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REMARKS ON REPRESENTATION 

OF FUZZY QUANTUM POSETS 

ANATOLIJ DVURECENSKIJ l 

(Communicated by Sylvia Pulmannovd) 

ABSTRACT. We present a new look at representation of fuzzy quantum posets 
via a family of q-cr-algebras (cr-algebras) of crisp subsets of an original universe. 
In particular, we give a representation of observables and s tates of fuzzy quantum 
spaces in these q-cr-algebras via pointwisely defined functions and special types 
of probability measures. 

1. Introduction 

The K o l m o g o r o v i a n probability model [13] completely describes sit­
uation which appears in measurement of quantities of different kinds, which are 
important in physics, biology, economy, measurement theory, e t c However, there 
are sit nations, for example in quantum mechanics, psychology of human brain, 
computer science or sociometry (for details see [11]), where K o l m o g o r o v ' s 
model is not adequate. Therefore, many efforts have been done to describe the 
probability world of quantum mechanics, where, in particular, quantum logics 
[25], [24] play an important role. 

For our aims there is a very important model introduced by P . S u p p e s 
[23], called quantum probability space. The latter means a couple (fi, Q), where 
Q is a collection of subsets (= quantum mechanical events) of the crisp set Q, 
called a q-a-algebra, closed with respect to countable disjoint unions and with 

A MS S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 04A72. Secondary 81P15. 
K e y w o r d s : Fuzzy quantum poset, Fuzzy measurable space, q-cr-algebra, Observable, 

State, Orthomodular poset. 
1 The paper has been undertaken with the support of the Alexander von Humbo ldt Foun­

dation, Bonn. 
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respect to the set-theoretical complementation, and it wras introduced in order 
to describe the position and the momentum of a quantum mechanical particle. 

Using Z a d e h 's fuzzy ideas [26] and a one-to-one correspondence between 
subsets and their characteristic functions, the quantum space of S u p p e s may 
be uniquely represented by a system of its characteristic functions defined on a 
non-empty set i} with values in the closed interval [0, 1]. 

The fruitful ideas of K . P i a s e c k i \s fuzzy set model [17] [19:, called a 
fuzzy soft a-algebra, have found a reflection for quantum mechanical models by 
B . R i e c a n [21], J . P y k a c z [20], and by the author [2] showing the similar 
structures with quantum logics. These models are known as fuzzy measurable 
spaces (F-quantum spaces) and fuzzy quantum posets, respectively. 

In the present remarks, wre shall study the fuzzy quantum posets which are 
analogues of S u p p e s ' quantum spaces. For these models we show that they 
can be represented by a family of q-cr-algebras of the original universe. Moreover, 
we present that all observables of fuzzy quantum posets are in a "one-to-one" 
correspondence with pointwisely defined mappings on the universe, as well as. 
we show that states of fuzzy quantum posets are represented by probability 
measures of special types on these q-cr-algebras. 

We note that the presented methods give us the opportunity to describe fuzzy 
situation by means of the classical K o l m o g o r o v and S u p p e s models, 
which on the other hand, restricts the usage of fuzzy set ideas for quantum 
mechanics to the classical ones in our situations. 

2. Fuzzy quantum p o s e t s 

Suppose that il is a non-empty set called the universum. Using the language 
of fuzzy set theory, we shall say that 

f|/,-:=mf/,-, !ll 
i 

r :=!-/ Ci) 

are called the fuzzy intersection and the fuzzy union of the fuzzy sets /,• "s. and 
the fuzzy complement of the fuzzy set / , respectively. 

According to [1], we introduce the intuitionistic complement f^ of the fuzzy 
set / via 

1 if /(-;) = 0, 
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REMARKS ON REPRESENTATION OF FUZZY QUANTUM POSETS 

Two fuzzy sets / and g are called orthogonal or fuzzy orthogonal and we 

write / _L g or / _L^ g . respectively, if f+g < 1 or fdg < 1/2, correspondingly . 

We say t h a t for two fuzzy sets / and g we have / < g if f(u)) < g(uo) for 

any u) G il. 

For any fuzzy set a G [0, l}n we define by [15] H(a) = a - 1 ( (1 /2 ,1 ] ) (high 

values), L(a) = a " 1 ( [0 ,1 /2 ) ) (low values), and M(a) = a " 1 ({1/2}) (middle 

rallies). 

