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OF GENERALIZED MV -ALGEBRAS 

J Á N JAKUBÍK 

(Communicated by Anatolij Dvurečenskij ] 

A B S T R A C T . Let A be a generalized MV-algebra with the underlying set A. 
Under the well-known notat ion, there exists a unital lattice ordered group (G, u) 
such t h a t A = T(G, u). By applying the fundamental operations of A we can 
define a partial order ^ on A. Let a, b £ A, a ^ b and let Ax = [a,b] be 
the interval of (A; ^ ) . In this paper we prove tha t there exists a generalized 
MV-algebra A1 with the underlying set A1 such tha t the fundamental operations 
of A1 are induced by certain polynomial functions over G. 

I. Introduction 

The notion of a generalized MV- algebra was introduced b y R a c h u n e k [10], 
and by G e o r g e s c u and I o r g u 1 e s c u [7], [8]. In [7] and [8], the term, "pseudo 
MV-algebra" was applied. 

A generalized MV-algebra is an algebraic system A — (A; 0 , -., ~ , 0,1) of 
type (2,1,1,0,0) satisfying certain axioms; the definition is recalled in Sec­
tion 2 below. If the operation ® is commutative, then A is an MV-algebra; 
in this case, the operation ~ coincides with the operation -». (Cf. C i g n o 1 i, 
D ' O t t a v i a n o and M u n d i c i [5].) 
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For each generalized MV-algebra A there exists a lattice ordered group G 
with a strong unit u such that, under the well-known notation, A = T(G,u). 
(Cf. D v u r e c e n s k i j [6].) 

The main result of C h a j d a and K ii h r [3] is the following theorem: 
(a) Let A be an MV-algebra and let [a, b] be an interval of (A; ^ ) . Denote 

[a, b] = A* and for each x,y G A* put 

x 0* y = ( - ( - £ © a) © y) A b, 

^x = ^(x^^b) ©a . 
Then A* = (A*, ©*, -•*, a, b) is an MV-algebra. 

In proving (a ) , the authors applied the relation A = T(G, u), and the results 

of their earlier papers [1] and [2]. 

In the present paper we prove: 

(f3) Let A be a generalized MV -algebra and let [a, b] be an interval of (A] _^). 
Denote [a, b] = Ax and for each x:y G Ax put 

x ©i y — (x - a + y) A b, 
-i1x — b — x + a, ^ . r = a — x + b. 

Then we have 
(i) h41 — (Ax\ ®1? - j , ~1 5 a, b) is a generalized MV-algebra. 

(ii) 7/ 4̂ is an MV-algebra, then Ax is an MV -algebra as well; more­
over, the operation ®1 coincides with ©*. ana7 operation ~x co-
incides with -i*. 

By proving (/3), we do not apply ( a ) . In view of (ii), the assertion (ft) is a 
generalization of (a). 

Some further results on a generalized MV-algebra A1 are proved; they con­
cern Boolean elements of A1. 

The intervals of (A')=^) having the form [0,6] were studied in the author's 
paper [10]. 

For the definition of the binary operation 0 in an MF-algebra, cf. Section 2 
below. 

C h a j d a and K ii h r [4; Theorem 3.2] proved the following result: 
(7) Let A = (A; ©, - , ~ , 0,1) be a generalized MV-algebra and let a, 6 G A 

such that a < b. For x,y G [a, 6] define x ©a6 y = (x © (y 0 ~a)) A 6, 
^abx = (~"x © 6) © a ana7 ~afe£ = a © (6 • ~ x ) . T/ien 
([a, 6]; ©a6, —a6, ~ a 6 , a, 6) is a generalized MV-algebra. 

We prove: 

(S) Let us apply the notation as in (/?) and (7) . _e£ x,y G [a, 6]. Tben 

^ © a 5 y = x ©x y , - a 6 £ = - . ^ , ~ a 63 
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2. Preliminaries 

We recall the definition of a generalized MV-algebra. 

