the infimum of p and e as calculated either in _ or in G. If g G G, we can 

n n 
write £ = £_ * % w i t l 1 ei e E-> k{ e Z, and we have J (g) = Yl ^(P AE ei) • 

Z = l 2 = 1 

Furthermore, 0 = Jp(^) + Ju_p(g). 

E X A M P L E 1.4. A lattice-ordered abelian group is automatically an interpolation 
group. Let G be a lattice-ordered abelian group with order unit u and unit 
interval E = {e G G : 0 < e < u}. Then, as in Example 1.3, G is a compressible 
group and P = {p G E : pAG (u—p) = 0} is a Boolean algebra. In this case, the 
set of effects E _\G forms a so-called MV-algebra ([2]). Conversely, by a theorem 
of D. M u n d i c i , every MV-algebra can be realized as the set of effects in a 
lattice-ordered abelian group G with order unit, and G is uniquely determined 
up to an isomorphism of unital groups ([9]). 

In the sequel, we assume once and for all that G ^ {0} is a compressible 
group, u is the unit in G, E is the unit interval (i.e., the set of effects) in G, 
and P is the orthomodular poset of projections in G. 

If H is a subgroup of G, we understand that H is organized into a partially 
ordered abelian group under the restriction to H of the partial order on G, 
whence H+ = H D G+. For instance, if p G P , then the image H := Jp(G) of 
G under J forms a compressible group with unit p. The orthomodular poset 
P(H) of projections in H = J (G) is the interval P(H) = {q G P : q < p} in 
P , and if q G P(H), then the corresponding compression on H is the restriction 
Jq\H to H of the compression Jq on G ([3; Theorem 5.9]). The passage from 
G to H = Jp(G) is the analogue for the compressible group G of the passage 
from A to pAp in Example 1.1. 

2. Compatibility 

The notion of compatibility in part (i) of the following definition was originally 
introduced in [3; Definition 4.1]. 

DEFINITION 2 .1 . Let g,he G and p,q G P . 

(i) C(p) := {geG: g = Jp(g) + Ju_p(g)} • Elements g G C(p) are said to 
be compatible with the projection p. 

(ii) For projections p and g, we often write the condition p G C(q) in the 
alternative form pCq. 
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(iii) CPC(g):= 0 C(p). 
PeP,gec(p) 

(iv) By definition, g <-»p h means that g G CPC(h) and h G CPC(g). 
(v) C(P):= fl C(p). 

peP 
(vi) G is a compatible group if and only if G = C(P). 

Let g,h,k G G. The condition /z, G CPC(g) means that h is compatible 
with every projection p with which g is compatible, and h <^p g means that 
h and g are compatible with the same projections in P . If h G CPC(g) and 
g G CPC(k), then /i G CPC(k). Evidently, <-rp is an equivalence relation on 
G. The condition g G C(P) holds if and only if g is compatible with every 
projection p G P . For instance, it G C(P) = CPC(u). If p e P and g £ G, 
then C(p), CPC(g), and C(P) are subgroups of G, C(P) = C(u - p ) , u G 
C(P) C C(p) H CPC(g), and g G C P C ( g ) . 

In Example 1.1, g G C(p) if and only if gp = pg, so C(P) is the set of all self-
adjoint elements in A that commute with every projection in A. In Example 1.2, 
A is a von Neumann factor if and only if C(P) = {XI : A G R}, and (by the 
spectral theorem) g G CPC(h) if and only if g commutes with every self-adjoint 
element that commutes with h. Thus, G is a compatible group if and only if 
A is a commutative von Neumann algebra. In Example 1.3, the interpolation 
group G is a compatible group, so g ^p h for all g, h G G . 

Let p, g G P . By [3; Theorem 5.4], pCq if and only if p and # are (Mackey) 
compatible elements of the orthomodular poset P , i.e., if and only if there 
are projections p1,q1,d,r G P such that p1 + qx + d + r = u, p = pl + d, 
and q = qx + d. In this case, d = pAq = pAEqis the infimum of p and 
q as calculated either in P or in E, and p1 + q1 + d = p V q = p VE q is the 
supremum of p and q as calculated either in P or in E ([3; Corollary 5.6]). Also, 
pCq ^=> qCp <=-> JpoJq = J^oJ^ . Infact , pCq =i> JpoJq = JqoJp = JpAq. 

By [3; Corollary 5.8], P is a Boolean algebra if and only if P C C(P). 
Furthermore, by [3; Example 3.7], every Boolean algebra can be realized as 
the system P of projections in a compatible compressible group G for which 
E = P C C(P). Conversely, by [3; Theorem 6.5], if E = P , then G is a 
compatible group and P is a Boolean algebra. 

If p G P , then, with the induced partial order, D := C(p) is a compressible 
group with unit u. The set P(D) of projections in D is given by P(D) = 
{q G D : qCp}, and if q G P(D), then the corresponding compression on F> is 
the restriction Jq\D to D of Jq ([3; Theorem 5.10]). 

LEMMA 2.2. Le£ g € G, w£ C(P) and suppose that G is torsion free. Then, 
if n is any nonzero integer, g f-»P (ng + w). 

P r o o f . Assume the hypotheses. As w G C(p), we have ng G C(p) <==> 
ng + w G C(p). If ng G C(p), then ng = Jp(ng) + Ju_p(ng) = n(Jp(g) + Ju_p(g)) 
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and, since G is torsion free, it follows that g = Jp(g) + Ju_p(g), i.e., g E C(p). 
Conversely, g E C(p) ====> n# E C(p). D 

n 
THEOREM 2.3 . Let p,q,r,s E P and let p1,p2,---,Pn £ -P 'with __ Pi < u. 

i=l 
Then: 

(i) Ifp + q + r<u, then Jp+q o J g + r = J g + r o J p + g = Jq . 

n n n 
(ii) If p= __Pi and g E f| C(p.) . ^ e n a E C(p) and Jp(g) = £ J p . (p ) . 

2 = 1 2 = 1 2 = 1 

n n n 
(iii) If __Pi = u and g eG with g=__J

Pi (g) > ^ e n 9 € f] C(p{). 
2=1 i=l i=l 

(iv) Ifp + q + r + s = u, then C(p + g)nC(g + r) C C(p)nC(q)nC(r)nC(s). 