K . P i a s e c k i in [17] - [19] s tudied a fuzzy soft a-algebra as a non-empty 

family M of fuzzy subsets of a crisp set Q for which we have: 

(i) if l(u) = 1 for any LU G ft, t hen 1 G M \ 

(ii) if f G A7, then f± G M\ 

(iii) if f,: G M , i > 1, t hen Q / , G A7; 
2 = 1 

(iv) if \/2(u) = 1/2 for any CJ G fi, t hen 1/2 (£ M . 

It is clear t h a t fuzzy soft cr-algebra is a dis t r ibut ive , de Morgan, rr-complete 

latt ice with the minimal and maximal e lements 0 and 1, respectively , and with 

the unary opera t ion _L: M —• M. We recall t h a t a, U a1- is not necessary 1. 

If we change (iii) to the requirement 

(iii)* \Jfi € A/ whenever f{ ±F f:j for i ^ j , 
i 

then the couple (£2, AJ) is said to be a fuzzy quantum poset ([2]). 

In par t icular , if (fi, Q) is a q u a n t u m probabil i ty space of S u p p e s , then 

t he couple (il, M), where M consists of all character is t ic functions of all subsets 

from Q , is a fuzzy q u a n t u m poset . T h e overlook of th is theory is given in [8]. 

We recall t ha t according to [1], fuzzy q u a n t u m posets can be unders tood also 

as a par t icular case of B r o w e r - Z a d e h posets (see also [10]) if we take into 

account the intui t ionist ic complement . 

Let (S}, M) be a fuzzy q u a n t u m poset . In M, there are two special families 

U\){M) and W±(M) consisting of all fuzzy sets a, G M such t h a t a < 1/2 

and a > 1/2, respectively . For any a G M we have a fl a 1 G Wo(M) and 

a U (/-- G W\(M), and WQ(M) and Wi(M) consist only of e lements of those 

forms. Moreover, f]ci G W±(M) whenever c; G W\(M), i > \ . 
i 

A non-void subset I C M is said to be an F-a-ideal of (ii, M) if 

(i) OH a.-1- G / for any O G M \ 
(ii) if O < b, a G A/ , 6 G 7 , then O G 7; 

(iii) if O7 T / / O7- for i ^ j , {O2} C 7 , t hen (J O7 G 7 ; 
i 

(iii)* UO7 G 7 whenever {O?} C 7 , for the case of a fuzzy measurable space; 
i 
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(iv) if a n c E J for some c E VVi(AJ), then a E J • 

Put 
J0 = { a E A J : 3 c G W i ( M ) , a i 1 c < l / 2 } J ) 

Then J0 is a proper F-cr-ideal of (__, AJ) containing TVo(M). Moreover, if J is 
any F-cr-ideal of (1_,M), then J0 C J , ([5], [7]). 

Define a relation ~ C M x M via 

a ~ b ^=> a _Lp b , a _L_p b . i 5) 

Then for ~ we have the properties ([5], [7]): 

(i) a ~ a for any a E AJ; 
(ii) if a ^ b, then a^ ^ bx ; 

(iii) if ai J-F a j > &i -LE °j f° r l ¥" J •> °i ~ °n ?' __" 1 > then (J a? ~ IJ b;: 
?' / 

(iii)* if a.; ~ b2, then J a; ~ IJ b;, for a fuzzy measurable space. 

We note that ~ cannot be transitive, and for its transitive closure % we have 
a « b 4=^ 3c E IVi(AJ) such that a f l 6 1 n c , a x n 6 n c < 1/2 4=> 3c*i r„ 

E Wi(M) such that H(a n b-L) U H(aL n b) C (J A/(c,) <̂ => 3{r„},?L1 E 
2 = 1 

W^A-I)" such that H(a n b"1) U JJ (a x n b) C [J AI(cn). It is simple to verify 

that J0 = {aG AJ : a « 0} . 
7 1 = 1 

3. Representation of fuzzy quantum posets 

In the present section, wre give characterizations of fuzzy quantum posets via 
a family of q-O"-algebras (cr-algebras) of crisp subsets of the universe i}. 