DEFINITION 2 .1 . Let A = ( . 4 ;© , - ,~ ,0 ,1 ) be an algebra of type (2, 1,1,0,0). 
For x, y G A we put x 0 y = ~(-i„ © ->y). Then 4̂ is called a generalized 
MV-algebra if the following identities are valid: 

(Al) x © ( y © z ) = ( x © y ) © ^ ; 
(A2) x 0 O = O©x = x; 
(A3) x © l = l © x = l ; 
(A4) - 1 = 0; - 1 = 0; 
(A5) - ( ~ x © ~ y ) = ~(- i_®->y); 
(A6) x © (y 0 ~x) = y © (x 0 ~y) = (-y 0 x) © y = ( -x 0 y) © x; 
(A7) ( i x © ? / ) 0 x = y © ( x © ~ y ) ; 
(A8) — x = x. 

Let .4 be a generalized M V algebra. For x, y G A we set x ^ y if -i„ 0 y = 1 . 
Then (A; =) is a distributive lattice with the least element 0 and the greatest 
element 1 . We put (A] ^ ) = £(A) and we say that 1(A) is the underlying lattice 
of A. 

For a, b G A with a ^ b, the interval [a, 6] has the usual meaning. 

Let G be a lattice ordered group with a strong unit u. We put A = [0, u] 
and for x, y G 4̂ we set 

x © y = (x + y )Aw, -\x = u — x , —x = —x + H , 1 = u . 

Then (A; ©, - , ~, 0,1) is a generalized MV-algebra . Analogously as in the case 
of MV-algebras (cf. [5]) it is denoted by r(G, _ ) . 

THEOREM 2.2. ( D v u r e c e n s k i j [6].) For each generalized MV -algebra A 
there exists a lattice ordered group G with a strong unit u such that A = T(G, u). 

In what follows, when speaking about a generalized MV-algebra A we always 
assume that G and u are as in 2.2. 

LEMMA 2.3. (Cf. [3], [10].) Let A be a generalized MV-algebra and a G A. 
For x,y € [0, a] we put 

x ©a y = (x + y) A a , ->ax = a — x , ~ a x = —x + a . 

Fften £fte structure Aa = ([0, a]; ©a , - a , ~ a , 0, a) zs a generalized MV-algebra. 

In fact, ^4a = r ( G a , i i ) , where G a is the convex ^-subgroup of G generated 
by the element a. 
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LEMMA 2.4 . Let G be a lattice ordered group and a G G. For each x,y G G 
ive put x +ay = x — a + y. Then (G; + a , _ ) is a lattice ordered group with the 
neutral element a. 

P r o o f . It is easy to verify that (G ;+ a ) is a group. If x,y,p,q G A and 
x = y, then clearly p +a x +a q = p +a y +a q. • 

For x G G we denote by — a x the inverse element of x with respect to the 
group (G; + a ) . We have —ax = a — x + a. 

3. Proof of (/3) 

Assume that A is a generalized MV-algebra and that [a, b] is an interval 
of 1(A). 

Under the notation as in 2.4 we put (G; + a , =) = Ga. Let H be the convex 
^-subgroup of Ga which is generated by the element b. Then b is a strong unit 
of H and hence we can construct the generalized MV-algebra Ax — T(H, b). 

From the definition of Ax we immediately obtain: 

L E M M A 3.1. t(A1) = [a,b]. 

P r o o f . The corresponding operations on A1 will be denoted by © i , - ^ 
and ~ 1 . 

Let x, y G [a, b]. Then we have 

x 0-L y = (x +a y) A b = (x - a + y) A b, 

-i1x = b — a x = b +a (—ax) = b — a + (a — x + a) = b — x + a , 

~ x x = —ax +ab — (a — x + a) +ab — (a — x + a) — a + b = a — x + b. 

Hence we verified that the assertion (i) of (/3) is valid. 
For verifying that the assertion (ii) of (/?) holds, let us suppose that A is an 

MV-algebra and consider the operations ©* and -i* as defined in (a). 

Thus we deal with the operation 

x ©* y = (-i(-ix © a) © y) A b, 

where x, ^ G [a, 6]. We have —x + a ^ 0, thus H — x + a ^ u and hence 

-ix © a = ((u — x) + a) f\u = u — x + a , 

-i(->x ©a) = H — (u — x + a ) = x — a, 

-i(-ix © a) © y = ((x - a) + y) A u , 

- ((->x © a ) © y ) A b = ( x - a + l / ) A ' u A Q = ( x - a + ^ ) A b . 
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We obtain x 0* y = x 0 : y. 