P r o o f . 
(i) As p + q + r < w, we have (p + q)C(q + r) with g = (p + q) A (g + r ) , 

whence Jp+(? o J g + r = J g + r o J p + g = J ( p + g ) A ( g + r ) = J g . 
(ii) The proof of (ii) is by induction on n . Assume the hypotheses. If n = 1, 

n - l 
there is nothing to prove. Let n > 1 and let q := ]T pi• , so that p = g + pn. 

i=i 
By the induction hypothesis, we may assume that g E C(q) and that Jq(g) = 
n-l 
zC Jp(9)- Let r := u — p , so that u = p + r = g + p n + r . As g E C(q) and 
i = l 
ii — q = p n + r , it follows from (i) that 

n 

JP(9) = Jq+Pn(9) = Jg+Pn(Jq(9) + JPn+r(9)) = Jq(9) + JPn(9) = Y,Jpi(9) • 
2 = 1 

Likewise, as g E C(pn) and u — pn = q + r , it follows from (i) that 

9 = Jq(g) + JPn+r(g) = Jq(g) + JPn+r(JPn(9) + Jq+r(9)) 

= Jq(9) + JPn (9) + Jr(9) = Jp(9) + Jr(9) = Jp(9) + Ju-P(9), 

whence g E C(p). 
(iii) Assume the hypotheses. By symmetry, it will be sufficient to prove 

that g E C(pl). As Ju_pi o Jpi = J0 and Ju_pi o Jpi = Jpi for i ^ 1, we have 
n 

Ju-Pl(9) = £ J p . (#) , whence J p i (#) + Ju_Pl(g) = 9, i.e., 5 G C(p , ) . 
2=2 

(iv) Suppose g G C(p + q) D C(g + r ) . Then 

3 = <Ip+(7(3) + <Ir+s(5) = Jp+,(J,+r(ff) + Jp+S(g)) + Jr+s(Jq+r(g) + Jp+S(g)) 

= Jq(g) + Jp(g) + Jr(g) + Js(g), 

whence g G C(p) l~l C(g) ("1 C(r) n C(s) by (iii). D 
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COROLLARY 2.4. Let p, g G P with pCq. Then 

C(p)nC(q)CC(pAq)nC(pVq). 

P r o o f . Since pCq, there are projections p1,q1,d,r G P with px + gx + 
d + r = _, p = p1 + d, and g = gx + d. By Theorem 2.3(iv), C(p) n C(g) C 
C(d) n C(r) = C(d) n C(u - r) = C(p A g) n C(p V g). • 

By the following theorem, the orthomodular poset P has the property some­
times referred to in the literature as "regularity" ([8]). 

THEOREM 2.5. Let p1,p2, > > - ,pn be pairwise compatible elements of P. Then 
the infimum px t\p2 A • • • t\pn and the supremum px \Jp2 V • • • Vpn exist in P and 
p1,p2, • • • iPn we jointly compatible in P, i.e., there is a Boolean subalgebra B 
of P with p1,p2, • • • ,Pn G B. Furthermore, if B is the Boolean subalgebra of P 

n 
generated by p1,p2,... ,pn, then f| C(p-) = f] C(b). 

i=l b£B 

P r o o f . By Corollary 2.4, if p, q, r are elements of the orthomodular poset 
P , then pCq,qCr,rCp ==> (p A q)Cr, and the conclusions follow from the 
basic theory of orthomodular posets. • 

THEOREM 2.6. Let p,q e P with pCq and suppose that g G C(p)C\C(q) with 
Ju-P(g), Ju-q(g) < 0 < Jp( f f), Jq(g). Then: 

W J
PA(u-q)(9) = J{u-p)Aq(g) = 0' 

(ii) Jp(g) = Jq(g) = JpAq(g) = JpVq(g). 

(iii) Ju-P(g) = Ju-q(g) = Ju-(PAq)(9) = Ju-(Vyq)(g)• 

P r o o f . As pCg, we have pC(u — q), (u — p)Cq, and (u — p)C(u — q). 
Also, as g G C(p) H C(q), we have g G C(p A (u — q)), g G C( („ - p) A g) , 
g G C((_ - p) A (u - g)) , and g G C(p V q) by Corollary 2.4. 

W Since JpA{u_q)(g) = J p K _ a ( g ) ) < 0 < Ju_q(Jp(g)) = J p A ( n _ g ) (g ) , it 
follows that JpA{u_q)(g) = 0. By symmetry, J{u_p)Aq(g) = 0. 

(ii) We have ^ = (p A g) + (p A (_ — g)) + ((_ — p) A g) + („ — p) A (u — q), 
whence by (i) and Theorem 2.3(ii), 

9 = Ju(g) = JpAq(g) + J(U-p)A(U-q)(9) - (i) 

As g G C(p V g), it follows that 

g = JPvq(g) + J
u-(Pyq)(g) = Jpvq(g) + J(U-P)A(U-q)(g) • (2) 

From (1) and (2), it follows that 

JPAg(9) = JpVq(g) • (3) 
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As p V q = p + ((u — p) A q), we also have 

• W f f ) = Jp(9) + «J(tt-p)Ag(ff) = Jp(9) (4) 

by (i) and Theorem 2.3(ii). By symmetry, 

Jq(g) = Jpvqid)' (5) 

and (ii) follows from (3), (4), and (5). 
(iii) Follows from (ii) upon replacing g by -g, p by u - p , and q by u - q. 

3 . G e n e r a l c o m p a r a b i l i t y 

D E F I N I T I O N 3.1. If g e G, then 

P±(g) :={pePH CPC(g) : g'e C(p) and Ju,p(g) < 0 < Jp(g)} . 

If p G P±(g), then p splits g = Jp(g) + Jn_p(g) into a "positive part" Jp(g) 
and a "negative part" Ju_ (g). 

THEOREM 3.2. Le£ g e G, r e P, and suppose that p,q e P±(g). Then: 

(i) pCq. 

(ii) reP±(g) <=> u-r eP±(-g). 

(iii) 0 < Jp(g) = Jq(g) = Jp/W(g) = JpVg(g). 

(iv) Ju_p(g) = Ju_q(g) = Ju-{pAq){g) = Ju-(vyq)^) < o. 

(v) pAq,pVqeP±(g). 

(vi) A minimal (respectively, maximal) element of P±(g)y if it exists, is 
necessarily the smallest (respectively, the largest) element of P±(g). 