According to [5] and [7], we define a quotient A4 := M/IQ as the set of all 
a = {b E AJ : b ~ a } , a E AJ. Then A4 is a quantum logic ([5]). see below 
for definition, (Boolean a-algebra, [7]) with respect to the partial ordering < \/ 
defined via a <M b if and only if there is a c E JVi(AJ) with a n b ^ n c < 1/2 . and 

a unary operation J_M : -M —> .M via a±AI := a-1-, and with the minimal and 
maximal elements 0 and 1, respectively. Denote by 0 the canonical embedding 
from AJ onto A4 defined via (j)(a) = a, a E AJ. 

We recall that a quantum logic ([24]) is a poset L with the least and greatest 
elements 0 and 1, respectively, with a unary operation J_: J —» J such that: 

(i) a x x = a, a € L; 
(ii) if a < b, then bx < a1-; 

(iii) a V f l i = l , a £ L; 
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(iv) if ai < aj~, i ^ j , then \ / fljGi; 
i = l 

(v) if a < b, then 6 = a V (6 A a x ) (orthomodularity law). 

We shall say that a q-cr-algebra (a cr-algebra) Q of crisp subset of the universe 
i} is a crisp representation of a fuzzy poset (a fuzzy measurable space) (17, M) 
if and only if there is a cr-homomorphism h from Q onto M/IQ such that: 

(i) /i(0) = O; 
(ii) h(il\A) = h(A)±", 4 G Q ; 

(iii) h( \J AA = V h(Ai) whenever A{ n Aj = 0 for i ^ j , /4, G 2 , 
M = l ' i = l 

i > 1. 

Following to [5] and [15] (for the case of fuzzy measurable space), we introduce 
the next two families of subsets of £7: 

K(M) = {ACQ: 3 a e M such that {a > 1/2} C A C {a > 1/2}}, (6) 

and let A(M) be the minimal q-cr-algebra generated by {H(a) : a G M } . As 
it has been proved in [5], K(M) is a q-cr-algebra (cr-algebra). It is evident that 
A(M) C K(M), and A(M) can be a proper subset of K(M), moreover, in view 
of N(a Hb) = 1V(a) D IV(b), *4(M) is a cr-algebra whenever M is a fuzzy soft 
cr-algebra. 

THEOREM 3.1 . Let (fi, M) be a fuzzy quantum poset (a fuzzy measurable 
space). Then K(M) and A(M) are crisp representations of (17, M). 

P r o o f . The statement on K(M) has been proved in [4] and [5], and to be 
self-contained, we recall that a cr-homomorphism h^ from K(M) onto M. is 
defined as follows: hjc(A) — a whenever 

{a> 1/2} C i C {a> 1/2}. (7) 

The cr-homomorphism hjs, from A(M) onto M. is defined as the restriction 

of hie onto A(M), i.e., hj, = /L/c | A(M)' ^"ne s u r J e c t l v l t y of h>A follows from the 

following. Let a be any element of M, then {a > 1/2} C H(a) C {a > 1/2}, 

so that fiK:(H(a)) = a, which gives h^(H(a)) = a. • 

Suppose that L is any Boolean cr-algebra. Due to L o o m i s - S i k o r s k i ' s 
theorem ([22]), there is a non-void set £1 with a cr-algebra Q and a cr-homo­
morphism h from Q onto L. Using the result of N a v a r a and P t a k [15], 
we can find a fuzzy soft cr-algebra M such that M/IQ corresponds to L, and Q 
is a crisp representation of (17, M ) . Indeed, define M as the set of all functions 
from il into the set {0,1/2,1} such that h(M(a)) = 0 for any a G M and a 
is measurable with respect to Q. An easy verification gives us that A(M) = Q. 
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4. Representat ion of observables 

A fuzzy analogue of a random variable is an observable, i.e., a mapping x 
from the Borel cr-algebra I3(R) of the real line R into M such that: 

(i) x(R\E) = x(E)±, E £B(R); 

(
OO \ oc 

\jEi)=\J x(Ei) if E% n E7- -= 0 for i / j . 
2 = 1 7 Z = l 

For example, if a is a fuzzy set from M, then a question observable. xa . is a 
mapping xa: I?(R) —» M such that 

*„(£) 

for any E G JB(R) . It is evident that xa is an observable and it plays the role 
of the indicator of the fuzzy set a G M. 

