Zygfryd Kominek
A few remarks on almost C-polynomial functions

Persistent URL: http://dml.cz/dmlcz/131413

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 2005

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project *DML-CZ: The Czech Digital Mathematics
Library* http://project.dml.cz
A FEW REMARKS
ON ALMOST C-POLYNOMIAL FUNCTIONS

ZYGFRYD KOMINEK

(Communicated by Lubica Holá)

ABSTRACT. We give some sufficient conditions for a function transforming a
commutative semigroup to a commutative group to be a polynomial function.
Some stability results are also given.

Introduction

Let \((X,+)\) be a commutative semigroup and let \((Y,+\)) be a commutative
group. If \(f: X \to Y\) is a function and \(h \in X\), then we define the difference
operator \(\Delta_h\) in the following way

\[\Delta_h f(x) := f(x + h) - f(x), \quad x \in X. \]

The superposition of several operators \(\Delta_{h_1}, \ldots, \Delta_{h_p}\) will be denoted briefly by

\[\Delta_{h_1, \ldots, h_p} := \Delta_{h_1} \cdots \Delta_{h_p}, \quad p = 1, 2, \ldots. \]

If \(h_1 = \cdots = h_p = h\), we will write \(\Delta^p_h\) instead of \(\Delta_{h_1, \ldots, h_p}\). It is well known
([4], for example) that if \(f, g: X \to Y\), \(u, v, x \in X\), then

\[\Delta_{u,v} = \Delta_{v,u}, \quad \Delta_{-u} f(x) = -\Delta_{u} f(x - u), \quad \Delta_{u} (f + g) = \Delta_{u} f + \Delta_{u} g. \]

A function \(f: X \to Y\) is called strongly polynomial function of \(p\)th order if and
only if

\[\Delta_{h_1, \ldots, h_{p+1}} f(x) = 0 \quad (1) \]

for all \(x, h_1, \ldots, h_{p+1} \in X\). If we assume that condition (1) holds for all \(x, h \in X\)
and \(h_1 = h_2 = \cdots = h_{p+1} = h\), i.e.

\[\Delta^{p+1}_h f(x) = 0, \quad (2) \]

2000 Mathematics Subject Classification: Primary 39B82.
Keywords: stability in the sense of Hyers-Ulam, Fréchet's equation.
then \(f \) is said to be a polynomial function of \(p \)th order. Let \(C \) be a subset of \(X \). A function \(f: X \to Y \) is called strongly \(C \)-polynomial function of \(p \)th order if and only if condition (1) is satisfied for every \(x \in X \) and all \(h_1, \ldots, h_{p+1} \in C \). Analogously, \(f \) is said to be \(C \)-polynomial function of \(p \)th order if and only if condition (2) is satisfied for every \(x \in X \) and each \(h \in C \).

It follows from Djoković’s theorem ([2; Corollar 1], also [5]) that if \(Y \) has the property

\[
\forall y \left(\left[y \in Y \land ((p + 1)) y = 0 \right] \implies y = 0 \right),
\]

then \(f: X \to Y \) is a polynomial function of \(p \)th order if and only if it is strongly polynomial function of \(p \)th order as well. We say that \(f: X \to Y \) is a polynomial of \(p \)th order if there exist a constant \(a_0 \) and symmetric \(i \)-additive functions \(a_i: X^i \to Y \), \(i = 1, \ldots, p \) (i.e. additive in each variable) such that

\[
f(x) = a_0 + \sum_{i=1}^{p} a_i(x, \ldots, x), \quad x \in X.
\]

1. \(C \)-polynomial functions

In [3] it is proven that if \(X \) and \(Y \) are uniquely divisible by \((p + 1))!\), \(C - C = X \), \(C + C \subset C \) and \(\frac{1}{(p + 1))!} C \subset C \), then every \(C \)-polynomial function of \(p \)th order is a polynomial of \(p \)th order. In this part of the paper, we will obtain some other results of this type. We start with the following lemma.

Lemma 1. Let \(X \) be a commutative semigroup and let \(Y \) be a commutative group. If \(f: X \to Y \) is a function, then for arbitrary \(x, h_j^i \in X \), \(j = 1, 2, \ldots, p \), \(i = 0, 1 \), we have

\[
\Delta_{h_1^0 + h_1^1 + \ldots, h_p^0 + h_p^1} f(x) = \sum_{\varepsilon_1, \ldots, \varepsilon_p = 0}^1 \Delta_{h_1^\varepsilon_1, \ldots, h_p^\varepsilon_p} f \left(x + \sum_{k=1}^p (1 - \varepsilon_k) h_k^1 \right). \tag{3}
\]