P r o o f . 
(i) Since p G CPC(g) and g G C(q), it follows that pCq. 
Part (ii) follows easily from Definition 3.1, and parts (iii) and (iv) follow 

directly from Theorem 2.6(ii) and (iii). 
(v) By (i) and Corollary 2.4, g G C(p A q). Suppose r G P and g G C(r). 

Since p, q G CPC(g), it follows that pCr and qCr, and again by Corollary 2.4, 
rC(p A ^ j . B y (iii) and (iv), Ju_(pAq)(g) < 0 < JpAq(g), whence pAqe P±(g). 
A similar argument shows that p V q G P ~ (g). 

(vi) Suppose r/ is a minimal element of P±(g). By (v), p A q G P±(g) and, 
since pAq<q,we have q = p/\q, i.e., q <p. Since p is an arbitrary element of 
P±(g), it follows that # is the smallest element of P ± ( g ) . Similarly, a maximal 
element of P - (#) is necessarily the largest element of P± (g). • 
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LEMMA 3.3. Suppose G is unperforated, n and m are positive integers, 
g,h G G, ng < mh, and g <-»p h. Then, if p G P±(g) and q G P±(h), it 
follows that pCq, p A q E P± (g), and pV q G P± (h). 

P r o o f . We have h G C(q) and g G CPC(h), so g G C(q), whence the fact 
that p G CPC(g) implies pCq. As g G C(p) D C(q), Corollary 2.4 implies that 
g G C(p A q). Suppose r G P and g G C(r). As p G CPC(g), we have pCr. As 
h G CPC(g), we also have h G C( r ) , whence the fact that q G CPC(h) implies 
qCr. Therefore, (p A q)Cr, and it follows that pAqe CPC(g). 

As 0 < Jp(O), we have 0 < Jq(Jp(g)) = JpAq(g). Also, as J ^ ( / i ) < 0, we 

have nJu_{pAq)(g) = Ju_p(Ju_q(ng)) < Ju_p(Ju_q(mh)) = mJu_p(Ju_q(h)) 

< 0, whence, since G is unperforated, Ju_^pAq) (g) < 0. Therefore, pAq G P±(g). 

That pV q £ P±(h) follows from a similar argument. • 

The notions in the following definition were originally introduced in [3; 
Definition 4.6]. 

DEFINITION 3.4. The compressible group G has the general comparability 
property (or simply, has general comparability) if and only if g G G => 
P^(g) / 0- It has the central comparability property (or simply, has central 
comparability) if and only if, for every g e G, there exists p G P±(g) with 
G = C(p). 

In Example 1.2, the compressible group G of self-adjoint elements in the 
unital von Neumann algebra A has general comparability. In Example 1.3, the 
interpolation group G has central comparability if and only if it has general 
comparability, and general comparability coincides with the property of the same 
name studied in [6; Chapter 8]. 

If G has general comparability, it is unperforated and, as an abelian group, it 
is torsion free ([3; Lemma 4.8]). If G has central comparability, then it is lattice 
ordered ([3; Theorem 4.9]). On the other hand, if G is a Dedekind cr-complete 
lattice-ordered abelian group with order unit, then G is a compressible group 
with central comparability ([6; Theorem 9.9]). 

LEMMA 3.5. If G has general comparability, then G is archimedean if and 
only if, for all a,b e G + , na <b for all positive integers n only if a = 0. 

P r o o f . If G is archimedean, the given condition obviously holds. Suppose 
the given condition holds, let a, h G G, and suppose ng < h for all positive 
integers n. Choose p G P±(g). Then nJp(g) < Jp(h) holds for all positive 
integers n and, since J (g) G G + , it follows that Jp(g) = 0. But then g = 
Jp(g) + Ju-P(g) = Ju-p(g) < 0, so G is archimedean. • 
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E X A M P L E 3.6. Let X be a compact Hausdorff space that is basically discon­
nected, i.e., the closure of every open Fa subset of X is open. Let C(X,R) be 
the lattice-ordered vector space of all continuous functions / : X —r R. Then, 
with the constant function u(x) E 1 as unit, and regarded as a partially or­
dered additive abelian group, G := C(X, M) is an archimedean compressible 
group with central comparability. Also, G is a compatible group and P is the 
a -complete Boolean algebra of all characteristic set functions of compact open 
subsets of X. 

THEOREM 3.7. Suppose that G has general comparability, let g e G + . 
w e C(P), and choose any qx e P±(g + w). Then there exist q2i%i-- ^ ^ 
such that, for all n = 1,2,... , 

(0 qn<Qn+i> 
(ii) qneP±(ng + w), 

(iii) geC(qn), 
(iv) qneCPC(g). 

P r o o f . As G has general comparability, it is unperforated and torsion 
free, hence Lemma 2.2 implies that, if p e P and n is a nonzero integer, then 
ng + w e C(p) <<=> g e C(p), whence (ng + w) ^p g. As <->p is an equivalence 
relation on G, it follows that (ng + w) <^p (mg + w) for all nonzero integers n 
and m. 

We construct the sequence (qn)1<n inductively, starting with qx e P±(g+w). 
Suppose qx < q2 < • • • < qm have already been obtained such that (ii)-(iv) hold 
for n = 1, 2 , . . . , m. As g e G + , we have mg + w < (m + l)g + w. Choose 
q e P± ((m + l)g + w). As (mg + w) «->p ((m + l)g + w), Lemma 3.3 implies 
that pmCq and pmV q e P± ((m + l)g + w). Define qm+1 : = ( J m V g , s o that 
9m < W i G P±((m+l)g+w).Then (m+l)g+w e C(qm+1), so g e C(qm+1). 
Also, qm+1 e CPC((m + l)g + w) = CPC(g). • 

As the mapping p i-> u — p is an order-reversing bijection on P, it follows 
that P satisfies the ascending chain condition (i.e., P contains no infinite strictly 
increasing sequence) if and only if it satisfies the descending chain condition (i.e., 
P contains no infinite strictly decreasing sequence). If the unital C*-algebra A 
in Example 1.1 is finite dimensional, then it is a von Neumann algebra as in 
Example 1.2, the orthomodular lattice P satisfies the chain conditions, and P 
is a modular lattice. A Boolean algebra, e.g., the system P of projections in a 
compatible group, satisfies the chain conditions if and only if it is finite. 

