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GRAPH ISOMORPHISMS
OF MODULAR MULTILATTICES

MARIA TOMKOVA

1. Preliminaries

A partially ordered set P is said to be of locally finite length if each bounded
chain in P is finite. For the elements a, b € P we write a >b (a covers b) if a>b
and if there does not exist any element ¢ € P with a >c¢ > b ; in this case the interval
[a, b] is called prime.

A partially ordered set P is called upper (lower) directed if for each pair of
elements a, b e P there exists an element h € P (d € P) such that a=h, b=h
(d =a,d =b). The upper and lower directed partially ordered set is called directed.

A multilattice [1] is a partially ordered set M in which the conditions (i) and its
dual (ii) are satisfied: (i) If a, b, he M and a =h, b =h, then there exists v e M -
such that (Q) v=h,v=a,v=b,and (b)zeM,z=v,z=a,z=b implies z =v.

A multilattice M is modular [1] iff for every a, b, ¢, u, v e M satisfying the
conditions u=a=v, u=b=c=v,veavb, ueanc we have b=c.

A multilattice M is distributive [1] iff for every a, b, ¢, u, v € M satisfying the
conditions u=<a, b, c=Sv,veavb,veavc, ueanb, ueanc we have b =c.

It is evident that each partially ordered set of locally finite length is a multilattice
[1]. All partially ordered sets dealt with in this note are assumed to be of locally
finite length.

By a graph G(S) of a subset S = P there is meant the unoriented graph (without
multiple edges and loops) whose vertices are elements of S ; two vertices a, b €S
are joined by the edge (a, b) iff a>b or b >a.

We say that unoriented graphs G(S:) and G(S:) are isomorphic if there exists
a bijection @ of S, onto S, satisfying : (x, y) is an edge in G(S,) iff (¢(x), @(y)) is an
edge in G(S>). ’

The following two assertions (T,), (T:) were proved in [1] (4.7.4 and
Theorem 4.5).

(T:) A multilattice M of locally finite length is modular iff it fulfils the following
covering condition (o’) and the condition (¢") dual to (o').
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(o') If a, b, u, v eM such that [u, a], [u, b] are prime intervals and veavb,
then [a, v], [b, v] are prime intervals.

(T) Let C,, C, be two maximal chains from a to b in a modular multilattice M of
locally finite length. Then C,, C, are of the same length.

A set S={a, b, u, v}cM is called an elementary square if a, b are
incomparable elements and v >a, v>b, u<a, u<b>b. )

Let M; and M, be directed multilattices of locally finite length and let @ be
a graph isomorphism of G (M,) onto G(M:). Let S ={a, b, u, v} be an elementary
square in M;. We shall say that S breaks by the isomorphism ¢ if either the
elements @(u), @(v) are covered by @(a), @(b) or the elements @(u), ¢(v) cover
¢(a) and @(b).

Graph isomorphisms of lattices and multilattices have been studied in the papers
[2), [3], [41, [5].

In [2] and [3] the following theorems have been proved:

(A) If L, and L, are lattices of locally finite length such that (i) L, is modular and
(ii) the unoriented graphs G(L.), G(L.) are isomorphic, then the lattice L, is
modular as well.

(B) Let M, and M, be directed distributive multilattices of locally finite length.
Then the following conditions are equivalent:

(i) The unoriented graphs G(M:), G(M) are isomorphic.

(ii) There exist multilattices A, B such that M, is isomorphic with A X B and M,
is isomorphic with A X B (B is dual to B).

In the present paper we shall investigate some questions on graph isomorphisms
of multilattices analogous to those that have been dealt with in the papers [2], [3],

(41, [5]-

2. Statement of results

Theorem 1. If M, and M, are directed multilattices of locally finite length such
that (i) the unoriented graphs G(M,), G(M,) are isomorphic, (ii) M, is modular
and (iii) M, is distributive, then the multilattice M, is distributive as well.

Theorem 2. There exist directed finite multilattices M, and M, such that (i) the
unoriented graphs G(M,), G(M;) are isomorphic, (ii) M, is modular, (iii) M, is
not modular.

Theorem 3. Let M, and M, be directed modular multilattices of locally finite
length. Then the following conditions are equivalent:

(i) There exist a graph isomorphism ¢ of G(M,) onto G(M;) such that no
elementary square S = M, breaks by the isomorphism @ and no elementary square
S’ =M, breaks by the isomorphism @~ '.