In the present section, we show that for any observable x of a fuzzy quantum 
poset (fi, M) and any crisp representation Q of (il, M) we can find in some 
sense unique Q-measurable mapping / : fi —» R which represents x, and vice 
versa. 

The following result has been proved in [4] and [6]. 

THEOREM 4.1. Let x be an observable of a fuzzy quantum poset (Q.M). 
and let S be any countable, dense subset of R (or S = R) . Denote, for any 
r G S, Bx(r) = x((—oo,r)) . The system {Bx(r) : r £ 5} fulfills the following 
conditions: 

1. Bx(s) < Bx(t) if s < t for s,t G S, 

2. U Bx(r) = a, f] Bx(r) = a1-, 
res res 

3. U Bx(s) = Bx(r) for any r G S, 
s<r 

4. B . W u B - f r ) 1 =a, reS, 
where a = x(M) . 

Conversely, if a is a system, {B(r) : r £ S} of fuzzy sets from M fulfilling 
1.-4. for some a G M, then there is a unique observable x of (fi, M) such that 
Bx(r) = B(r) for any r G S and x(R) = a. 

THEOREM 4.2. Let Q be any crisp representation of a fuzzy measurable space 
(fi, M), and let h be a a-homomorphism from Q onto M/IQ . If x is an observ­
able of (il,M), then there is a Q-measurable, real-valued function f: il —• R 
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such that 
h(r\E))=<p(x(E)) (8) 

for any E G B(R). If g is any Q-measurable, real-valued mapping on il with 

(8) , then {u G U : /(a;) ^ g(^)} G Q and h({f ^ g}) = 0 . 

Conversely, let f: 17 —> R be am/ Q-measurable function. Then there is an 
observable x of (fi, AJ) ufilb (8). 7/ H is anu observable of ($1, Af) ujilb (8), 

*(£,) _LF y(E)± (9) 

/Or am/ F G J5(R) . 

P r o o f . Suppose that x is an observable of (il, Af). The set {(/)(.x(F)) : 
F G ri(R)} is a Boolean sub-O"-algebra of M/IQ with a countable generator. 
Due to [25; Theorem 6.9], there is a mapping / : il —> R, Q-measurable such 
that (8) holds. 

Let Q be the set of all rationals. If g is any Q-measurable, real-valued 
function on il, then {/ < O} = (J {^ : f(u) < r < g(u)} = (J {u; : 

rGQ r e Q 

/ M < r} H {u : (/(a;) > r} . Hence, b({/ < .O-}) = V M / " 1 ( ( - ° ° > 0 ) ) n 

rGQ 

//(/;-"! ([r,oo))) = \ / 0(^(0)) = 0. Similarly, we have h({g < / } ) = 0. 
rGQ 

Suppose now / is any Q-measurable, real-valued function defined on il. The 
set R := {h o f~l(E) : E e B(R)} is a Boolean sub-a-algebra of M with a 
countable generator, and h o f~l is a cr-homomorphism from B(R) onto 7?,. 
Hence, as in the first part of the present proof, there is a K(M)-measurable, 
real-valued function fjc on il such that h(f~1(E)) = hjc(f^'(E)) for any 
E e B(R). 

Assume that Q = { r i , r 2 , . . . } . For any integer n > 1 we find a fuzzy set 
an G M such that h(f~~i (( — oo, r n ) ) ) = On and put O = f)(a,n

 U a n ) - For the 
n 

system {bn : n > 1} defined via bn = ( a n n a ) U a " , n > 1, we have bnUb^ — a 
for any O > 1. 

We claim to construct a system {B(r) : r G Q } fulfilling 1.-4. of The­
orem 4.1. We put B(ri) = bi. Suppose that B(ri)1..., B(rn) have been con­
structed. A fuzzy set -9(rn+i) is constructed as follows: Let ( i i , . . . , i n ) be a 
permutation of (1 , . .. , n) such that rix < • • • < rin . Then there are only three 
possibilities: 

(*) rn+i < r n , 
0>) rn + i > rin , 
(c) 3 A: = 1, . . . , n — 1, such that rik < r n +i < rik+1 . 
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We define 

' 6 n + 1 nB(rh) if (a) holds, 

B(rn+1)= I bn+lUB(r1n) if (b) holds, 

k B(rlk) U B(rik+l) H 6„+i if (c) holds. 

