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ON THE CONTINUITY 
OF STRONGLY NONLINEAR POTENTIAL 
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(Communicated by Michal Zajac) 

ABSTRACT. The boundedness principle and the continuity principle are given in 
the case of Orlicz classes. This allows to study the continuity of strongly nonlinear 
potential and to establish relations between some capacities. 

1. Introduction 

The nonlinear potential theory has taken its time over the development and 
unifying its different components. Actually, it finds its applications in some fields, 
particularly in the theory of partial differential equations. 

In [4], [7], [8] we have introduced a theory of potential in Orlicz spaces. In [5], 
[6] we have treated some development of this theory, in particular the continuity 
of Bessel potential and the instability of capacity. 

The present paper establishes the boundedness principle in Orlicz spaces 
LA when the conjugate N-function A* satisfies the A2-condition and for any 
radially decreasing convolution kernel. This principle stated in Theorem 3.6, 
says that for a positive Radon measure / i , if the potential in Orlicz spaces is 
bounded in the support of / i , then it is bounded everywhere. In the case of the 
nonlinear potential defined on Lp Lebesgue spaces, the proof is based essentially 
on the studying the cases 1 < p < 2 and p > 2. For Orlicz spaces, the proof 
is somewhat complicated and uses some properties of N-functions satisfying the 
A2-condition. Therefore, this gives another proof of the boundedness principle 
in Lp Lebesgue spaces, without distinction of the exponent p. 

As a corollary, if LA is reflexive (respectively uniformly convex for Luxemburg 
norm), then the C^A-capacitary potential g * / is a bounded function on RN 

for any analytic set (respectively any set) X such that C A(X) < oo. 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 46E35; Secondary 31B15. 
K e y w o r d s : Orlicz space, capacity, non-linear potential , Bessel potential, boundedness prin­
ciple, continuity principle. 
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Another consequence of the boundedness principle is an equivalence of the 
capacities V A and W A (see Definition 3.3), stated in Theorem 3.9. Hence 
these two capacities have the same null sets. 

The potential in Orlicz spaces is called strongly nonlinear, in distinction from 
the nonlinear potential defined on Lp Lebesgue spaces. 

The boundedness principle is due to U g a h e r i [12] for the classical potential 
theory and for a general kernel. The nonlinear extension defined on Lp Lebesgue 
spaces is due to H a v i n and M a z ' y a [9] for Riesz kernels and to A d a m s 
and M e y e r s [2] in the general case. 

Theorem 3.1 states that in order to have a capacity that is useful for mea­
suring small sets, we should work with kernels g £ LA*, but g G LA+ / u ^ n • In 
this case, the capacity is a more sensitive measure than N-dimensional Lebesgue 
measure. Note that this result is valid for any N-function. 

The continuity principle for the nonlinear potential theory is due to H a v i n 
and M a z ' y a [9] for Riesz kernels. We generalize this principle for strongly non­
linear case. This principle stated in Theorem 3.10, says that in Orlicz spaces LA 

with conjugate N-function A* satisfying the A2-condition and for any radially 
decreasing convolution kernel, if /x is a positive Radon measure with compact 
support and if the restriction of the strongly nonlinear potential to the support 
of ii is continuous, then this potential is continuous everywhere. The proof uses 
the boundedness principle. 

For a reflexive Orlicz space LA, Theorem 3.11 gives a positive Radon measure 
[i with compact support K, such that the strongly nonlinear potential associated 
to \x and K is continuous everywhere. This extension of a well known result in 
classical potential theory and in nonlinear potential theory, is a consequence of 
the continuity principle for strongly nonlinear potential. 

2. Preliminaries 

2.1. Orlicz spaces . 

We recall some definitions and results about Orlicz spaces. For more details, 
one can consult [3], [10], [11]. 

Let A: R —> K+ be an N-function, i.e. A is continuous, convex, with A(t) > 0 
for t > 0, lim - ^ = 0, lim - ^ = +oo and A is even. 

1*1 
Equivalently, A admits the representation: A(t) = J a(x) dx, where 

o 
a: M+ -> E + is non-decreasing, right continuous, with a(0) = 0, a(t) > 0 
for t > 0 and lim a(t) = +oo. 

