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ON MULTISEQUENCES AND THEIR APPLICATION 
TO PRODUCTS OF SEQUENTIAL SPACES 

SALIOU SITOU 

(Communicated by L'ubica Hold) 

ABSTRACT. Michael's theorem on sequentiality of products, Arhangel'skii's 
theorem on the Frechetness and Nogura-Shibakov est imate of the sequential 
order of products admit a common generalization, obtained with the aid of 
multisequences. 

1. Introduction 

Let X be a topological space and let A C X. We say that A is sequentially 
closed if no sequence in A converges to a point outside A. Let the sequential 
adherence of A be the set of limits of sequences in A. From now on, cl and clseq 

denote respectively the closure and the sequential adherence operation in X. So 
let clseq.4 = A and for each ordinal a > 0, c l ° q A = cl s e q( IJ clfeq.A^ . It is 

well known that cl^eq A = cl^1"1 A.1 The sequential closure of A is by definition 

^Tseq A — c^eq ^ • -^ subset -4 is sequentially closed if and only if A = clT s e q A. 
Sequentially closed sets yield a topology. A topology is sequential if it coincides 
with the topology generated by its sequentially closed subsets. More precisely, 
a topology is sequential if and only if for all A C X, cl A C clT A. The 

sequential order a(x; A) of a point x £ X relative to a subset A is by definition 
the least ordinal a such that x £ c\^ A. The sequential order a(x) of x is: 

a(x) = sup{cr(o:; A), A C X such that x £ cl^1 A} . The sequential order a(X) 

of the whole space is a(X) = sup a(x). Recall that a Frechet (Frechet-Urysohn) 
xex 

space is a space in which cl A = cl yl for each subset ^4. 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 06A06; Secondary 54A05, 54B15, 54C25. 
K e y w o r d s : sequential topology, sequential order, tree , multisequence , fan. 

1 u1 is the first uncountable ordinal. 
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E. M i c h a e l proved in [10] that the product of a sequential space with a 
regular locally countably compact sequential space is sequential. A. V. ArIr ­
a n g e l ' s k i i proved in [2] that the product of an infinitely subtransversal 
(the definition will be given in Section 3) Frechet space with a regular locally 
countably compact Frechet space is Frechet. The aim of this article is to show 
that the use of multisequences enables us to provide simple proofs of some 
classical theorems such as the above quoted theorems of E. M i c h a e l and 
A. V. A r h a n g e l ' s k i i . In fact, this new method gives precise bounds for the 
sequential order of the product of a sequential space with a sequential and regular 
locally countably compact space and enables us to generalize the above theorem 
of A r h a n g e i ' s k i i . The results of this article form part of the third chapter 
of my Ph.D thesis [12] written under the supervision Professor S. D o 1 e c k i. 

2. Multisequences 

Let Seq = ( IJ Nn , C) be the set of finite sequences of natural numbers 

ordered by concatenation. For s and t in Seq, we denote (s, t) the concatenation 
of s and t (hence, if s = (nQ,n1,n2,... ,nk) and t = ( m 0 , m l 5 . . . , m ) then 
(5, t) = (n0, n l 5 . . . ,nk,m0,m1:m2,...,m )) and s E t (resp. s C t), if there 
exists q G Seq (resp. q in Seq, q different from the empty sequence) such that 
t = (s, q). The order C is well-founded and its length function is: Z(0) = 0 and 
for 5 = (n0,n^ . . . ,n f c) , l(s) = k + 1. 

DEFINITION 2 .1 . A subtree T C Seq is called well-capped ([5]) if each of its 
non empty subsets has a maximal element. 

DEFINITION 2.2. An index tree is a well-capped subtree T of Seq with the 
following properties: 

V £ G T and s C £ = > s G T ; 
s,tESeq 

V 3 (t,n) eT => V (t,n) G T . 
teT n£N n<EN 

R e m a r k 2 .3 . If T is an index tree then (T, II) is well-founded. So it possesses 
a rank function that fulfils, 

r(t) = r(t, T) = minjcY G Seq : V r(s) < a\ . 

If T is an index tree, then for all teT, the length of t is finite. 
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DEFINITION 2.4. The rank of an index tree T is by definition 

r(T)=r(^T). 

The following lemma is well known. 