Further, consider the operation 

-*x = - i ( x 0 - b ) 0 a 

for x, y e [a, b]. We get 

x 0 -ib = (x + (u — b)) A u = (x — b + u) A it. 

Since x — b ^ 0, we obtain x — b + u ^ it, hence 

x 0 - i b = x — b + iI, 

-n(x 0 -ib) = U - (X - b + U) = b - X , 

~(x 0 -"6) 0 a = ( - x + b + a) A u . 

Since x ^ a, we get —x + a ^ 0 and then —x + b + a = —x + a + b fS b. In view 
of b ^ H we obtain (—x + b + a) A i/ = —x + b + a = b — x + a. We conclude that 
^*x = - ^ x , completing the proof of (j3). • 

Until now we supposed that G is a lattice ordered group, it is a strong unit 
of G, A = T(G, u) and [a, b] C [0, u]. Let us add two remarks on the role of the 
element u to the previous proof. 

1) Let G be a lattice ordered group and let [a, b] be an interval in the positive 
cone G1 of G. Let u be any element of G with b fS u. We denote by G' the 
convex ^-subgroup of G generated by the element u. Then it is a strong unit 
of G'. Consider the generalized M"V-algebra A = T(G',u). Working with G', 
we arrive to the same formulas as in (j3). Hence u need not be a strong unit 
of G; it suffices that the condition [a,b] C [0,it] is satisfied. 

2) Let G, u and [a, b] be as in 1). Further, let n* be an element of G with 
[a, b] C [0,H*]. Working with it* instead of it, we arrive, again, to the same 
formulas for 0X and ->1 as those given in (/3). Hence these operations remain 
valid by this change of u. 

Let Ax be as in (/?); we say that Ax is an interval subalgebra of A. 

P r o o f o f (S) . We recall that for x, y £ [a, b] we have 

x 0X y = (x — a + y) A b, - ^x = b — x + a , ^ x = a - x + b, 
x®abV= ( z e ( 2 / 0 ~ a ) ) Ab , 

- a 6 x = (-.x 0 b) 0 a , ~ a 6 x = a 0 (b 0 ~x). 

Since 
- Æ ~>y = ((u - x) + (u - y)) Л u, 
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we obtain 

xOy= -((u-x + u-y}Au) +u= ((y-u + x-u) V (-u)) +H , 

x(Dy = (y-u + x)VQn (+) 

a) In view of (+) we get 

yG~a = y® (-a + u) _ (__a + u-u + y)\/0 = (-a + y) V 0 . 

Since y _ a, we obtain 2/ 0 ^ a - - a + y. Hence 

£ © (y 0 ~a) = (x - a + y) Au. 

Therefore 

(x 0 (y 0 ~a)) A b = ( x - a + ? / ) A H A b = ( x - a + H)Ab. 

Thus x@aby = x@1y. 
b) The relation (+) yields 

~-xGb=(u~x)Qb=(b-u + u-x)VO. 

Since b — x ^ 0, we get -IX 0 0 — ft _ #, Hence 

(-ix 0 b ) © a = ( b - x + a)AH . 

In view of x |_ a we have b - x + a _ b, whence (b-x + a)/\u = b — x + a. 
Therefore - ,x —. -I..X. 

ao 1 

By applying analogous steps we obtain ~abx = ~ 1 x . • 

4. Some further properties of an interval subalgebra 

We slightly modify the above notation. Let Q = (G\ + , _ ) be a lattice ordered 
group and let 0 _ a G G. We put Qa = (G; + a , _ ) , where x +ay = x — a + y 
for each x, y G G. In view of 2.4, C?a is a lattice ordered group with the neutral 
element a. 

For each x G G we put (/?(x) = x + a. Then for any x, y G G we have 

<p(„) + a <p(y) = (x + a) - a + (y + a) = x + y + a = <p{x + y). 

We obtain: 

LEMMA 4 . 1 . The mapping cp is an isomorphism of the lattice ordered group Q 
onto the lattice ordered group Qa. 

We denote by cpc the mapping (p reduced to the set [0, c], where c = b — a. 
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LEMMA 4 .2. (pc is an isomorphism of the generalized MV-algebra Ac onto 
the generalized MV-algebra A^ . 