(iii) There are multilattices A, B such that M, is isomorphic with A X B and M, is
isomorphic with A X B (B is dual to B).
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3. Proofs of theorems

3.1. Proof of Theorem 1. First we recall the definition of the ternary
betwenness relation [6] in the directed multilattices.
Let a, b, x e M. We say that x is between a and b and write axb if

(b) [(@anx)v(bax)lc=x, (arx)A(bAax)canb.

Directed multilattices M,;, M, are said to be b-equivalent if there exists
a bijection f of M; onto M, such that for each triple a, b, x € M the relation axb is
equivalent with f(a)f(x)f(b).

From Theorems 4.3 and 2.2 of [7] it follows:

(%) If M, and M, are directed modular multilattices of locally finite length such
that the unoriented graphs G(M,), G(M,) are isomorphic, then M,, M, are
b-equivalent.

In [9] the following assertion is proved:

(**) Let M, and M, be directed b -equivalent multilattices. If the multilattice M,
is distributive, then M, is distributive as well.

If we assume that M, and M, are directed multilattices of locally finite length
such that M, is distributive and M, is modular and G(M;), G (M,) are isomorphic,
then by the assertion () the multilattices M,, M are b-equivalent. Thus from (xx)
it follows that the multilattice M, is distributive.

Fig. 1 Fig. 2

3.2.Proof of Theorem 2. The partially ordered sets M, and M, in Fig. 1 and
Fig. 2 are of the same length 4 and card M, =card M,=13. It is obvious that M,
and M, are directed multilattices.
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The multilattice M, is not modular because there exist elements ys, ys € M, such
that z,>ys, z>>ys and ys;Ays={y:}, where y, is not covered by ys, ys.

The modularity of M, will be verified as follows:

We define the height v(x) of an element x € M; as the maximum of lengths of
chains between the least element of M; and x. Let us denote by M (i) the set of
elements x € M; with v(x)=i. Then M(0)={o}, M(1) = {x1, x2, x3}, M(2) = {y:,
Y2, V35 Y4, Y5}, M(3) = {z1, 22, 23}, M(4) = {i}. It is routine to verify that M, satisfies
the Jordan—Dedekind chain condition and that, whenever i is a positive integer
and x,y e M (i), thenx Ay e M(i — 1) iff x vy e M(i + 1). Hence the conditions (¢')
and (0") are fulfilled and therefore M, is modular.

The multilattices M, and M, are defined on the same set M = {0, x1, X2, X3, Y1, Y2,
Y3, Ya, ¥s, 21, 22, 23, i }. Let ¢ be the identical mapping on M, then ¢ is a graph
isomorphism of G(M,;) onto G(M,).

3.3. For proving Theorem 3 we need some results of the papers [8], [3].

(K) [8] Let A be a quasiordered set. There exists a one-to-one correspondence
between the nontrivial direct decompositions. of the quasiordered set A into two
factors and pairs (R, R:) of nontrivial congruence relations R,, R, on A having
the properties:

(i) RiR>:=R:;R,

(ii)) RiUR:;=1I, RinR,=0 (I, 0 are the greatest and the least elements of the
lattice of all equivalence relations on the set A).

(iii) If a, b, ce A, a=c, aR,b, bR,c, then a=b =c.

(iv) Leta,b,c,d €A, aR,b, cR.d, aR,c, bR:d, then from a =b it follows that
¢ =d and from a =c it follows that b =d. To each couple (R., R,) with the
mentioned properties there corresponds the decomposition A ~A/R; X A/R; and
to each element a € A there corresponds the element (ai, a,), where a; is the
equivalence class under R; (i=1, 2) containing a.

In the paper [3] the following two lemmas were proved under the assumption
that M, and M, are directed distributive multilattices and ¢ is a graph isomorphism
of G(M,) onto G(M.).

Lemma 1. Forx,yeM; let uex Ay, v exvy such that [u, x], [u, y] are prime
intervals and let @(x) <@(u)<q(y). Then ¢(x) € p(u) Ap(v), (¥) € p(u) ve(v).

Lemma 2. Forx,yeM, letuexAy,v exvy, such that [x, v], [y, v] are prime
intervals and let p(x) <), p(y)<@(v). Then @(u)e p(x)Ap(y).