LEMMA 2.5. ([5; Lemma 6]) For each countable ordinal a, there exists an 
index tree T of rank a. Moreover, if (t,n) G T then r(t) = lim r(t,n). 

n—> + oo 

DEFINITION 2.6. Let T be an index tree, m a x T the set of all maximal el­
ements of T and X a set. A multisequence2 in X is a mapping defined on 
m a x T into X. If X is a topological space, then we_say that the multisequence 
/ converges to a point x if it admits an extension / : T —» X such that 

V fit) = lim fit, n) and x = / ( 0 ) . 
*<ET\maxT JK J n-+ + ooJK ' ' JK ' 

The extended multisequence / is irreducible ifjt is one to one and if for each 
sequence (tk) C T and for each index t G T , f(t) = lim f(tk), then tk=t for 

all but finitely many k or tk = (t,nk) with lim nk = +oo. 
k—+ + oo 

The sequential order of a convergent multisequence / is defined by 

a ( / ) = cT( / (0) ; / (maxT)) . (1) 

THEOREM 2.7. ([3], [12]) Let X be a topological space, A C X and x G X. 
Then, x G clT A if and only if there exists in A a multisequence that converges 
to x. 

THEOREM 2.8. ([3], [4]) Let X be a topological space, A C X and x G X. If 
a(x;A) = a, then there exists a multisequence f: m a x T —» A of order a that 
converges to x. 

3. Sequential ly and upper bound of the sequential order 
of the produc t of two sequential spaces 

It is well known that the product of two sequential spaces need not be sequen­
tial even when the topologies are Frechet. There are several examples illustrating 
this ([1], [6], [11], [13]). The following example seems to be new and particularly 
simple. It shows that the product of two Frechet spaces need not be sequential 
nor of sequential order equal 1 . 

2 Let us note that in [7], [8], P. K r a t o c h v i l introduced a notion of multisequence which 
is similar to ours. 
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E X A M P L E 3 . 1 . Let X = {x(nM, (n ,k ,p) G N3} U {xn, n G N} U {x} be 

a set such that for each n y£ m, xn =£ xm, for each (n ,k ,p) ^ ( n ' ,k ' , p ' ) , 
x(n,k,P) ¥" x(n',k',P') a n d f ° r e a c n ™> x(n,/e) = Xn f ° r ^ & G N . E q u i p X w i th 
the following Hausdorff topology: the points x(nkp) are isolated, a neighborhood 
base of the point x is the countable set Af(x) = {A , p G N} where 

Ap = {x}U{xn, n>p}u{x(nkp)') ( n , k , p ) G N 3 , n > p} 

and a neighborhood base of a point x n is the uncountable set M(xn) = 

{Bf) feff*} where Bf = {xn} U {~(n|fciP), k G N, p > / ( k ) } . It is obvious 
t h a t x(n,k,P) -^ x(n,k) j xn —> x.Let Y = {y(m,g), (m,q) G N2} U {T/} 
be topological spaces equipped with the following topology: the points y, > 
are isolated and a neighborhood base of the point y is the uncountable set 
M(y) = {Bg, genN} where Bg = {y} U {y(mq); (m,q) G N2 , q > g(m)}. 
It is obvious that for each m , y,m x —.> y, so (y(m A is a fan. Note that X 

and y are respectively an untraversable arrow and an untraversable fan ([3], 
[4], [12]). 

I claim that the product X x Y is not sequential. 

In fact, let A = {(x(nkh)^y(kn)), (n, k) G N2 } . Because the only convergent 
sequences in A are stationary sequences, A is sequentially closed. But (x, y) G 
cl-A so that if IV G Af(x,y) is a neighborhood of (x,y), then it contains a 
product U x V where U G Af(x) and V G -A/"(y). Accordingly, (because x is first 
countable) VV contains a subset of form: {x(n k x ; n > n0 and (k,p) G N 2} 
x {y(m,g) 5 m G N and q > qm}. Let 5 > n0 and t > qs. Then ( x , > M , 9 M ) G 
W H A. Thus 1 x 7 is not sequential. 

Each subset A of X x Y defines a multifunction (A: X =$ Y) to the effect 
that Ax = {y £Y : (x,y) G A}. By A~ we understand the inverse multifunc­
tion A~y = {x G X : (x,y) G A} . If V C " , then AV = IJ Ax; if W C y , 

xGV 

t h e n A " I V = IJ i4"j/ = {x : A x H K V ^ 0 } . 
2/GW 

LEMMA 3.2. Let X 6e a sequential space, Y a sequential regular locally count-
ably compact space and A C X x Y. If (x,y) G A A, then there exists a tree 
T of rank r(T) < a(X) + a(Y), a subtree R of T of rank r(R) < a(Y) and 
multisequences f: max T -> X and g: max T —> Y such that f x g is valued in 
A and converges to (x,y) and the restriction f\j^ of f to R has the constant 
value x. 

