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ON A THEOREM OF BROWDER 

ZBIGNIEW GRANDE 1 ) 

(Communicated by Milan Medved') 

ABSTRACT. In this paper, there is proved Browder's theorem about the ex­
istence of solutions of the Cauchy problem in a Hilbert space for the equation 
u'(t) = f(t,u(t)) , where the weak continuity of / is replaced by more general 
conditions. 

Let H be a complex Hilbert space with inner product (•, •) and norm || • ||, 
and let R + be the set of nonnegative real numbers. Suppose that / : R + xH —• H 
is a mapping. It is well known that Peano's methods can be applied td prove 
that the Cauchy problem: 

diA 

— (t) = f(t,u(t)), 0 < * < T , (1) 

u(0) = u0 , (2) 

where uo G H, has solutions when H = Rn , the n-dimensional Euclidean 
space, and / is a continuous mapping. This method cannot be generalized to 
the infinite dimensional case, as was shown by D i e u d o n n e [2, p. 287], even if 
we assume the continuity o f / . B r o w d e r [1, Th. 7] has proved the following: 

THEOREM 1. Let Hw be the Hilbert space H endowed with the weak topology 
and let f: R+ x H —> H be a weakly continuous mapping (i.e. f is continuous 
as a mapping from R + x Hw into Hw). Then for each r > 0 , there exists 
a(r) > 0 such that for each Uo G H with \\uo\\ < r, there exists a C1 solution 
u of system (1), (2) for 0 < t < a(r). 

In this paper we show that for the existence of differentiable solution u of 
(1), (2) in Theorem 1 it suffices to suppose (instead of the weak continuity of / ) 
the following conditions: 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 34A07, 34G99, 34A45, 34A34. 
K e y w o r d s : Cauchy problem in Hilbert spaces, Weak continuity, Local differentiable 

solution, Lipschitz condition. 
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(3a) for all a, r > 0 the image /([0,a] x {v E H : ||v|| < r}) is a bounded 
subset in H; 

(3b) for every v E H the section t i—• /(£, v) is a derivative, i.e. for each 
t 0 E R + 

t 

ÄŁ(гh.л/ / ( в ' t ' ) d в = /('0','); 

to 

and 

(3c) for all a, r, s > 0 and v E H there are p > 0 and v i , . . . , vm E H 
such that if yu y2 E H, | |yi | | , | |t/2 | | < r , |(^i - 2/2, v»)| < P 
for z = l , 2 , . . . , m , then | ( / (£ ,yi) - / ( t , y 2 ) ^ ) | < s for all t E [0,a]. 

R e m a r k 1. Let Cw and F) respectively denote the class of all weakly con­
tinuous functions / : R + x H —> H and the class of all functions 
/ : R+ x H —• H satisfying the conditions (3a)-(3c) . 

Define for f^gED, 

p ( / , g ) = min ( l , sup | | / ( t ,v) - g(t, v)| |) . 
v (t,v)eR+xH J 

Remark that (D,p) is a complete metric space and Cw C D is a closed subset 
of -D. We shall prove that Cw is a nondense subset of D. Fix 1 > s > 0 and 
vo E H, ||vo|| = 1 • There is a discontinuous derivative h: R + —> [0,1] (see [5]). 
If / E Cw , then the function 

g(tlV) = f(t,v) + (s/2)h(t)v0 

is in D — Cu, and p (/, g) < s . 

Hence C^ is a nondense subset of D. 

We shall now apply the basic idea of the proof of B r o w d e r ' s Theorem 1 
to the proof of the following: 

THEOREM 2. Let a function f:R+xH —> H satisfy the conditions 
(3a)-(3c) . Then for every r > 0 there exists a(r) > 0 such that, for each 
UQ in H with \\UQ\\ < r, there exists a solution u of the Cauchy problem 

diA 
— (t) = f(t,u(t)), 0<t<a(t), 

with 
u(0) = u0 . 
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P r o o f . From (3a) it follows that for each &, r > 0 there exists M(fc, r) > 0 
such that | |/(*,u)|| < M(k,r) for each t G R + , ue H with t < k, \\u\\ < r. 
Moreover M(k, r) may be chosen increasing in each variable. 

We consider first the case of finite-dimensional space H, and recapitulate 
the proof of the Peano existence theorem (see also [3]). 

We choose 

a(r) = m i n ( l , r ( M ( l , 2 r ) ) " 1 ) 

and, for each z > 0 (z < z0), we define uz(t) on the interval 0 < t < a(r) by 

u0, 0 <t < z, 

Uz(t\ = ) t 
u0 + J f(s,uz(s - z)) d s , z <t<a(r). 

This formula enables us to compute uz(t) on the interval kz < t < (k + l)z 
knowing its value on [(k — l)z , kz] . 

In the case of finite-dimensional space H the condition (3c) denotes the equi-
continuity of all sections u i—• /(£, u). So from [3, Theorem 1] it follows that the 
functions t i-» f(t,uz(t — z)) are derivatives. Hence uz is differentiable and 
satisfies the equations 

^l(t) = f(t,u2(t-z)), 

uz(0) = u0. 