From the method of the proof of these lemmas in [3] it follows that they remain
valid also when we replace the assumption of the distributivity of the multilattices
M,, M, by the conditions: (a) M,, M, are modular multilattices, (b) no elementary
square of M, breaks by the isomorphism ¢ and no elementary square of M, breaks
by the isomorphism ¢,

For proving the implication (i) => (ii) in Theorem (b) in [3] only the modularity of
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the multilattices M;, M, and the assertion of Lemmas 1 and 2 have been applied.
From this it follows that the following assertion is valid.

(Ts) Let M, and M, be directed modular multilattices of locally finite length and
let @ be a graph isomorphism of G(M,) onto G(My). If no elementary square of
M, breaks by the isomorphism ¢ and no elementary square of M, breaks by the
isomorphism ¢, then the condition (ii) from Theorem 3 is valid.

Now let us suppose that A, B are modular multilattices fulfiling the condition (ii)
from Theorem 3. Let f; be an isomorphism M, onto A X B, f, an isomorphism M,
onto A X B and let & be the identical mapping on the underlying set of A X B (this
set is clearly equal to the underlying set of A X B). Then the mapping ¢ = f5 'hf, is
a graph isomorphism of G(M;) onto G(M,). From the definition ¢ it follows
immediately that fi(x) = f2(¢(x)) for each x € M,. Further there exist relations R,
and R; on M, such that A is isomorphic with M/R,, B is isomorphic with M1/R,
and R, R; fulfils the conditions (i)—(iv) from the assertion (K) (where we take the
multilattice M, instead of the quasiordered set A). Then for each x, y e M; we
have:

() If x<y and @(x)<q@(y) (9(x)>@(y)), then x =y(Rz) (x =y(Ri)).

In fact suppose that x <y and @(x) <@(y); then there are elements a,, a.€ A,
b, b; € B with fi(x) = (a1, b1), fi(y) = (a2, bz). At the same time we have f,(p(x)) =
(ai, by), f2(p(y)) = (az, b,). From x <y it follows that we have either

n a,<a, and b,;=b,
or
2) ai=a, and b;<b,.

If (2) were valid, then we would have @(x)>@(y), which is a contradiction.
Therefore the relation (1) holds. From b, = b, we obtain x =y(R;). Similarly we
can verify that if x <y and @(x)>@(y), then x =y(R,).

Assume that an elementary square (a, b, u, v)=M,; would break by the
isomorphism ¢. Hence either ¢(u), @(v) cover the elements @(a) and @(b), or
@(u), p(v) are covered by ¢(a) and @(b). Let us consider the first case (the second
case being dual). Then a =u(R1), b =u(R,) by (j). Hence a =b(R,). At the same
time a=v(R;), b=v(R;) by (j), and hence a=b(R;). From this it follows
according to the property (ii) in the assertion (K) that a=>b, which is
a contradiction. Similarly we can show that no elementary square of the multilattice
M, breaks by the isomorphism @', Thus we have proved that (ii) implies (i).
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O 'PA®OBOM U3OMOPOPU3ME MYIBTUCTPYKTYP
Mapus TomkoBa
Pe3iome

B naHo# cTaTbe fOKa3aHbl TPH TEOPEMbI O HAMPARIEHHBIX MYJIBTHCTPYKTYPaXx JIOKaJbHO KOHEYHOH
panHbl. Ecnu rpadbl MyasTHCTPYKTYP M;, M, u3oMopdubl, npuyéM M, muctpubyTuBHa M M,
MOJy/IipHa, Toraa M, Takxke AOJKHA GbITh AUCTPHOYTHBHA. OHAKO CYLUECTBYIOT MYJIBLTHCTPYKTYPbI
M,, M,, rpacbl KoTOpBIX H30MOPGHLI, NpHYEM M, MonynsipHa U M, HemonyasipHa. TpeTss Teopema
FOBOPHT O YCJIOBHSIX, IIPH KOTOPBIX M3 H30MOpdH3Ma rpacoB MOAYISPHBIX MYJIbTHCTPYKTYp M,, M,
BLITEKAET CYLIECTBOBAHHE MYJILTHCTPYKTYP A, B Takux uto M, ~A X B, M, ~ A X B (rne B smnsercs
AyajibHa MYJbTHCTPYKTYpa K B).
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