If, moreover, \(X \) is a group, then

\[
\Delta_{h_1^0 - h_1^1 - \ldots, h_p^0 - h_p^1} f(x) = \sum_{\varepsilon_1, \ldots, \varepsilon_p = 0}^1 (-1)^{\varepsilon_1 + \ldots + \varepsilon_p} \Delta_{h_1^\varepsilon_1, \ldots, h_p^\varepsilon_p} f \left(x - \sum_{k=1}^p h_k^1 \right). \tag{4}
\]

Proof. Induction. As an example, we give a proof of equality (4). For \(p = 1 \) we have

\[
\Delta_{h_1^0 - h_1^1} f(x) = f(x + h_1^0 - h_1^1) - f(x - h_1^1) + f(x - h_1^1) - f(x) = \Delta_{h_1^0} f(x - h_1^1) + \Delta_{-h_1^1} f(x) = \Delta_{h_1^0} f(x - h_1^1) - \Delta_{h_1^1} f(x - h_1^1)
\]

\[
= \sum_{\varepsilon_1 = 0}^1 (-1)^{\varepsilon_1} \Delta_{h_1^{\varepsilon_1}} f(x - h_1^1).
\]
A FEW REMARKS ON ALMOST C-POLYNOMIAL FUNCTIONS

Assume (4) and take arbitrary \(x, h_j^i \in X, \ j = 1, \ldots, p+1, \ i = 0,1. \) Then,

\[
\Delta_{h_1^0 - h_1^1, \ldots, h_{p+1}^0 - h_{p+1}^1} f(x) \\
= \Delta_{h_1^0 - h_1^1, \ldots, h_{p+1}^0 - h_{p+1}^1} \left(\sum_{\varepsilon_{p+1} = 0}^{1} (-1)^{\varepsilon_{p+1}} \Delta_{h_{p+1}^\varepsilon} f(x - h_{p+1}^1) \right) \\
= \sum_{\varepsilon_{p+1} = 0}^{1} (-1)^{\varepsilon_{p+1}} \Delta_{h_{p+1}^\varepsilon} \left(\sum_{\varepsilon_1, \ldots, \varepsilon_p = 0}^{1} (-1)^{\varepsilon_1 + \cdots + \varepsilon_p} \Delta_{h_{p+1}^{\varepsilon_1}, \ldots, h_p^{\varepsilon_p}} f(x - h_{p+1}^1 - \sum_{k=1}^{p} h_k^1) \right) \\
= \sum_{\varepsilon_1, \ldots, \varepsilon_{p+1} = 0}^{1} \Delta_{h_{p+1}^{\varepsilon_1}, \ldots, h_p^{\varepsilon_p}} f(x - \sum_{k=1}^{p+1} h_k^1),
\]

which ends the proof. \(\square \)

The next two lemmas are consequences of Lemma 1.

Lemma 2. Let \(X \) be a commutative semigroup and let \(Y \) be a commutative group. If \(C \subseteq X \) satisfies the condition

\[
C + C = X, \quad (5)
\]

then every strongly \(C \)-polynomial function of \(p \)th order \(f: X \to Y \) is strongly polynomial of \(p \)th order.

Proof. Fix \(x, h_1, \ldots, h_{p+1} \in X. \) According to (5), there exist \(h_j^i \in C, \ j = 1, \ldots, p+1, \ i = 0,1, \) such that \(h_j^i = h_j^0 + h_j^1, \ j = 1, \ldots, p+1. \) By virtue of (3) of Lemma 1 and our assumption we obtain

\[
\Delta_{h_1, \ldots, h_{p+1}} f(x) = \Delta_{h_1^0, \ldots, h_{p+1}^0, h_1^1, \ldots, h_{p+1}^1} f(x) \\
= \sum_{\varepsilon_1, \ldots, \varepsilon_{p+1} = 0}^{1} \Delta_{h_1^{\varepsilon_1}, \ldots, h_{p+1}^{\varepsilon_{p+1}}} f(x + \sum_{k=1}^{p+1} (1 - \varepsilon_k) h_k^1) = 0,
\]

which finishes the proof. \(\square \)

In a similar way one can prove the following lemma.

Lemma 3. Let \(X \) and \(Y \) be commutative groups. If \(C \subseteq X \) satisfies the condition

\[
C - C = X, \quad (6)
\]

then every strongly \(C \)-polynomial function of \(p \)th order \(f: X \to Y \) is strongly polynomial of \(p \)th order.

Let \(m \) be a fixed positive integer. We say that a group \(X \) has a \((m-C)\)-property if and only if each element \(h \in X \) has a representation \(h = \sum_{i=1}^{m} h_i \), where
Note that if \(f: X \to Y \) is a strongly \(C \)-polynomial function of \(p \)th order, then it is also strongly \((C \cup (-C)) \)-polynomial function of \(p \)th order.