COROLLARY 3.8. Suppose that G is archimedean, G has general compara­
bility, and P satisfies the ascending chain condition. If g e G+, there is a 
smallest element q e P (g), there is a positive integer N such that q < Ng, 
and for every projection p e P. J (g) = g <=> q < p. 
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P r o o f . In Theorem 3.7, let w := — u and let (qn)1<n be the resulting 
sequence of projections. Since P satisfies the ascending chain condition, there 
is a positive integer N such that n > N => qn = qN. Let q := qN. Then, 
q G CPC(g) and g G C(q) by Theorem 3.7(iii) and (iv). Also, n > N = » 
Ju-q(ng - u) < 0 < Jq(ng — u). Consequently, n > N =-=-> nJu_q(g) < u — q, 
and since G is archimedean, it follows that Ju_ (g) < 0 . But 0 < g implies that 
0 < J u_„(g ) , whence Ju_q(g) = 0 . Therefore, 0 < g = Jq(g), so q G P±(g). 
Also, 0 < Jq(Ng -u) = Ng - q, i.e., q < Ng. Let p G P . If Jp(g) = g, then 
Ju_p(g) = 0, whence 0 < Ju_p(q) < NJu_p(g) = 0, so Ju_p(<1) = 0, whereupon 
q < p. Conversely, if q < p , then, since Jg(g) = g, we have Jp(g) = Jp(Jq(g)) = 
Jq(g) = g- Finally, if p G P ± ( g ) , then g = g+ = Jp(g), so q < p, whence q is 
the smallest element in P±(g). D 

4. Positive and negative parts 

Example 1.2 provides motivation for the following definition. 

DEFINITION 4 . 1 . Suppose G has general comparability, let g G G, and choose 
p G P±(g)- By parts (iii) and (iv) of Theorem 3.2, Jp(g) and Ju_p(g) are 
independent of the choice of p G P±(g) • Therefore, we can and do define 

g+ •= Jp(g), g~ := -Ju-V(g) = Ju-P(-g)» 1̂1 == g+ + g" • 

LEMMA 4.2. Suppose G has general comparability, let p G P and g G C(p) 
t-I»*ft Ju_p(ff) < 0 < J p (g ) . T/ien ^+ = Jp( f l) and g" = Ju_p(-g). 

P r o o f . Assume the hypotheses and select q G P±(g) • As g G CPC(g) and 
g G C(p), it follows that pCg, hence g+ = Jg(g) = Jp(g) and g~ = Jn_g(g) = 
Ju-P(g) by parts (ii) and (iii) of Theorem 2.6. • 

LEMMA 4.3 . Suppose G has general comparability and let g G G. p G P . 
TTien: 

(i 
(" 
(iii 
(iv 
(v 

(vi 
(vii 

(viii 
(ix 
(x 

(xi 

o<g+,g-,\g\. 
g = g+ - g • 

g~ = (-g)+-
±5 < M = I - si • 
líl + g = 2g+ and \g\ - g = 2g . 
0<g *=> u-P+(g) ^=? g = g+ ^=> g=\g\. 
g+,g~,\g\eCPC(g). 
\g\ G ker( Jp) ^ j G C(p) n ker( Jp). 
g+ ^G+9~ = 0. 
n G Z + => (ng)+ = n g + and (ng)~ = ng~ . 
ne Z ==> \ng\ = \n\\g\. 
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P r o o f , (i), (ii), (iii), (iv), (v), and (vi) are obvious. 

(vii) Suppose g G C(p) and choose q e P+(g). Then qCp and we have 
g+ = Jq(g) = Jq(Jp(g) ± Ju_p(g)) = Jp(Jq(g)) ± Ju.p(Jq(g)) = J

P(9+) + 
Ju-p(9+), s o g+ ^ C(.P) • Likewise, a G C(p), so |a| = a+ + a G C(p). 

(viii) Suppose g G C(p) with Jp(#) = 0 and choose q G P±{g)> Then <?Cp 

so Jp(g+) = J p (J g (g ) ) = J , ( ^ ( g ) ) = 0. Likewise, J p (<r ) = -Jp(Ju_q(g)) = 

~Ju-q(
Jp(9)) = °> a n d ^ f o l l o w s t h a t J p ( M ) = J P ^ + + A") = °" Conversely, 

suppose Jp(\g\) =0. Then Jp(g
+) ± Jp(g~) = 0 and, since 0 < Jp(g

+),Jp(g~), 

we have J (g+) = Jp(g~) = 0, whence g+,g~ G C(p), and it follows that 

g = g+-gre C(p). Also, Jp(g) = Jp(g
+) - Jp(g") = o. 

(ix) By (i), 0 is a lower bound in C + for g+ and g~. Suppose h G G + 

with ft < g+,g_ and choose p G P ^ g ) . Then 0 < Jp(h) < Jp(g~) = 
Jp(Ju-P(9)) = 0, and it follows that Ju_p(h) = h. Thus, 0 < h = Jn_p(ft) < 

(x) and (xi) Select p G P±(g) and suppose n G Z + . Then Ju_p(ng) — 
nJu-p(g) < 0 < nJp(g) = J p (ng ) , so (ng)+ = ng+ and (ng)~ = ng~ by 
Lemma 4.2. Part (xi) follows from (x). • 

LEMMA 4.4. Suppose G has general comparability and let g,h G G with h G 
CPC(g). Then: 

(i) g < h ==> g+ < ft+ . 
(ii) 0,0 < ft ^=> g+ < f t . 

(iii) ± g < f t <=> | g | < f t . 

P r o o f . 

(i) Assume the hypotheses and select p G P + ( o ) . Then a G C(p), hence 
ft G CPC(g) implies that ft G C(p), so ft+ G C(p) by Lemma 4.3 (vii). Therefore, 
since 0 < ft+, we have Jp(ft+) < Jp(h

+) ± Ju_p(h+) = ft+. Consequently, 
9+ = Jp(g) < Jp(h) = Jp(h+) - Jp(h~) < Jp(h+) < h+. 

(ii) If 0,g < ft, then by (i), g+ < ft+ = ft. Conversely, if g+ < ft, then 
o,g<g+<ft . 