*->+oo 
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1*1 
The N-function A* conjugate to A is defined by A*(t) = / a*(x) dx, where 

a* is given by a*(s) = sup{t: a(t) < s} . ° 
Let A be an N-function and let $1 be an open set in RN. We denote by 

CA(Q,) the set of measurable functions / on fi, called an Orlicz class, such that 

p(f,A,íï) = j A(f(x))àx< 0 0 . 

Let A and A* be two conjugate N-functions and let / be a measurable 
function defined almost everywhere in £L The Orlicz norm of / , \\f\\A n or 
H/H^ if there is no confusion, is defined by 

\\f\\A = sup{f\f(x)g(x)\dx: g e CA.(tl) and p(g,A%n)<l\. 

The set LA(Q) of measurable functions / such that \\f\\A < oo is called an 
Orlicz space. When fi = RN , we set LA in place of LA(RN) . 

The Luxemburg norm \\\f\\\A n, or |||/|||A if there is no confusion, is defined 
in LA(Q) by 

|||/||U = inf{r>0: fA(^) dx<l\. 

As we have noted in [8], we can suppose a and a* continuous and strictly 
increasing. Hence the N-functions A and A* are strictly convex and a* = a"1 . 

Let A be an N-function. We say that A satisfies the A2 -condition if there 
exists a constant C > 0 such that A(2t) < CA(t) for all t > 0. 

Recall that A satisfies the A2-condition if and only if CA = LA. Moreover 
LA is reflexive if and only if A and A* satisfy the A2-condition. 

2.2. Capacity and potential in Orlicz spaces. 
We shall need some definitions and results concerning capacities and poten­

tials in Orlicz spaces. For more details, see [4], [7], [8]. 

DEFINITION 2.1. Let T be a cr-additive class of sets which contains compact 
sets in RN . Let C be a positive function defined in T. 

A) C is called capacity if it satisfies the following axioms: 
(i) C(0) = O. 

(ii) If X and Y are in T and X CY, then C(X) < C(Y). 

(iii) If X{, i = 1,2,... , are in T, then c( \J * . ) < £ C(Xi). 
V»>1 ' i>\ 

B) C is called an outer capacity if for every X £T 

C(X) = inf{C(0) : O open, X C O} . 
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C) C is called an inner capacity if for every X G T 

C{X) = sup {C{K) : K compact, K C A } . 

Let k be a positive and measurable function in RN , called a kernel, and let 
A be an N-function. For X C RN , we define 

CkA(X) = inf{ .4(| | | / | |U) : / € L+ and fc * / > 1 on A'} , 

C'k%A(X) = inf{ | | | / | | |A : / € L+ and fc * / > 1 on A'} , 

where k * / is the usual convolution. The sign -f- deals with positive elements 
in the considered space. From [7], C'k A is a capacity. 

If a statement holds except on a set X, where Ck A {X) — 0, then we say that 
the statement holds Ck ^-quasieverywhere (abbreviated Ck A-q.e., or (k, ^4)-q.e. 
if there is no confusion). 

We call a function J e L ^ such that k * / > 1 on X, a test function for 
C'kA{X). Moreover, a test function, say / , for C'kA{X) such that C'kA{X) = 
Ill/Hi^ is called a C'kA-capacitary function of X and k * / a C'k A-capacitary 
potential of X. 

For the properties of CkA and CkA , see [7], and for the existence and unique­
ness of C'k ^-capacitary function of a set, see [8]. 

M denotes the vector space of Radon measures. M1 is the Banach space of 
measures equipped with the norm ||/x|| = total variation of // < oo. The cone of 
positive elements of M is denoted by M + . 

F will stand for the a-field of sets which are /i -measurable for all /i G Mx . 
If \x G M-+, we say that \i is concentrated on X if //(V) = 0 for all sets Y 

which are //-measurable and such that Y Cc X. 
Let A and A* be two conjugate N-functions. For A G F , we define 

Dk A{X) = sup{||/x|| : [i G M+ , // concentrated on X and ||fc */x|| i4. < 1} , 

where fc*/i is the convolution of k and /i defined by (fc*//)(x) = / k{x-y) d//(y). 
A measure fx G A/^ such that \i is concentrated on A and p * / / ^ * < 1 is 

called a test measure for DkA{X). If in addition DkA{X) = ||/x||, we say that // 
is a F)A, A-capacitary distribution, and k * /i a Dk A-capacitary potential for Ar. 
For theproperties of £>,, 4 and the existence of & Dk A-capacitary distribution, 
see [7], [8]. 