P r o o f . We have <pc(0) = a and ipc(c) = b. Thus in view of 4.1. ipc is an 
isomorphism of the lattice £(AC) onto the lattice £(AX). 

We denote by 0 C , ->c and ~ c the corresponding operations in the generalized 
A/F-algebra Ac. We have to verify that the relations 

(1) <pc(x®cy) = ipc(x)®1<pc(y), 
(2) (pc(^cx) = -,l(pc(x), 

(3) tpc(~cx) = -x(pc(x) 

are valid for each x,y G [0, c]. 

From the definition of ^4C wre obtain 

x ©c y = (x + y) A c, -icx = c - x , ~ c x = -x + c. 

We get 

<Pc(x®cy) = Pciix + y) A c ) = ^ c ( x + 2/) A ( ^ c ( c ) = (z + 2/ + a) A 6, 

</>c(-r) ©x <pc(y) = (cpc(x) +Q cpc(y)) A b = ((x + a) - a + (y + a)) A 6 

= (x + y + a) Ab] 

thus (1) is valid. 
Further, we have 

(pc(~^cx) = pc(c — x) = c — x + a = b — a — x + a, 

-"1 ((pc(x)) = b — (pc(x) + a = b — (x + a) + a = b — a — x + a, 

thus (2) holds. The proof of (3) is analogous to that of (2). • 

As a corollary we obtain: 

PROPOSITION 4 .3 . / / A1 = ([a, b],©^-^,^^, b) is an interval subalgebra 
of an MV -algebra A, then Ax is isomorphic to an interval subalgebra A2 of A 
such that the underlying set of A2 is the interval [0, b—a] of the lattice 1(A). 

An element x0 of a generalized jAFV-algebra is called Boolean if it has a 
complement in the lattice £(A). We denote by B(A) the set of all Boolean 
elements of A. 

From the fact that £(A) is a distributive lattice we immediately obtain: 

LEMMA 4 .4 . B(A) is a sublattice of £(A) and it is a Boolean algebra. 

LEMMA 4 .5. Let c e A and let x0 e B(A). Then cAx0e B(AC). 

P r o o f . There exists a complement y0 of x0 in £(A). Then we have 

(c A x0) A (c A y0) = 0 , (c A x0) V (c A y0) = c A (x0 V y0) = c A u = c, 

hence c Ay0 is a complement of c A x0 in £(AC). • 
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LEMMA 4.6. Let a. b and c be as above. Let x0 G B(A). Then (cf\x0) + a 
G B G A , ) . 

P r o o f . This is a consequence of 4.2 and 4.5. • 

For each x0 G B(A) we put 

^ l O o ) = x o A c > ^ 2 ( x o) = (xo Ac) + a. 

PROPOSITION 4.7. Le£ *4X be an interval subalgebra of a generalized MV-al­
gebra A. Suppose that £(AX) — [a, b]; put c = b—a. Then ip2 is a homomorphism 
of B(A) into B(AX). 

P r o o f . Let ipl be as above. In view of the distributivity of £(A) and 
according to 4.6 we infer that ip1 is a homomorphism of B(A) into B(AC). 
Then by applying 4.1 we conclude that ip2 is a homomorphism of B(A) into 
B(AX). • 

Internal direct factors of a generalized MV-algebras were studied in [9]. If c 
is an element of A, then Ac is an internal direct factor of A if and only if c is 
a Boolean element of A. From this and from 4.5 and 4.6 we obtain: 

PROPOSITION 4 .8. Let A* be a direct factor of A and let x* be the greatest 
element of £(A*). Let Ax be an interval subalgebra of A with £(AX) — [a, b], 
c = b — a. Put (x* A c) + a = x1. Then there exists an internal direct factor A\ 
of Ax such that £(A\) = [a, x1]. 

Under the notation as in 4.8, put tp3(A*) = A\. Then according to the 
relation between Boolean elements and internal direct factors of A, and in view 
of 4.7 and 4.8 we conclude that ip3 is a homomorphism of the Boolean algebra 
of all internal direct factors of A into the Boolean algebra of all internal direct 
factors of Ax. 
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