(iii) Suppose ±g < ft and choose p e P+(g). As g e C(p), it follows that 
ft G C(p). Also, since ^ < ft we have O+ = Jp(g) < Jp(h). Likewise, since 
-g < ft, we have g~ = Ju_p(-g) < Ju_p(h), and therefore |a| = g+ ± g~ 
< Jp(h) ± Ju_p(h) = ft. The converse implication follows from the fact that 

±g<lg|. • 
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5. The pseudo-meet and pseudo-join 

In the study of operator algebras, the expressions \(A + B — \A — B\) and 
^(A + B +\A — B\) have been called the lower envelope and the upper envelope, 
respectively, of the self-adjoint operators A and B ([11; p. 279]). If the com­
pressible group G has general comparability, then with the aid of the following 
lemma, we can form analogous expressions, which we shall call the pseudo-meet 
and the pseudo join. 

LEMMA 5.1 . If G has general comparability and g,h G G. the equation 2x = 
g + h — \g — h\ has a unique solution x = g — (g — h)+ = h — (h — g)+ . 

P r o o f . Let x := g - (g - h)+ . As g - h = (g - h)+ - (g - h)~ = (g - h)+ 
— (h — g)+, we have x = g — (g — h)+ = h— (h — g)+, whence 2x = g — (g — h)+ 
+ h - (h - g)+ = g + h - (g - h)+ - (g - h)~ = g + h - \g - h\. That x is the 
unique solution of 2x = g + h — \g — h\ follows from the fact that the group G 
is torsion free. • 

DEFINITION 5.2. If G has general comparability and g, h £ G, we define 
the pseudo-meet g VI h := g — (g — h)+ = h — (h — g)+ and the pseudo-join 

gUh:= -(~g n-h) = g+(h-g)+ = h + (g - h)+ . 

In view of Lemma 5.1, g VI h is the unique solution x of the equation 2x = 
g+h—\g—h\ and gUh is the unique solution y of the equation 2y = g+h+\g—h\. 
By the following lemma, even if G is not lattice ordered, the pseudo-meet and 
pseudo-join enjoy many of the properties of the meet and join in a lattice-ordered 
abelian group. 

LEMMA 5.3. Suppose G has general comparability and let g,h,k £ G. Then: 

(i) g VI h = h VI g and gUh = hU g. 
(ii) g\lh < g,h< gUh. 

(iii) (g VI h) + k = (g + k) n (h + k) and (g U h) + k = (g + k) U (h + k). 
(iv) g<h <=> g = g\ih <=> h = gUh. 
(v) gnh + gUh = g + h. 

(vi) g+ = gU0 and g~ = - ( O n O ) . 
(vii) g+ n g~ = 0. 

(viii) \g\=gU(-g). 

P r o o f . Part (i) follows from Lemma 5.1 and Definition 5.1. 
(ii) g^h = g — (g — h)+ < g and, by (i), g n h < h. Similarly, g,h < gUh. 

(iii) (g+k)n(h+k) = g+k-((g+k)-(h+k))+ = k+g-(g-h)+ = k+gHh. 
Similarly, (gUh) + k = (g + k) U(h + k). 

(iv) If 9 < ^5 then g\lh = h — (h— a ) + = h — (h - g) = g. Conversely, if 
g = g\~\h, then g < h by (ii). 
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(v) g n h + g U h = g - (g - h)+ + h + (g - h)+ = g + h. 
(vi) g U 0 = g + (0 - g)+ = g + g~ = <?+, whence g~ = (-_) + = (-g) U 0 

= - (gno) . 
(vii) g+ n g~ = g+ - (g+ - g~)+ = g+ - g+ = 0 . 
(viii) 2(aU (-a)) = a + (-a) + \a- (-a)\ = \2a\ = 2\a\ by Lemma 4,3(xi), 

whence, as G is torsion free, a U (—a) = \a\. • 

THEOREM 5.4. Suppose G has general comparability and let g,h G G. Then: 

(i) If0<g,h, thengnh = 0 <=> (_p e P)(g = Jp(g) & h = Ju_p(h)). 
(ii) gnh<0<g,h ==> gnh = 0. 

(iii) gn h (respectively, gUft) is a maximal lower bound in G (respectively, 
a minimal upper bound in G) for g and h. 

(iv) If the infimum g AG h (respectively, the supremum g VG h) of g and h 
exists in G, then g AGh = a n ft (respectively, a VG ft = g U ft), 

(v) G is lattice ordered if and only if l~l (or, equivalently, U) is associative. 

P r o o f . 

(i) Assume that 0 = g n ft, i.e., g = (g — h)+, and select p G P±(g — h). 
Then g = (g - h)+ = Jp(g - h) = Jp(g) - Jp(h) < Jp(g). Also, g-h = 
Jp(9-h) + Ju_p(g-h) = g + Ju_p(g-h), and it follows that h = Ju_p(h-g) = 
Ju-P{h)-Ju_p(g) < Ju_p(h). As 0 < g < Jp(g), we have Ju_p(g) = 0, whence 
9 = Jp(g) • Likewise, h = Ju_p(h). 

Conversely, suppose p G P, Jp(g) = g, and Ju_p(h) = h. As 0 < g,h, it 
follows that Ju_p(g) = 0 and Jp(h) = 0, whence g-h = Jp(g~h) + Ju_p(g-h) 
with 0 < a = Jp(g - h) and Ju_p(g - h) = -h <0. Consequently, (g - h)+ = 
Jp(g — h) = g by Lemma 4.2. 

(ii) Suppose that gnh<0<g,h and let peP+(g-h). Then (g-h)+ = 
Jp(g-h), so g - Jp(g - h) = g n h < 0. Applying Ju_p to the latter inequality, 
we obtain Ju_ (g) < 0. But, since 0 < g, we also have 0 < Ju_ (g), and 
it follows that Ju_p(g) = 0, whence Jp(g) = g. As p G P±(g — h), we have 
u — p G P+(/ i — g), so by symmetry, Ju_p(h) = ft, and it follows from (i) that 
gnh = 0. 

(iii) Suppose k G G and gnh <k < g,h. We have to prove that gHh = k. 
By Lemma 5.3(iii), gHh — k = (g - k) n (h — k) < 0 < g — k,h — k, whence 
a (~l ft = k by (i). By duality, a U ft is a minimal upper bound in G for a and ft. 

(iv) We have a n ft < g, ft, so if a AG ft exists, gl~lft<^AGft<a, ft, whence 
a f~l ft = aAG by (iii). By duality, if g VG ft exists, then gUh = gWG h. 