2 .3 . Bessel kernels . 
For m > 0, the Bessel kernel Gm is most easily defined through its Fourier 

transform F{G ) as: 

[F(Gm)](x) = (2тгГ^(l + И 2 ) 
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where [F(f)](x) = (2~)~T J f(y)e~ixy dy for / G L 1 . 
Gm is positive in L1 and satisfies the equality: G>+5 = Gr*Gs. 
We put in the sequel BmA = CG^A and B'mA = C'GmA. 

3. On the continuity of potentials 

3.1 . Radia l ly dec reas ing convolut ion kerne ls . 
We recall the definition of radially decreasing convolution kernel. 

DEFINITION 3 .1 . A function g defined on RN xRN is a radially decreasing 
convolution kernel if g(x, y) = g0 (\x — y\), where g0 is a positive lower semicon-

l 

tinuous, non-increasing function on 1R+ and such that J g0(t)t
N~x dt < oo. 

o 

We put g(x) = g0(\x\) for x e RN . 

THEOREM 3 .1 . Let g be a radially decreasing convolution kernel and A any 
N-function. Then 

1) IllgllU* < °° impHes Mat CgA({x}) > 0 for any x G RN . 
2) |||g|IU-,{|.r|>i} = °° i™>pties Mat CgA(X) = 0 for all X. 

3) IllgllU* {|x|>i} < °° i>mPti'es ^^ \x\ — 0 whenever CgA(X) = 0. 

P r o o f . We follow the method in [1] for Lebesgue case. 
1) Let g be such that |||g||U* < oo and set x = 0. Let / be a test function 

for C ^ ({0}) . Then Holder inequality in Orlicz spaces gives 

i</s/dx<|||/iy| f fiu.. 

This implies C ^ ( { 0 } ) > [HglU*]"1 > °-
2) Let g be such that |||gllU*,{|a;|>i} = oo. It suffices to show that CgA(B) 

= 0 for the unit ball B = B(0,1), since any set X can be covered by a countable 
number of balls with radius 1, having the same capacity because of the trans­
lation invariance of capacity for a convolution kernel. If the positive measure \i 
is supported on B , then: g * [i(x) > g0(\x\ + l)^(B). 

Hence \\\g * / i | | |A . - - oo . 
[7; Theorem 11] gives Cg A(B) = 0. 
3) Let g be such that |||g|IU*,{W>i} < oo. It suffices to consider measurable 

sets and show that \X n B\ = 0 for the unit ball. Let Y = X n B and / G L+ 

be such that g * / > 1 on Y. Then 

\Y\< I g*f dx= f f(g* Xy)
 dx < 2|||/IIUHb * *Y\\\A- > 
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where Xy lS the characteristic function of Y. 

We have g*Xy(x) -̂  ^ # ( f ) when |x| > 2, and g*Xy(x) < C when \x\ < 2, 
when C is a constant independent of F . 

Hence \XnB\ <CC'gA(X). 

The proof is complete. • 

THEOREM 3.2. Let A be an N-function and g(x) = g0(l
xl) be a radially 

decreasing convolution kernel. Suppose that g is continuous on 1R \{0} . satisfies 
IIIOHL* {ixi>i} < °° and> that there exist H and S positive such that 

g0(r)<Hg0(2r) for 0<r<5. 

Let f £ LA be such that g * f > 1 a. e. on an open set O. Then g * f > 1 
everywhere on O. 

P r o o f . We follow the idea given in [1]. We can assume, without loss of 
generality, that g*f > 1 a.e. on a neighborhood of 0, and prove that g*f(0) > 1. 
We can suppose that g * f(0) < oo. 

Let 0 < d < b and define a function rj by 

9(z) 

ф) = { 
for d < \x\ < b 1 

f g(y) dy 
\y\<M 

L 0 otherwise. 

We put G(r) = / g(y) dy and obtain / rj dx = logG(6) - logG(d). 
\y\<r RN 

But lim G(d) = 0, so for an arbitrarily small b, we can choose d so that 

/ rj dx — 1. 