By the induction, the system {B(r) : r E Q} fulfills 1. and 4. of The­

orem 4.1. Moreover, for any r E Q we have (j)(B(r)) = h(f~l(( — oc.r))) -

^ ( / ^ ( ( - o o j r ) ) ) , which gives 

n n n 

therefore \jB(rn) = a. Similarly, 
n 

H((~]B(rn)) Qf]H{B(rn)) C ( ^ / ^ ( ( - o o . r , , ) ) = 0 . 
^ n ' n n 

so that f]B(rn) = aL . 
n 

In the same way, we have 

U H(B(s)) c U Z*1 ((-«><*)) C U W ^ ^-l • 

Since for any r E Q and any u; E -1 we have B(r)(uj) E {O(y)- (rL(^)} . we 
conclude |J £ ( s ) = £ ( r ) . 

s<r 

In other wrords, we have proved that (B( r ) : r E Q} satisfies the conditions 
1.-4. of Theorem 4.1. Therefore, there is a unique observable x of (il. M) 

such that x((—oo,r)) = B(r) for any r E Q. Hence, for any r E Q we have 
h(f~1(( — oo, r))) -= (j)(B(r)) — (p(x(( — oo, r))) . In a standard way we have that 
(8) holds for any Borel set E E B(R). 

The property (9) follows from the following. Let y fulfill (8). Then we have 
h(f-y(E)) = </>(y(E)) = cp(x(E)) = hK(fj--{E)) for any E E B{R) which 
gives {y(E)L > 1/2} C il\f^(E) C {yfFH > 1/2}. So that (T (£) f 
y(E c) > 1/2} C #(*(£ , ) ) n f f (y(£ c ) ) C f~l(E) n fK\Ec) = 0, which gives 
x(E) n y(Ec) < 1/2 for any F1 E J5(1R), and Theorem is completely proved. • 

436 



REMARKS ON REPRESENTATION OF FUZZY QUANTUM POSETS 

K e in a r k 4.1 . Using the same method as that in the proof of Theorem 4.2, 
we can prove Theorem 4.2 also for any crisp representation of a fuzzy quantum 
poset without the "uniqueness property" in the first direction. For Q = K(M) 
the uniqueness holds in both directions. 

For another look at the representation of observables for fuzzy measurable 
spaces see e.g. [12]. 

In [9], there has been introduced the notion of the sum for fuzzy quantum 
measurable spaces: we say that an observable z is a sum of observables x and 
y if, for any f GR, we have 

Bz(t)= [JBx(r)nBy(t-r). (10) 

It has been shown that the sum always exists. The representation theorem for 
observables (Theorem 4.2) allows us to build up the calculus of observables in a 
more straight way. 

Let Q be a crisp representation of a fuzzy measurable space (fi, M), and let 
/ be a Q-measurable, real-valued function such that (8) holds, then we shall 
write ./• ~ Q / . 

For example, if a is a fuzzy observable of M, and A £ Q such that h(A) = a, 
then xn ~Q I \ , where I A is the indicator of the set A. Moreover, if -0 is a 
Borel function, then by ^(x) we mean an observable x o i[)~l, and we have if 
x ~ o / , then ip(x) ~Q ip(f). 

The calculus for observables # i , . . . , xN is introduced as follows. Let xi ~Q fj 
for i = 1 , . . . , N, where N can be either an integer or +oo, and let p: RN —» R 
be a Borel measurable function. We define p(xi,... , xN) as any observable x 
of (il,M) such that: 

(i) p ( / i , . . . JN) is Q-measurable; 
(ii) x ~Q p(fu...JN); 

N 
(iii) x(R) = p| xt(R). 

i=l 

It is simple to verify that x satisfying (i) - (iii) is unique, and if x,j ~Q CJ} for 

i = 1,...,1V, and y ~Q p(g±,..., gN), then </>(y(E)) = h{p(gu ... ,gN)~l(E)) = 

h(p(gu- • ^9N)-1(E)n\J {fi ? 9l}) Vh(p(9l,..., O/v)-
1(E)n f| {/, = O,}) = 

l)Vh(p(fu...JN)-1(E))=<l>(x(E)). 