(v) If (7 is lattice ordered, then l~l = AG and U = VG by (iv), whence 
n and U are associative. For #, ft G G, gUft = —((—#) l~l (—ft)), so VI is 
associative if and only if U is associative. Suppose n is associative and let 
a, ft G G. By Lemma 5.3(ii), g n ft is a lower bound in G for r/ and ft. Suppose 
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k G G with k < g, h. By Lemma 5.3 (iv), k = k l~l g and k = k n ft, whence 
kn(gnh) = (kr\g)nh = knh = k, and it follows that k < g n h. Therefore, 
g n h = g AG ft, and G is lattice ordered. • 

THEOREM 5.5. If G has general comparability, then the following conditions 
are mutually equivalent: 

(i) For all g,heG, -h < g < h 4=> \g\<h. 
(ii) For all g,heG, \g + h\< \g\ + \h\. 

(iii) For all g,h G G, if 0, g < h, then g+ < h. 
(iv) g,heG+ = > g n h G G + . 
(v) G zs lattice ordered. 

(vi) G is an interpolation group. 
(vii) G is a compatible group. 

P r o o f . 

(i) = > (ii). Assume (i) and let g, ft G G. Then, as ±g < \g\ and ±h < \h\, 
we have ±(g + h) < \g\ + \h\, i.e., - ( | g | + |ft|) < g + h< |g| + |ft|, and it follows 
from (i) that \g + h\ < \g\ + \h\. 

(ii) = > (iii). Assume (ii) and suppose g,h G G with 0,# < h. Then \g\ = 
\h + (g -h)\ < \h\ + \g — h\ = h + \ — (h — g)\ = h + \h — g\ = h + h — g, whence 
2g+ — 9 + Igl <^h. Since G is unperforated, it follows that g+ < h. 

(iii) = > (iv). Assume (iii) and let #, h G G + . Then, ft—g,0 < ft, so 
(ft — g ) + < ft by (iii), and it follows that 0 < ft — (ft — g)+ = g n ft. 

(iv) = > (v). Assume (iv) and let g, ft, k G G with k < g, ft. Then 
g-k,h-k G G + , so (g n ft) - k = (g - k) fl (ft - k) G G + by Lemma 5.3(iii), 
and it follows that k < g l~l ft. By Lemma 5.3(ii), g n ft is a lower bound for g 
and ft, so g n ft is the greatest lower bound in G for g and ft. Therefore, G is 
lattice ordered. 

(v) = > (vi) = > (vii) = > (v) . Clearly, (v) = > (vi) = > (vii). As 
a compatible group with general comparability has central comparability, it is 
lattice ordered, so (vii) = > (v) . 

(v) = > (i). Assume (v) and let g,h € G with —ft < g < ft, i.e., ±g < h. 
Thus, g VG (—g) < ft, and it follows from Theorem 5.4(iv) and Lemma 5.3(viii) 
that \g\ = g U (—g) = g VG (—g) < ft. Conversely, if |g| < ft, then ±g < ft by 
Lemma 4.3(iv), whence ft < g < ft. • 

If the compressible group G is lattice ordered, then the unit interval E := 
{e G G : 0 < e < u) is a pseudo-Boolean effect algebra in the sense that disjoint 
elements of E are orthogonal, i.e., if e, / G E, e AE f = 0 = > e + / < u. 
With A^ replaced by l~l, a compressible group with general comparability has 
an analogous property as per part (i) of the following lemma. 
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LEMMA 5.6. Suppose G has general comparability, w G C(P) and g,h e G 
with 0 < g, h < w. Then: 

(i) gnh = 0 => g + h = gUh<w. 
(ii) Every element k G G with 0 < k < 2w can be written uniquely in the 

form k = g + h with 0 < g < h < w and g n (w — h) = 0. In fact, the 
unique elements g and h satisfying these conditions are g = (k — Hj) + 

and h = knw. 
(iii) 0<gn(w-g)<g,w-g. 

P r o o f . 

(i) Assume that w G C(P), 0 < g,h < Hj, and gnh = 0. By Lemma 5.3(v), 
g + h = g n h + g U h = gUh. Also, by Theorem 5.4(i), there exists p G P 
such that g = Jp(g) < Jp(uo) and h = Ju_p(h) < Ju_p(w). Therefore, since 
w G C(P) C C(p), it follows that g + h < Jp(w) + Ju_p(w) = w. 

(ii) Let 0 < k < 2HJ, let g := (fc-tu)+, and let h := knw = k-(k-w)+ = 
k - g , so that k = g + h. Choose p G P±(k-w). As 0 < w G C(P) C C(p), 
we have Jp(w) < Jp(w) + Ju_p(w) = w. Evidently 0 < (k - w)+ = g = 
Jp(k - w) = Jp(k) - Jp(w). Since k < 2Hj, it follows that Jp(k) < 2Jp(w), so 
g — J (k) — J (w) < Jp(w) < Hj, and we have 0 < g < w. By Lemma 5.3 (ii), 
h = gnw<w. As k — w G C(p) and w G C(p), it follows that k G C(p), 
so J (k) < Jp(k) + Ju_p(k) = k < k + Jp(w). Therefore, g = (k - w)+ = 
Jp(k) — Jp(w) < k, whence 0 < k — g — h, and we have 0 < h < w. By 
Lemma 5.3(iii), h = knw = (g + h)nw = gn(w — h) + h, whence gn(w — h) = 0, 
and it follows from (i) that g + (w — h) <w, i.e., g < h. 

To prove uniqueness, suppose k = g + h with g n (w — h) = 0. Then by 
Lemma 5.3(iii), knw = (g + h)nw=gn(w — h) + h = h and g = k — h = 
k — knw = (k — w)± . 

(iii) As 0 < g < HJ, we have 0 < 2g < 2w. Therefore, by (ii) with k replaced 
by 2g, 2g = (2g - w)+ + ((2a) n w) with 0 < (2g - w)+ < (2g) n w < w, whence 
2(2a-H j )+ < (2g-w)+ + ((2g)nw) =2g.As G is unperforated, it follows that 

(2g - w)+ < g, so 0 < g - (2g - w)+ = g - (g - (w - # ) ) + = g n (w - g). Also, 
by Lemma 5.3 (ii), g l~l (w — g) < g,w — g. • 

An effect q e E = {e e G : 0 < e < H } i s said to be sharp if and only if the 
infimum q AE (u — q), as calculated in E, exists and q AE (u — q) = 0, i.e., if 
and only if 0 is the only effect e e E with e < q,u — q ([7]). An effect q G E is 
said to be principal if and only if, for all e, / G JE, the conditions e, f < q with 
e + f < u imply that e + / < g ([5]). Thus, the next theorem generalizes [5; 
Theorem 6.8]. 
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THEOREM 5.7. Suppose the compressible group G has general comparability 
and let q e E. Then the following conditions are mutually equivalent: 

(i) q is principal. 
(ii) q is sharp. 