Hence for b small enough, we obtain: 1 < / rj(g * /) dx = / (77 * g)f dy. 
R" R" 

We fix p so that 0 < p < S. Then 

lim 77 * g(y) = lim / rj(x)g(y - x) dx = g(y), uniformly for \y\ > p. 
b—>0 6->0 J 

RN 

We get / r)(x)g(y - x) dx < g0(\y\ - b). 
RN 

Hence, for any S < 00, we obtain lim / (77 * g)f dy = f gf dy. 
6~"°P<M<S P<\y\<s 

On the other hand, Holder inequality in Orlicz spaces gives / (rj*g)f dy < 
\y\>s 

2lll/IIUIIIgllU*,{|x|>s--6} < £ for S large enough. 
We may estimate 77 * g(y) for \y\ < p. 
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Remark that for \x - y\ < ^ , we get \x\ > -f- and \x\ > \x - y\. So, by the 
monotonicity of g 

/*->*-->*- / 3J^0^ 
|x-y|<M \x-y\<^ \H<\x\ 

- ' ( ! ) / - ^ " - - « ( ! ) • 
I - - » I < ¥ 1'KW 

Also the monotonicity of g gives / f?(x)g(y — x) da; < g(%). 
\x-v\>W 

By hypothesis, if |y| < 28, then 77 * 5(2/) < 2Hg(y), and thus 

y (V * .?)/ dy < 2/í y gfdy<e 
\y\<p \V\<P 

if p is small enough. 

If we let b -* 0, we get 1 < / gf dy + 2e. 
P<ll/I<-? 

We obtain the theorem by letting p —> 0 and 5 —> oo. D 

As a consequence, we give the following corollary when the considered kernel 
is Bessel. 

Let A be an N-function and m > 0. Define the space of Bessel potentials 
Lm,A b y Lm,A = {V> = Gm * / : / G L A } , and a norm on L m A by M\\mA = 
lll/IIU if^ = G m * / . 

For £ c R ^ , w e pose Fm|>l(.E) = inf { M L ^ : V> € L m ^ , ^(x) > 1 a.e. 

on some neighborhood of E} . 

COROLLARY 3.3. Le£ .4 be an N-function satisfying the A2-condition and let 

m > 0. Suppose that m < f , uj/zere a = a(A) = sup ^ . i e ^ c R ^ . Then 

B'miA(E) = FmtA(E). 

P r o o f . We note that Gm is a radially decreasing convolution kernel, that 
G is continuous on RN \ {0}, and that there exist H and o* positive such that 
GJr)<HGm(2r) iovO <r<S. 

On the other hand, recall that if (3 is the conjugate of a, i.e. a 1 -f- /? * = 1, 
then (see [10]) (V* < l)(-4*(*) < A*(l)t^). 

We must show that |||Gm|IL*.{|s|>i} < oo. 

We know that there is a constant B such that (Vx)(Gm(x) < B\x\m~N). 

221 



NOUREDDINE AISSAOUI 

Hence fA*(Gm{x)) dx < fA*(B\x\m~N) dx. 
{|*l>i} {W>i} 

By changes of variables, there are constants Cx > 0 and 0 < B' < 1 such 
oo 

that jA*(B\x\m~N) dx < C1 J A*^™-^-1 dt. 
{|x|>l} B> 

I 
But C\ / A*{tm-N)tN-1 dt is a constant C2 and 

B' 

00 oo 

f A*(im-Ar)tN-1 dt < A*(l) jt^
m-N^tN-1 dt = C. 

1 1 

Hence, there is a constant C such that J A*(Gm(x)) dx < C. 
{M>i} 

This implies | | | G J | U . i { N > 1 } < sup( l .C ' ) < oo. 

Let %p € L m A be such that ^(x) > 1 a.e. on an open set U containing E. 
Then V = Gm * / for an / e LA and \M\m,A = | | | / | | |A . 

We have also Gm * / + > 1 a.e. on U. By Theorem 3.2, Gm * / + > 1 on U, 
and thus BmiA{U)<\\\f\\\A. 

By [7; Theoreme 2], B'm A is an outer capacity. Hence B'm A(E) < Fm A{E). 
The opposite inequality is obvious and the proof is complete. • 

3.2. T h e b o u n d e d n e s s pr inc ip le . 
The following proposition can be found in [2]. To make the paper self-

consistent, we give the proof. 