We recall that if N = oo, then by p(x\,..., xN) we mean some limit ex­
pression, or convergence, respectively. Moreover, if Q and Q are two crisp rep­
resentations, and if X{ ~ Q fi, x-h ~g O?;, i = 1,. . . , IV, and x ~ Q P(fi-> • • JN) , 
/; - g p(.O!,. . . , gN), then x(E) = y(E) for any E G B(M). 
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For example, let p(u,v) = u -f- v, u,v G K, t h e n ;r + y ~ p(f-.g) -f •*•' ̂  ./ 

and y ~ g a n d p(#, y) = x -\- y. 

5. S t a t e s o n fuzzy q u a n t u m p o s e t s 

An analogue of probabil i ty measure for fuzzy q u a n t u m poset ( Q . M ) is a 

state, i.e., any m a p p i n g m : A/ —» [0,1] such t h a t 

/ oc \ oc 

U fi) = E m ( / * ) ' * -1-'" fj • (•!"'• - 1 f-i ) ' ^ I ' ( 1 1 ! 

ѓ=i / 7;=i 

P-L m ( / U / i ) = l , / G M . (12) 

Now we present two representat ion theorems for s ta tes . For a fuzzy measur­

able space t h e first one has been proved in [3], see also [15]. 

T H E O R E M 5 . 1 . For any state m on M . the mapping m: A4 -- [0.1] dejintd 

via, fn(a) = m(a) , a £ A/ , is a state on a quantum logic M. . Conversely, for 

any state s on the quantum logic Ai . there is a unique state rn on M such 

that rn = s . 

P r o o f . It is clear t h a t rn is a well-defined mapping . Suppose that 

a>i —M ajM f ° r i / J- We can find a sequence {a,;} of mutual ly orthog­

onal elements from M such t h a t d2- = a for any /'. For this , it suffices to 

find a sequence {c?;7} £ VVi(M)H° such tha t a, n a} n ci} < 1/2. P u t t i n g 

c = C\cij ^ W i ( M ) and d?; = av; H e , i > 1 , we ob ta in the elements in quest ion. 

>-J 

Moreover, \f az = \f dj = a, where a = | J d ; so t h a t m( \f(i;) — m[ V r /< ;) " 
i i v x / ' ^ / y 

m ( a ) = m ( a ) = ]V ra(di) = J ] m(a / ) = X] ^ ( ^ - ) • 
i i i 

T h e second par t of the assertion is evident. C 

T h e following theorem extends representa t ion for Q = JC(M) by P i a s e c k i 

[17] and L e B a L o n g [14]: 

T H E O R E M 5 .2 . Let Q be a crisp representation of a fuzzy quantum spaa 

(il,M). For any state m on M , a mapping Pin on Q defiind via 

Pm(A) = m(a), AG:Q, ( 13 ) 

where a = h(A) is a probability measure on Q such that 

P m ( A ) = 0 , Aeh~l(Q). i l l ) 
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Conversely, for any probability measure P on Q with (14). there is a unique 
state m/> on M such that PmP — P • 

P r o of. If a — h(A) = b, then m(a) = rn(b), so that Pm is well defined. 
Moreover, as in the proof of Theorem 5.1, we can prove that Pm is a probability 
measure on Q. The proof of (14) is evident. 

For the converse, we put mp(a) -= P(A) whenever h(A) = a. In the standard 
way, we can show that rnP is a state on M. • 

R e m a r k 5.1. N a v a r a and P t a k [15] using the representation as in 
Theorem 5.1 for a fuzzy measurable space show that it is possible to find (£2, M) 
such that M has no states. Now we present a new example of this statement. 
Let il = R, Q = B(R), and let A be the cr-ideal of B(R) consisting of all 
subsets of the first category. Let h be the canonical cr-homomorphism from Q 
onto Q/A. If we define a fuzzy soft cr-algebra M via a manner described in 
[15] (see also the end of the third section of the present paper), then M has no 
state since M/I0 = Q/A. has no states (see [22; § 21, Example E]). 
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