(iii) q\l (u-q) = 0. 
(iv) qeP. 

P r o o f . 
(i) => (ii). Assume (i) e G E with e < q,u — q. Then e,q < q with 

e + q < u, and it follows that e + g; < g, so e = 0 . A s 0 is a lower bound in E 
for q and u — q, it follows that q AE (u — g) = 0. 

(ii) = > (iii) follows from Lemma 5.6(iii) with w = u. 
(iii) = > (iv). Suppose q\l(u — q) = 0. Then by Theorem 5.3(i) there exists 

p e P such that Jp(q) = q and u - p - Ju_p(q) = Ju-P(u - q) = u- q. But, 

Ju-p(q) = Ju-p{Jp^)=°>S0(l = PeP-
(iv) = > (i). Suppose q e P and let 0 < e, / < g with e + / < u. As 

0 < e, / < <?, we have Jg(e) = e and J g ( / ) = / , whence e + / = Jg(e + / ) < 
J » = ?. • 

6. The Rickart projection property 

With Example 1.2 and the more general notion of a Rickart C*-algebra in 
mind, we make the following definition. 

DEFINITION 6 .1 . The compressible group G has the Rickart projection prop­
erty if and only if there is a mapping '': G —>> P, called the Rickart mapping, 
such that, for all g e G and all p e P , p < g' ^=-> g e C(p) with Jp(g) = 0. 

If X is a compact Hausdorff basically-disconnected space, then the compress­
ible group G = C(X, R) in Example 3.6 has the Rickart projection property. 

LEMMA 6.2. Suppose that G has the Rickart projection property. Then, for 
all g,h e G, all p e P, and all e e E: 

(i) geC(g') and Jg/(g)=0. 
(ii) U0<g, then Jp(g) = 0 <=> p < g'. 

(iii) p' = u — p and g" := (g')f = u — g'. 
(iv) g" <P ^=> ge C(p) with J (g) = g. 
(v) g" = 0 ^=> g = 0. 

(vi) 0<g<h => h' < g'. 
(vii) e < e" with equality if and only if e e P. 

(viii) e < p <=> e" <p. 
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P r o o f . 
(i) As g' e P and g' < g', we have g e C(g') and Jg,(g) = 0. 
(ii) If 0 < g, then, Jp(g) = 0 => g e C(p), and (ii) follows. 
(iii) If q e P , then by (ii), q < p' <=> Jq(p) = 0 <=> p <u-q 4=> q < 

u — p. Therefore, q < p' <=> q < u — p, from which it follows that p' = u — p. 
In particular, since g' e P, we have g" = u — g'. 

(iv) If g e C(p), then Jp(g) = g <=> Ju_p(g) = 0 . Therefore, g e C(p) 
with Jp(g) = g <=> u - p < g' <=> g" = u - g' < p. 

(v) Evidently, 0; = u, so 0" = u — u = 0 . Conversely, if g" = 0, then 
by (iv), 0 = J0(g) = g. 

(vi) If 0 < g < h, then 0 < Jh,(g) < Jh,(h) = 0, whence h' < g'. 
(vii) By (i), Je/(e) = 0, whence, since e G E, e = Ju_e,(e) < u — e' = e" 

by (iii). If e G P , then e' = u — e and e" = u — (u — e) = e by (iii) again. 
Conversely, e" G P , so if e = e", then e e P. 

(viii) If e < p , then by (vi), p' < e', so e/7 < p" = p by (vii). Conversely, 
by (vii) again, if e" < P, then e < p. • 

The notions in the following definition were originally introduced in [3; Defi­
nition 6.1]. 

DEFINITION 6.3. If e e E and c e P, then c is a projection cover for (or of) 
e if and only if c is the smallest element in {p G P : e < p } . The compressible 
group G has the projection cover property if and only if every effect e e E has 
a projection cover. 

THEOREM 6.4. Suppose that G has the Rickart projection property. Then: 

(i) G has the projection cover property and the projection cover of each 
effect e G E is e" G P . 

(ii) P is an orthomodular lattice and, for all p,q G P , pAq = Jp{{Jp(q')) ) • 

(iii) p,qeP =-» (Jp(q))" =pA(p'Vq). 

(iv) Ifg1,g2,...,gneG+, then ( g <?•)" = V (</;)" • 

(v) geG+ => g',g"eCPC(g)lrl 

(vi) If eeE andpeP, then {Jp(e))" = {Jp(e"))". 

(vii) IfgeG+ andpeP, then {Jp(g))" =pA(p'V g"). 

P r o o f . 
(i) Follows directly from Lemma 6.2(viii). 
(ii) By [3; Theorem 6.3], P is an orthomodular lattice, and by (i), 

Lemma 6.2(iii), and [3; Lemma 6.2(vii)], p A q = Jp{u — {Jp(u — # ) ) ) = 

jP{(jP(i')y)-
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(iii) By [3; Lemma 6.2(vi)], the mapping <f> : P —t P defined by 4> (q) := 

(Jp(q)) for g G P is residuated, hence it preserves suprema. Also, if pCq, then 

</>p(q) = (JP(Q))" = (P A q)" = P A q. As J (p') = 0, we have cj>p(p') = 0" = 0, 
and it follows that </> (gVp') = </> (g) V(/> (p'j = <r\,(g) • Therefore, since pC(q\/p') 
in the orthomodular lattice P , we have 0p(g) = 4>p(q V p') = p A (q V p ' ) . 

n 

(iv) Let ^ := £ g{ and let p G P . Then, since 0 < g,gl,g2,...,gn, we 

have p < g' 4=^ '7p(</) = 0 ^=> £ Jp( f f.) = 0 <-=> Jp(9i) = 0 for i = 
i=l n 

1, 2 , . . . , n <=> p < (gj for 1 = 1, 2 , . . . , n <=> p < / \ (#•)', and it follows 
i=i 

n n 
that g' = A (#;)'• Therefore, by the deMorgan law in P , g" = V (#•)". 