PROPOSITION 3.4. ([2]) Let g be a radially decreasing convolution kernel and 
let \x G M + . Then there is a constant Q. depending only on N, such that for 
all x£RN 

g * n(x) <Q sup g * ii(y). 
2/Gsupp/x 

P r o o f . We can assume that sup g * fi(y) — 1. Let x ^ supp l i , and 
2/Gsuppp 

let V1,r2,... , T Q be closed circular cones with vertices at x and total angular 
Q 

opening at the vertex of | , such that (J T{ = RN . 
2 = 1 

Let \i{ be the restriction of /i to ^ . Let xi be a point of supp ly such 
that \x — x{\ = dist(x, supp JLX-) . Let n^ be the perpendicular bisector of the line 
segment from x to x{, and let n ^ and U~ be the halfspaces determined by n •. 
By elementary geometry, it is seen that if x{ G H~ , then supp /^ C n ~ . Hence, 
if y e supp \x{, then \y - x{\ < \y - x\. This implies that g{x - y) < g{x{ - y), 
and thus g * ii{{x) < g * H^Xj) < 1. 
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Hence g * fi(x) <__9*^i(x)S\Q-

This completes the proof. • 

Recall the so called boundedness principle in the case of Lebesgue Lp spaces. 

THEOREM 3.5. ([2]) Let g. ji and Q as in Proposition 3.4. Let p > 1 and p1 

its conjugate. Define the associated potential to /J, by V£ (x) = g*(g*fi)p ~~x(x). 
Then for all x G RN . V£p{x) < max{Q, Qv'~l} sup V£(y). 

2/Gsupp,a 

Now we introduce a principle, which we also call a boundedness principle in 
the case of Orlicz spaces LA such that A* satisfies the A2-condition. 

Recall that if A satisfies the A2-condition, then for all Q > 1, there is a 
constant C(Q) such that for all ~, a(Qx) < C(Q)a(x). 

Let a = a(A) = sup ^ . 

DEFINITION 3.2. Let A be an N-function, \x G M + and let a be a kernel. 
We define the associated potential to \i by V^A(x) — g * a~l(g * fJi)(x). 

We call this potential a strongly nonlinear potential. 

We have the following result: 

THEOREM 3.6 (BOUNDEDNESS PRINCIPLE). Let g, fi and Q be as 
in Proposition 3.4 and let A be an N-function such that A* satisfies the 
A2-condition. Define the strongly nonlinear potential V^A(x) — g*a~1(g*ji)(x). 
Then for all x G RN 

V»A(x)<QC(Q)a(A*) sup V*A(y). 
2/Gsupp/x 

P r o o f . Let x <£ supp ji, and let x0 G supp fi minimize the distance from 
x to supp ji. We suppose that supp \x C I I + , one of the halfspaces determined 
by the perpendicular bisector II of the segment from x to xQ. If a point y_ 
belongs to the halfspace II"", we denote its reflected point in II by y+ G I I + . 
Then, for all z G supp,u, we get \z — y_\ > \z — y+\. Thus g*n(y_) < g*/i(y+), 
and by monotony, f(y_) < / ( y + ) , where f(y) = a_ 1(O * ^)(y). 

Now we claim that g * f(x_) < g * f(x+) for all x_ eU~ . 
We first suppose that all terms below are finite. Then the claim holds if and 

only if 

J [9(x_ -y)- g(x+ - y)] f(y) dy < J [g(x+ - y) - g(x_ - y)] f(y) Ay (•) 
n- n+ 

for all x G IT - . 
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Note that g{x_ - y_) - g(x+ - y_) = 0(x+ - y+) - #(x_ - y + ) . 
For j / _ G II~, the inequality |x_ — y_| < |x+ — y_| implies 

#(x_ - y_) - £ř(x+ - y_) = g{x+ - y+) - g(x_ - y+) > 0. 

Hence /(y_)[s(x_ - y_) - #(x+ - y j ] < f(y+)[g{x+ - y+) - ^(x_ - y + ) ] . 
We obtain (*) by integrating the members of this inequality over points and 

their reílections. 
If one or more terms in (*) are infinite, we replace g by a truncated kernel, for 

example by gn defined by gn(x) = max{0, min{^(x) — ra"1, n}} for n = 1, . . . , 
and apply monotone convergence. 

