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(Communicated by Miloslav Duchori )

ABSTRACT. This paper deals with a necessary and sufficient condition for in-
tegrability of the majorants Pf of the orthogonal partial sums of Fourier-Haar
series.

Many authors deal with the Fourier-Haar series (see G. Alexits [1],
A.M. Olevskij [4], P. L. Uljanov [5]-[7] and others).

In [7] there is proved a theorem concerning integrability of the majorants
of partial sums of Fourier-Haar series for real measurable functions from the
logarithmic scale of Orlicz-type function classes. In 3] this result is completed
for whole scale LP (p > 1) of Lebesgue-integrable functions. In [2] a necessary
condition on integrability of the majorants of partial sums of double Fourier-
Haar series is given. The purpose of this paper is to give a sufficient condition
for such integrability.

Let J =1 x1I=10,1] x [0,1] be the unit square in R?. Any natural number
n has the following representation: n = 2¥ 44 for 4 = 0,1,...,2% — 1 and

k = 0,1,.... Therefore we can use the following symbols: I, = I} = (i-27*,
(i+1)-27%) and I, = I, x I, C J. Let the Haar system of functions

h, (z) have the form presented in [1] and [3]. We shall study a representation by
Fourier-Haar series of a real function f(z,y) measurable on J.
The orthogonal partial sum

m 7n
mn f’ T, y Z Z bl\l hk hl(y)
k=0 1=0
of a double Fourier-Haar series
o0 o0
Zbu hy () - by (y)
k=0 (=0
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has the following integral representation

|Imn|m1 ’ ff f(t’ 3) dtds for (x,y) € Imn ’
Smn(f; z, y) = Imn
0 for (z,y) &1, .

We denote the majorant of these orthogonal partial sums by Pf,

(Pf)(z,y) = sup 1S n (3 2,9)] -

In (3] the following theorem is proved.

THEOREM 1. Let ®(u) > 0 be an increasing function defined on the interval
[0,00) satisfying the condition ®(u) = o{log*(u+1)} for u — +oo. Then there
exists a function f, in the Orlicz class L®(L) defined on the set J such that the
smallest majorant of orthogonal partial sums of the double Fourier-Haar series
of f, is not Lebesgue-integrable over J.

The following theorem gives a complementary sufficient condition for the
integrability of the majorant Pf.

THEOREM 2. Let ®(u) = log*(u + 1) for nonnegative u. Let [ be a 1cal
measurable function from the Orlicz class L®(L) on J C R?. Then the majorant
Pf of orthogonal partial sums of double Fourier-Haar series of the function f
s Lebesque-integrable over J .

Proof. For simplicity we replace logt by Int. We consider (z,y) € I, —
(a,c) x (b,d) for some positive constants a,b,c,d (a>0,b>0,c<1,d<1,
c¢>a, d>b). Then we have

S (froy) =L, |- //f(t, s) dids
In

r d

Yy A .
= |L,,17" -//f(t,s) dsdt+|Im”|'1~'//f(t,s) ds dt
a 'b

a Yy

c d

¢y
-1 .
+ 7" /\/f(t7s) d,gdt+|1,,m| -//f(t,(s) ds dt
T b vy
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We can consider f > 0 on J. Then we have the inequality

| (f5 2, 9)

z Y z d
1 1
S(x—a)-(y—b)//f(t’s) det-}-m//f(t,S) dsdt

(c_z) b)//f(ts dsdt+ T d y)//fts ) dsdt.

The terms of the sum on the right-hand side of this inequality are evidently
nonnegative. We denote the absolute values of the integrals over the set J of
these terms by A,, A,, A;, A,, respectively. We shall estimate now the integral
A, . It is easy to see that we have the equality

1
A= |
0

_— (t,s) dsdtdydz
|:r—a| = bl//f ) dsdtdy

T

y 1
//lx—al/fts dtdzdsdy.
b 0

o—__

°\...

Integrating by parts we get

O\_

]f(t s) dtdz

'c——al

dzx

1
=1In(l —a)- / (t,s) dt +1Ina- /fts dt+/f:rs) ln| —al

and, after some rearrangements, we obtain
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11
=//fts) In(1 -a)- ln z—ln(l—b)-ln(t—a)-
b

a

+

b
/f ln(l —a)- ln
0

:\H

—Inb-In(t - a)T

+

\e

b
/f(t,s)~ [lna-lnbﬁs —Inb-In(a - t)_
0

Q

e\_

f(t,s)- lna-lnizg~—ln(1—b)-1n(a~t)-

1 1 1
+f [ 0.9 |t—a| Ty
00

Then the following estimation is true.

11
1 1
A, <//f(t,s)-ln 't_a|~ln Ty dsdt.
0 0

Define the following sets on J by

E, :{(t,s)eJ: 1+ f(t,s) < ﬁ},
E, = {(t,S)GJ: L+ f(t,s) > W}

With respect to this partition, the following estimation holds:
1

/ fit,s)- lt—(ll -ln 5= 0] dsdt

!

dsdt

ds dt

dsdt

ds dt

dsdt.

// —11]-In 1 -In 1 dsdt
|t—a||s—b[ lt—al " |s -0l

/\/|7——a- lt—a| /\/‘ST— Isib

Because of the inequalitics

1

0</ ! -In ! dt <8
0

VIt —a| [t — al
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the estimation

1 1
-1 -1
//f(t,s) nlt—al nls—bl dsdt < 64
E,

takes place. From conditions |[t—a| < 1 and |s—b| < 1 for (t,s) € J, we obtain
the following estimations in E,

1< Fm <1+ f(t,s),
i.c.
1 9 2
Ta < {1+ 79} Is—bl < {1+ f(t,9)}
and

ﬁ < {1+ f(t,5)}.

In the sequel we have the following inequalities.

//f(t,s).ln It—lal ‘In lsibl dsdt<E//f(t,s)~ln2[1+f(t,s)]2dsdt

yOPs

<4- f(t,s)~ln2[1+f(t,s)] dsdt.
/]

The last integral in the previous estimation is finite according to the condition
f € LO(L) for ®(u) = In?[1 +u]. Then it follows that 4, is nonnegative and
bounded by some constant which is independent of a, b, z,y. And using the same
method for A,, A;, A, we get that they are nonnegative and bounded, too, with
some constants independent of a,b,c,d,z,y. According to this conclusion we
obtain that the integral

/ 1S n (s 2, y)| dz dy

J

is bounded by some nonnegative constant which is independent of m,n and
according to the Fatou’s lemma we obtain that the integral

J[@n@) azay
J

is bounded. This completes the proof of the Theorem 2. O

Conclusion. Theorem 1 and Theorem 2 give a necessary and sufficient condi-
tion for integrability of the majorants Pf of orthogonal partial sums of double
Fourier-Haar series.
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