2 = 1 Z = l 

(v) Suppose g G G + , p e P, and g G C(p). Let a := Jp(g) and b := J ,(g). 
Then a, b G G+ D C(p), g = a + b, Jp,(a) = 0, and Jp(b) = 0. Consequently, 
p ' < a', p < b', and by (iv), g' = a' Ab'. As p ' < a' and p < b', we have pCa' 
and pCb ' , whence pC(a' A b'), i.e., pCg'. Therefore, g' G CPC(g), and also 

ff" = u - f f ' G C . P C ( f l ) . 
(vi) As e < e", we have Jp(e) < J p (e" ) , whence (Jp(e))" < (Jp(e"))" = 

pA(p'Ve"). Let q := (Jp(e)) and let r := pA(pAg)'. As pAg < p , it follows that 

(p/\q)Cp' with r ' = p 'v(pAg) = p ' + (pAg). Now, Jp(e) < p, g, so Jp(e) < pAg. 

As r < p, (p A g)', we have Jr(e) = Jr(Jp(e)) < Jr(p A g) = 0, whence r < e', 

i.e., e" < r ' , therefore Jp(e") < Jp(r') = Jp(p
f + (p A g)) = p A g < g, and it 

follows that ( J p (e") )" < g = (Jp(e))". 
n 

(vii) As g G G + , we can write g = J2 e% W1^ ê  G F? for z = 1, 2 , . . . , n . 
i=l 

Therefore, by (iv), g" = \J (e,)". Also, J (ff) = £ J p(e-) , so by (iv), (vi), 
z = l i = l 

and (iii), 

(JM" = \ / ( W ) " = V WW))" = \f{p*(P'v (e,)") . 
i=l i=l i=l 

As the mapping q i-> p A (p' V g), q E P, preserves suprema in P , it follows that 

(Jp(g))" = PA (V v V(e^)") = P M P ' V 5 " ) • 
^ i = l ' 

D 
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THEOREM 6.5. Suppose that G has general comparability. Then G has the 
projection cover property if and only if G has the Rickart projection property. 
Furthermore, if G has the Rickart projection property and if g G G, p G P. 
then: 

(i) Sf = \g\' e CPC(g) and g" = \g\" G CPC(g). 
(ii) (g+)" + (g-)" = (g+)"v(g-)" = g". 

(iii) (g+)" < (g~y and, if q G P with (<?+)" < q < (g~)', then Jq(g) = a+ . 
(iv) (g-)" < (g+y and, ifreP with (g~)" < r < (g+)f, then Jr(-g) = g~ . 
(v) / / (g+y = 0, then 0<g.lf (g+)' = u, then g < 0. 

P r o o f . By Theorem 6.4 (i), if G has the Rickart projection property, then it 
has the projection cover property. Conversely, suppose that G has the projection 
cover property and denote the projection cover of each e G E by 7(e) . By [3; 
Theorem 6.3], P is an orthomodular lattice. Let g G G and let p G P. There are 

n n 

effects e l 5 e 2 , . . . , e n G E such that \g\ = ^ ei- Define g' := / \ ( i t~7(e-)) G P. 
i=\ i = l 

Then, for i = 1,2,. . . , n , Jp(e{) = 0 <=> e- < u - p <=> l(e{) < u - p 
<=^ p < u — 7(e-). Since 0 < Jp(e-) for all i = 1,2, . . . , n , it follows that 

JP{\9\)=0 <=> £ j p ( e i ) = 0 ^=^ Jp(e.) = 0 for i = 1, 2 , . . . , n. Therefore, 
i=\ 

by Lemma 4.3(viii), 
n 

g G C(p) with Jp(g) = 0 <=> Jp{\g\) = 0 ^=> p < f\(u - p . ) = g', 
i = l 

so G has the Rickart projection property. 
(i) That g' = \g\' is a direct consequence of Lemma 4.3(viii), and g' = \g\' 

=> g" = \g\". Thus, by Theorem 6.4(v), we have g',g" G CPC(\g\), and by 
Lemma 4.3(vii), \g\ G CPC(g), whence g',g" G CPC(g). 

(ii) Choose p G P,±(g), so that g+ = Jp(g) and g~ = Jp,(—g)- Thus, 
^pt(g+) = 0, so p ; < (g + ) ; , and Jp(g~) = 0, so p < (g~)'. Consequently, 
(g+)" < V and (g~)" < p', whence (g+)" + (g~)" < p + p' = u, and it follows 
that (g+)" + (g-)" = (g+)" V (g-)". Hence, by (i) and Theorem 6.4(iv), g" = 
\g\" = (g+ + g-)n = (g+)" v (g~)" = (g+)" + (g~)". 

(iii) By (ii), (g+)" < u-(g-)" = (g-)'. Let q G P with (g+)" < q < (g~)'. 
As (g+)" < q, we have Jq(g

+) = g+ , and as q < (g~)', we also have Jq(g~) = 0, 
whence Jg(g) = Jq(g

+) - Jg(g~) = g+. 
(iv) Analogous to the proof of (iii). 
(v) If (g+)' = 0, then (g~)" = 0 by (iv), whence g~ = 0, and it follows 

that g = g+ > 0. If (g+)' = u, then (g+)" = 0, whence a+ = 0, and it follows 
that g = g~~ < 0. D 

428 



COMPRESSIBLE GROUPS WITH GENERAL COMPARABILITY 

THEOREM 6.6. If G has general comparability, G is archimedean, and P sat­
isfies the ascending chain condition, then G has the Rickart projection property 
and, if g € G j there exists a positive integer N such that g" < N\g\. 

P r o o f . By Corollary 3.8 with g replaced by |g | , there exists q £ P and 
a positive integer N such that q < N\g\ and, for all p G P , q < u — p <=> 
Ju-P{\9\) = \9l T h e n , i f P£pi P<u~q 4=> q<u-p <==> Ju_p(\g\) = 
\g\ «=> Jp(\g\) = 0. But, by Lemma 4.3(viii), Jp(\g\) = 0 <=> g e C(p) with 
J (g) = 0. Therefore, G has the Rickart projection property, g' = u — q, and 
g" = q<N\g\. D 
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