In the čase of arbitrary measure \i G M + , we choose x £ supp \i, and consider 
Q 

the subdivision (J r ť = RN as in Proposition 3.4. Let fii and xi be as in this 
i = l 

Proposition. Then we get V£*A(x) = Vj£A{x^. 
Now we háve 

a (g * IJL)(X) < a 
- i Ě(ff*Mi)(a) 

i = l 
= a Q E Q - H S */*,)(*) 

L *= i 

Since A* satisfies the A2-condition, there is a constant C(Q) such that for 
all x, a-^Qx) < CÍQJo" 1^) . 

Moreover, from the inequality xa""1(x) < a(A*)A*(x), we obtain 

Q 
Q E Q - ^ * ^ ) 

i = l 

<QC(Q)a(A*)A* 
0 

E^"1^*^) 
1=1 

Q 
X>*M;K*) 

L i = i 

- i 

The convexity of A* yields 

, - i QJ^Q-^g*^*) 
t = i 

< C(Q)a(A*) E ^ ( f f * M i ) W 
i = l 

Š(ff*Mť)(x) 
1 - 1 

The inequalities A* (x) < xa x (x), and 

Q 
*52(9 * »i)(x)* l(9*V>i)(x) 

L í = i 
2Z(^*Mi)(^) 
i = i 

- i 

< 
Q 

i = i 

5 > ~ (»*/iť)(a:) 
2=1 

imply a-1(^*/i)(x) < C(Q)a(A*) 
Q 

Lí=i 
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Hence V£A(x) < C(Q)a(A*) £ V»A(x) < QC(Q)a(A*) sup Vg%(y). 
t= l yGsuppp 

This completes the proof. • 
Remark that Theorem 3.6 remains valid if we deal with a strongly nonlin­

ear potential of the form gx * a"1(g2 * /x), where both gx and g2 are radially 
decreasing convolution kernels. 

Note also that for strongly nonlinear potential, the constant QC(Q)a(A*) is 
perhaps not the best possible. This fact is of no importance for us, since all we 
need is an inequality of the form VgA(x) < K sup V£A(y), where K is a 

yGsupp/x 
constant depending only on N and A. 

C O R O L L A R Y 3.7. 

1) Let A be an N-function such that A and A* satisfy the A2-condition. 
Let g be a radially decreasing convolution kernel and let X be an analytic set 
such that CgA(X) < oo. Then the CA-capacitary potential g* f is a bounded 
function on RN . 

2) Let A be an uniformly convex N-function for the Luxemburg norm, sat­
isfying the A2 -condition. Let g be a radially decreasing convolution kernel and 
let X be any set such that C A(X) < oo. Then the CgA-capacitary potential 
g * / is a bounded function on RN . 

P r o o f . 
1) From [4] (see also [8; Theoreme 6]), we have g*f < 1 on supp7, where 7 

is the Dg ^-capacitary distribution measure for X and / the Cg A-capacitary 
function of X. Moreover, we have the following relation 

1 - 1 

9*1 = ao(ííí?íiú)L a°(lÍÍ7Íiu) a.e. 

This implies \\\f\\\A[g* a-^g*^')] = g* f, where 7' = [ | oo (u j^ r j ) ! ^ J 7-

Theorem 3.6 gives 

g*f(x)<CsW {\\\f\\\A[9*a-1(g*1')](y)}<C. 
yGsuppi' 

2) Let X be any set such that CgA(X) < oo, and let / be the C^A-capacit-
ary function of X. From [8; Theoreme 3], there is a sequence of open sets (O i) i 

for which the sequence of capacitary functions (fi)i converges strongly to / in 
LA . For a subsequence, the semicontinuity of positive functions gives g * f(x) < 
liminf g * ft(x) < C. 

The proof is finished. • 
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DEFINITION 3.3. Let A be an N-function and let g be a radially decreasing 
convolution kernel. On F define V A and WgA by 

VgA(X) = sup{||/i|| : /i G M+, // concentrated on X and 

( V x ) ( g * a " 1 ( g * / i ) ( x ) < l ) } , 

W ^ P Q = sup{||/i|| : /i G M + , // concentrated on X and 

(Mx G snppfi)(g*a~1(g*/Lt)(x) < l)} . 

PROPOSITION 3.8. V A and Wg A are inner capacities. 