P r o o f . Let Af(y) be the set of closed countably compact neighborhoods 
of y and let IV G M(y). It is obvious that x G c\A'W = clTseq-4"IV. Let 
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a = a(x\A~W). Then there exists a tree of rank a and, by virtue of Theo­
rem 2.8, a multisequence fw : max Sw -> A~W of order a that converges to x. 
Let gw: max Sw -> W be a multisequence such that (fw xgw)(mzxSw) C A. 
Because W is countably compact and closed, we may assume that the multise­
quence gw converges to a point yw G W. Thus the multisequence fw x gw: 

max Sw -» .4 converges to a ( x , y ^ ) - L e t F = { ^ : ^V € -^ ( j / )} , then 
7/ G cl F. By virtue of Theorem 2.8, there exists a multisequence g0: max R -^ F 
that converges to ?/ such that a(g0) = &(y;F) = r(R), thus r(It) < cr(y). De­
fine T = {(*, Sw) : temaxR}U{R} (where (t,Sw)I := {(t ,s) : 5 G IV}) , we 
get that r(T) = r (5) + r(I?) < a (X) + a(Y). Let / : T -> X defined by 

tVH / ( . ) - . , 

and g: T -> Y defined by 

,p V g{t,s) = g?(s), 

V g(t) = g0(t). 

The multisequences / : m a x T -> X and g: m a x T -> Y converge respec­
tively to x and y and the multisequence / x g valued in A converges to (x,y). 
The proof is complete. D 

The following theorem implies [9; Theorem 4.2.b] of E . M i c h a e l and [11; 
Theorem 2.3] of T . N o g u r a and A. S h i b a k o v . 

THEOREM 3.3. Let X be a sequential space and let Y be a sequential regular 
locally countably compact space. Then X x Y is sequential and a(X x Y) < 
a(X)+a(Y). 

P r o o f . By virtue of Lemma 3.2, if A C X x Y and (x, y) G A, then there 
exists a tree T of rank less than or equal to a(X) -f a(Y) and a multisequence 
defined on T that converges to (x,y). So (x,y) G clT s e q-4, thus X x Y is 
sequential. On the other hand, because the order of a multisequence is less than 
or equal to the rank of the tree on which it is defined, we get that for each 
Ac X xY, and for each (x,y) G cl.A, a((x,y)\A) < a(X) + a(Y). D 

Let us recall, following A. V. A r h a n g e l ' s k i i , that a fan (x,nk\) con­
verging to x is ( a 3 ) (infinitely subtransversal) if it has a subfan (x,n k J such 

that each sequence (x,n k \) converges to x. A topology is infinitely sub-
tranversal if each fan converging to a point x is infinitely subtransversal. 
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COROLLARY 3.4. ([1; Theorem 5.16]) The product of an infinitely sub-
transversal Frechet space X with a Frechet regular and locally countably com­
pact space Y is a Frechet space. 

P r o o f . According to Theorem 3.3, it is enough to prove that the sequential 
order of X x Y is equal to 1. So, let A C X x Y, (x,y) £ c\A. By virtue of 
Lemma 3.2, there exists a bisequence (xtn M, 2/(n M) in A that converges to (x, y) 
such that for each k, x,n ^ = x , so (x,n fcj) is a fan that converges to x. As X 

in infinitely subtransversal we may assume that the fan (xtn k\) is epitransversal 
([4], [12]). On the other hand, the bisequence 2/7nM—>yn—>y converges to y 

^ ' ' k n 

in the Frechet space Y. So there exists a sequence (ytnm km))m ^ n a t converges 

to y. Thus (xf km)->y(nm km)) ls a sequence in A that converges to (x ,y) . D 

THEOREM 3.5. If X is a sequential infinitely subtransversal space of order a 
and if Y is a Frechet regular locally countably compact space, then X x Y is 
sequential and its sequential order equals a. 

P r o o f . It is obvious that the sequential order of this product is greater 
than or equal to a. On the other hand, according to the preceding the product 
is sequential. 

Let A C X xY and (x,y) E cl.A. By virtue of Lemma 3.2, there are multi-
sequences / : T -» X and g: T -> Y such that ( / x o)(maxT) is valued in A 
and converges to (x, y) and a subtree R of T of rank less than or equal 1 such 
that the restriction f\j^ of / to R has the constant value x. If r(R) = 0 then 
r(T) = a and then a((x,y)]A) < a. If r(R) = 1 then for each n , f(n) = x so 
f(n, k) is a fan converging to x. So because X is infinitely subtransversal we may 
assume that it is epitransversal [3]. Hence g(n,k)—> g(n)—>y is a bisequence 

k n 

converging to y in the Frechet space Y. So as in the proof of Theorem 3.3, we 
may reduce the rank of T to a so O~((x, y)\ A) < a. The proof is complete. • 
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