Theorem 1. Let \(X \) and \(Y \) be commutative groups. If \(X \) has the \((m-C)\)-property with some positive integer \(m \), then every strongly \(C \)-polynomial function of \(p \)th order \(f: X \to Y \) is strongly polynomial of \(p \)th order.

Proof. Fix \(x, h_1, \ldots, h_{p+1} \in X \). There exist a positive integer \(m \) and \(h_{j,k} \in C \cup (-C), j = 1, \ldots, p+1, k = 1, \ldots, m \), such that \(h_j = \sum_{k=1}^{m} h_{j,k} \). Thus

\[
\Delta_{h_1, \ldots, h_{p+1}} f(x) = \Delta \left(\frac{\sum_{k=1}^{m} h_{1,k}}{m}, \ldots, \frac{\sum_{k=1}^{m} h_{p+1,k}}{m} \right) f(x)
\]

\[
= \Delta \left(\frac{\sum_{k=1}^{m} h_{1,k}}{m}, \ldots, \frac{\sum_{k=1}^{m} h_{p+1,k}}{m} \right) \sum_{j=1}^{p+1} \left[f \left(x + \sum_{k=1}^{m} h_{p+1,k} \right) - f \left(x + \sum_{k=1}^{m} h_{p+1,k} \right) \right]
\]

\[
= \sum_{j=1}^{p+1} \Delta_{h_{p+1,j}} f \left(x + \sum_{k=1}^{m} h_{p+1,k} \right) = 0,
\]

because \(f \) is strongly \((C \cup (-C)) \)-polynomial function of \(p \)th order. This ends the proof. \(\square \)

2. Stability in the sense of Ulam and Hyers

Assume \(X \) is a commutative semigroup and \(Y \) is a real Banach space. Let us fix \(\varepsilon \geq 0 \) and let \(f: X \to Y \) be a function. We are interested in solutions to the inequalities

\[
\|\Delta_{h_1, \ldots, h_{p+1}} f(x)\| \leq \varepsilon, \quad x \in X, \quad h_1, \ldots, h_{p+1} \in C, \quad (7)
\]

and

\[
\|\Delta_{h_{p+1}} f(x)\| \leq \varepsilon, \quad x \in X, \quad h \in C, \quad (8)
\]

where \(C \) is a subset of \(X \). In the case of \(C = X \), the problem was considered by many authors. In particular, M. Albert and J. A. Baker [1] have proved the following theorem.
A FEW REMARKS ON ALMOST C-POLYNOMIAL FUNCTIONS

Theorem A-B. Let X be a commutative semigroup with zero and let Y be a real Banach space. If $f: X \to Y$ satisfies condition (7) with $C = X$, then there exists a unique (up to an additive constant) polynomial $g: X \to Y$ of pth order such that

$$\|f(x) - g(x)\| \leq \varepsilon, \quad x \in X.$$

The first theorem in this section reads as follows.

Theorem 2. Let X be a commutative semigroup with zero and let Y be a real Banach space. If $f: X \to Y$ satisfies condition (7) where $C \subset X$ satisfies one of conditions (5) or (6), then there exists a unique (up to an additive constant) polynomial $g: X \to Y$ of pth order such that

$$\|f(x) - g(x)\| \leq 2^{p+1}\varepsilon, \quad x \in X.$$

Proof. Assume (5) (if (6) is satisfied, then the proof is similar). Let $x, h_1, \ldots, h_{p+1} \in X$ be arbitrary fixed. According to (5), there exist $h_j^i \in C$, $j = 1, \ldots, p+1$, $i = 0, 1$, such that $h_j = h_j^0 + h_j^1$, $j = 1, \ldots, p+1$. By Lemma 1 and (7) we get

$$\|\Delta_{h_1, \ldots, h_{p+1}} f(x)\| \leq \sum_{\varepsilon_1, \ldots, \varepsilon_{p+1} = 0}^{1} \left\|\Delta_{h_{1}^{\varepsilon_1}, \ldots, h_{p+1}^{\varepsilon_{p+1}}} f\left(x + \sum_{k=1}^{p+1} (1 - \varepsilon_k) h_k^1\right)\right\| \leq 2^{p+1}\varepsilon.$$