Moreover, on the interval [kz, (k + l)z] 

t 

IKMII <J«o|| + / | | / ( W * - *))|| ds, 
z 

and if we have verified by induction that |K(0II S 2r for t < kz, then 

IK(t)ll < ll«o|| + M( l , 2r)(t -z)<r + M(\, 2r)a(r) < 2r, 

for t<(k+l)z. So |K(f ) | | <2r on 0<t< a(r). Moreover, 

d U z-(*) | | = \\f{t,uz(t-z))\\<M{a(r),2r)<M(l,2r). 
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Hence (uz) is a bounded equi-continuous set of functions on 0 < t < a(r). 
Choosing a uniformly convergent subsequence (for z —> 0), we see that its limit 
11—> u(t) must verify the equation 

t 

u(t) = UQ + / f(s,u(s)) ds for 0 < t < a(r), 

I.Є. 

du 

"ďT (t) = f(t,u(t)), 0<t<a(r), 

u(0) = u0. 

For this function u we have moreover 

IKt)ll<2r, 

^ ( t ) | < M ( l , 2 r ) , for 0 < t < a(r). 

We pass now to the case of a general Hilbert space H. Let A be the family of 
finite-dimensional subspaces of H, ordered by inclusion. For F E A, let P be 
the orthogonal projection of H on F. We form the approximating equations 

dup 
~dT 

(t) = Pf(t,uғ(t)) = h(t,uғ(t)) , 

uF(0) = PUQ, 

for a function uF: I —> F (Id R"1"). If we remark that 

| | / i ( t , u ) | | = | | i ' / ( t , u ) | | < | | / ( t , u ) | | < M ( * > r ) for t<k, \\u\\<r, 

it follows from the preceding discussion that we may find a solution uF of the 
approximating equation on 0 < t < a(r) for \\UQ\\ < r such that 

IIM*)ll=2r, 
duF 

dt 
(ť) \\< M(l, 2r), for 0 < t < a(r). 

Considering the functions uF as mappings of [0,a(r)] into the closed set 
{u : \\u\\ < 2r} in Hw , it follows that the family (uF) is equi-continuous, 
and that the union of their ranges is contained in a compact set. Hence there 
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exists a continuous function u from [0, a(r)] to H such that, for each F0 in 
A, z > 0, and each finite set (wi,... ,wr) in H, there exists F in A with 
F0 C F such that 

\(uF(t)-u(t),Wj)\< z for 0 < « < o ( r ) , l < j < r 

(see [1, pp. 5196-5201]). 

Fix v e H and z > 0. There is F 0 in A such that, for all F in A and the 
corresponding projections P, 

H-Pu-vH < * . 

We know that, for 0 < t < a(r), 

t 

(uF(t),v) = (u0,v)+ (f(s,uF(s)),Pv) d s . 

0 

It follows from (3c) that there are p > 0 (p < z) and u i , . . . , um E H such that 
for each t G [0,a(r)] and all yly y2 E H with ||yi||, ||y2|| < 2 r if 

| (2/i-2/2,^i) | < P for i = l , . . . , m , 

then 

\(f(t,yi)-f(t,y2),v)\^z. 

We may choose F D Fo so that 

| (up(£) - n(t), ui) | < p < z , i = 1 , . . . , m, 

| ( u F (0 - u(t), v)\<p<z, 0<t< a(r). 

Evidently 

\(f(t,uF(t))-f(t,u(t)),v)\<z for 0 < t < a ( r ) . 

Since 

\(f(t,uF(t)),Pv) - (f(t,uF(t)),v)\ < M(l,2r)\\v - Pv\\ S zM(l,2r), 
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we have 

t 

(u(t),v) - (u0,v) - / (f(s,u(s)),v) ds\ 

0 

t 

(u(t),v) - (uF(t),v) + (uF(t),v) - (u0,v) - / (f(s,u(s)),v) ds 
0 

t t 

= \(u(t)-uF(t),v)+ j(f(s,uF(s)),Pv) ds- J(f(s,u(s)),v)ds 

0 0 

< z ( l + a ( r ) M ( l , 2 r ) ) . 

Since z > 0 is arbitrary, 

t 

(u(t),v) = ( u 0 , ^ ) + / (f(s,u(s)),v) ds. 

o 

Since v € H is arbitrary, 

t 

u(t) = u0 + / f(s,u(s)) ds for 0 < t < a(r), 

o 

and the proof is finished. 

R e m a r k 2. It is known (see [3]) that if in Theorem 2 we assume that / 
satisfies a local Lipschitz condition in u, then the local solution u: [0, a(r)] —* H 
with u(0) = u0 is unique. 

Moreover, we have 

THEOREM 3. If in Theorem 2 . besides the conditions (3a)- (3c) . we suppose 
that 

Re(/ ( t , u) - f(t, v), u - v) < \\u - v\\2/2t 

for all it, v in H and 0 < t < a(r), then the solution u is unique. 

The proof is a repetition of that of M e d e i r o s ' s Theorem 3 in [4]. 
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DEFINITION. ([4, Df. 1]). Let w be a positive real function defined on [0,T]. 
We say that w is a permissible function if it is strictly increasing on [0, T), if 
w(0) = 0 , and if 

— / dz —> oo as s -> 0, s > 0, 0 <a <T. 

Wi w( 

THEOREM 4. If in Theorem 2 , besides (3a)-(3c) , we suppose that 

2 Re(f(t, u) - f(t, v), u-v) < w(\\u - v\\2) , 0 < t < a(r), 

for some permissible function w, then solution u on [0, a(r)] is unique. 

The proof is a repetition of that of M e d e i r o s ' s Theorem 3 in [4]. 
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