P r o o f . The proof is identical with that given in [7; Theoreme 10]. • 

THEOREM 3.9. Let A be an N-function such that A and A* satisfy the 
A2 -condition. Let g be a radially decreasing convolution kernel and let X G F. 
Then there is a constant C, depending only on A and N, such that 

VgA{X)<WgtA{X)<CVg>A{X). 

P r o o f . It is obvious that VgA(X) < WgA(X). We must prove the last 
inequality. 

Let /i G M+ be concentrated on X and such that g * a~l(g * fi)(x) < 1 for 
all x in supplz. Theorem 3.6 gives a constant C > 1 depending only on A and 
N such that: (\/x G R*) (g * a~l(g * fi)(x) < C) . 

This means that (Vx G R^) (g * C~la~l(g * //)(x) < l ) . 
On the other hand, remark that if 0 < C < 1, then there is a C" such that 

for all t, Car1 {t) >a~l(C"t). 
In fact, put Ca~l(t) = y. Then t = a(C,~1y), and since A satisfies the 

A2-condition, there is a constant K depending only on C such that t < Ka(y). 
This implies that tK~l < a(y). So a~l(tK~l) < Ca'1^). 

Hence, there is a constant K' such that (\/x G R^) (g*a~l(g*K'fi)(x) < l ) . 

Thus 7 -= K>fi is a positive measure concentrated on X and such that 

(Vx G R") (g * a~l(g * 7 ) (x) < l) . 

Whence WgJX) < K'Vg%A{X). 
The proof is complete. D 

3.3 The continuity principle. 
The continuity principle for the nonlinear potential theory has been estab­

lished by H a v i n and M a z ' y a [9] for Riesz kernels. We propose an extension 
to the strongly nonlinear case. 
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T H E O R E M 3.10 ( C O N T I N U I T Y P R I N C I P L E ) . Let A be an N-function such 
that A* satisfies the A2-condition. Let g be a radially decreasing convolution 
kernel continuous on RN \ {0}, and let tz G M+ be a measure with compact 
support K. Suppose that the restriction of VgA to K belongs to C(K). Then 
V£A is continuous in ~iN . 

P r o o f . Let f(y) = a~l(g * n)(y). Then, by Dini's Theorem on monotone 
convergence, the integral g * f(x) converges uniformly on K in the sense that 
for any e > 0, there is S > 0 such that 

/ « g(x - y)f(y) dy < £ for all x e K. 

-y\<s 

Let the kernel hs be defined by: hs(x) = g(x) for |:r| < 5, and hs(x) = 0 
otherwise. 

From Theorem 3.6 and the remark following it applied to the kernels g and 
hs, there is a constant C depending only on A and IV, such that 

fy * / ( * ) = fg(x-y)f(y)dy<Ce for all x G RN . 

\x-y\<5 

Let x0 G K and (xn)n be a sequence such that xn -> x. Then, by the 
continuity of g away from 0, 

l imsup!£• ( : -„ ) < [(g - h5) * / ] (x0) + Ce < V£A{x0) + Ce. 
n—>oo 

Since Vj*A is semicontinuous, we get V^A(x0) < liminf Vl*A(x ) . 
y •> y> n—yoQ " ' 

This implies that Vj*'A is continuous at all x € K. The continuity off K is a 
consequence of the continuity of g. 

The proof is finished. • 

THEOREM 3.11 . Let A be an N-function such that A and A* satisfy the 
A2 -condition. Let g be a radially decreasing convolution kernel continuous on 
RN \ {0}. Let K be a compact set such that CgA(K) > 0. Then there is a non 
null measure /i G M+(K) such that the potential g* [a~l o(g*fi)] is continuous 
in RN . 

P r o o f . From the hypothesis it follows that there is a nonzero measure 
/i G M+(K) such that: (Vx G K)(g * [a"1 o (g * /x)] < l ) . 

Pose f(y) = a - 1 (g* /J>)(y). Egorov's Theorem gives a compact K1 C K such 
that I^L(K') > \n(K) and g * f(x) converges uniformly on K'. 

Denote by / / the restriction of /i to K'. Then the integral g* [a~1o(g*fj,')] (x) 
converges uniformly on K'. It follows as in the proof of Theorem 3.10, that 
g * [a~l o (g * / / ) ] is continuous. 

The proof is finished. • 
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