Our assertion follows now from Theorem A-B. □

J. H. B. Kemperman ([4; p. 369]) noticed that if X is a commutative group admitting division by $(p + 1)!$, then we can express values of the operator $\Delta_{h_1, \ldots, h_{p+1}}$ as linear combinations of iterates of the $(p + 1)$th order of difference operators depending only on one span. More precisely, if $x, h_1, \ldots, h_{p+1} \in X$ and $f: X \to Y$ is a function, then

$$\Delta_{h_1, \ldots, h_{p+1}} f(x) = \sum_{\varepsilon_1, \ldots, \varepsilon_{p+1} = 0}^{1} (-1)^{\varepsilon_1 + \cdots + \varepsilon_{p+1}} \Delta_{h_{1}^{\varepsilon_1}, \ldots, h_{p+1}^{\varepsilon_{p+1}}}^{p+1} f\left(x + h_{\varepsilon_1, \ldots, \varepsilon_{p+1}}''\right),$$

where

$$h_{\varepsilon_1, \ldots, \varepsilon_{p+1}}' = -\sum_{j=1}^{p+1} \frac{\varepsilon_j}{j} h_j,$$

and

$$h_{\varepsilon_1, \ldots, \varepsilon_{p+1}}'' = \sum_{j=1}^{p+1} \varepsilon_j h_j.$$

The next theorem refers to inequality (8).
THEOREM 3. Let X be a commutative group admitting division by $(p + 1)!$, let Y be a real Banach space. Assume $\frac{1}{(p+1)!} C \subseteq C$, $C + C \subseteq C$ and (6). If $f : X \to Y$ satisfies condition (8), then there exists a unique (up to an additive constant) polynomial $g : X \to Y$ of pth order such that

$$\|f(x) - g(x)\| \leq 4^{p+1} \varepsilon, \quad x \in X.$$

Proof. Fix arbitrary $x, h_1, \ldots, h_{p+1} \in X$. There exist $h_j^i \in C$, $j = 1, \ldots, p+1$, $i = 0, 1$, such that $h_j = h_j^0 - h_j^1$, $j = 1, \ldots, p+1$. For arbitrary $\varepsilon_j, \delta_j \in \{0, 1\}$, $j = 1, \ldots, p+1$, let us define

$$h_{\varepsilon_1, \ldots, \varepsilon_{p+1}} := \sum_{j=1}^{p+1} \delta_j h_j^\varepsilon_j,$$

$$z_{\delta_1, \ldots, \delta_{p+1}} := x + \sum_{j=1}^{p+1} (1 - \varepsilon_j) h_j^1 + \sum_{j=1}^{p+1} \delta_j h_j^\varepsilon_j + h_{\varepsilon_1, \ldots, \varepsilon_{p+1}}.$$

According to Lemma 1 we obtain

$$\Delta_{h_1, \ldots, h_{p+1}} f(x)$$

$$= \Delta_{h_0, \ldots, h_{p+1}} f(x)$$

$$= \sum_{\varepsilon_1, \ldots, \varepsilon_{p+1} = 0}^{1} (-1)^{\varepsilon_1 + \cdots + \varepsilon_{p+1}} h_{\varepsilon_1, \ldots, \varepsilon_{p+1}} f\left(x - \sum_{j=1}^{p+1} (1 - \varepsilon_j) h_j^1\right)$$

$$= -\sum_{\varepsilon_1, \ldots, \varepsilon_{p+1} = 0}^{1} (-1)^{\varepsilon_1 + \cdots + \varepsilon_{p+1}} \delta_1 + \cdots + \delta_{p+1} h_{\delta_1, \ldots, \delta_{p+1}}^p f\left(z_{\delta_1, \ldots, \delta_{p+1}}^{\varepsilon_1, \ldots, \varepsilon_{p+1}}\right).$$

Hence

$$\|\Delta_{h_1, \ldots, h_{p+1}} f(x)\| \leq 4^{p+1} \|\Delta_{h_1, \ldots, h_{p+1}} f\left(z_{\delta_1, \ldots, \delta_{p+1}}^{\varepsilon_1, \ldots, \varepsilon_{p+1}}\right)\|,$$

which together with (8) implies that

$$\|\Delta_{h_1, \ldots, h_{p+1}} f(x)\| \leq 4^{p+1} \varepsilon.$$

Now our assertion follows from Theorem A-B. \qed

As a final remark note that we are able to repeat the argumentation used in the proof of Theorem 3 to obtain the following theorem.
A FEW REMARKS ON ALMOST C-POLYNOMIAL FUNCTIONS

THEOREM 4. Let X be a commutative group admitting division by $(p + 1)!$ and let Y be a commutative group. If C is a subset of X such that

$$\frac{1}{(p+1)!}C \subseteq C, \quad C + C \subseteq C \quad \text{and} \quad C - C = X,$$

then every C-polynomial function of pth order is a strongly polynomial function of pth order.

Remark. Recall that ([2; Theorem 3]) if, moreover, Y is a commutative group such that for every $y \in Y$

$$\text{equation } (p!)x = y \text{ has a unique solution } x = \frac{y}{p!},$$

then every polynomial function $f : X \to Y$ of pth order is a polynomial of pth order, too.

REFERENCES

Received February 17, 2004

Institute of Mathematics
Silesian University
Bankowa 14
PL-40-007 Katowice
POLAND
E-mail: zkominek@ux2.math.us.edu.pl