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AN INDIVIDUAL ERGODIC THEOREM
ON THE HILBERT SPACE LOGIC

TATIANA LUTTEROVA—SYLVIA PULMANNOVA

1. Introduction

The classical individual ergodic theorem of G. Birkhoff states that if (X, &, u) is
a probability measure space, T is a measure-preserving transformation of X and f
is an integrable real (or complex) valued function on X, then the averages

s,.(f)=%(f+ Tof+ T?of+...+ T" 'of)

converge almost everywhere to an T-invariant function f (where Tof is the
function defined by Tof(x) = f(Tx)).

In the quantum logic approach, probability measure space is replaced by the
couple (L, m), where L is a logic and m is a state on L. Measure-preserving
transformation T is replaced by a o-homomorphism of L preserving the state m,
and instead of an integrable function we consider an observable x on L. Individual
ergodic theorem on a logic was formulated and proved in [1] for the case when the
o-homomorphism 7 of L is x-measurable, and this result was generalized in [2] for
the case when the observalbes x, Tox, T?ox, ... are mutually compatible. In this
paper, we shall prove the individual ergodic theorem on the Hilbert-space logic.
We shall replace the condition of compatibility by a weaker condition of the
existence of a joint distribution of x, Tox, T?0X, ... in the state m. We shall also give
simplified proofs of some theorems on joint distributions which were proved in [3].

2. Preliminaries

Let (L, <, 1,0, 1) be a logic (=an orthomodular o-lattice). Two elements a,
b of L are said to be orthogonal if a <b* (we write a Lb), and they are said to be
compatible, w-itten a< b, if a=(aAab)v(aanb*), b=(arb)v(a*Ab). A state m
on L is a map m: L—[0, 1] such that (i) m(1) =1, (ii) m(va;)==m(a;) for any
sequence {a;}; of mutually orthogonal elements of L.

Let L;, L, be two logics. A map 1: Li— L; is a 0-homomorphism if (i) t(1)=1,
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(ii) t(a*)=1(a)* for any a € L,, (iii) 7(v ;) = v(7(a,)) for any sequence {a;}, in L;.
A o-homomorphism T is an isomorphism if it is one-to-one and onto. An
isomorphism t: L— L is an automorphism.

Let us denote by B(R") the g-algebra of Borel subsets of R". Clearly, B(R")
with the ordering defined by set-theoretical inclusion and with the set-theoretical
complementation is a logic. An observable on L is a g-homomorphism x from
B(R") into L. If x is an observable and f is a Borel measurable function on R’,
then f(x)=xof""! is also an observable. Two observables x, y are said to be
compatible (x & y) if x(E) < y(F) holds for any E, F € B(R). If x is an observable
and m is a state on L, then m,: B(R')— [0, 1]

E v m(x(E))

is a probability measure on B(R"). This m, is called the probability distribution of
the observable x in the state m. The expectation of x in the state m is defined by
m(x)=[Am.(d}) if the latter integral exists. For a Borel Function f we have
m(f(x)) = [ f(A)m.d(L). If x is an observable and t: L — L is a 0-homomorphism,
then tox: B(RY—-L

E > 1(x(E))

is also an observable. A o-homomorphism 7 is said to be (i) x-measurable if
7(R(x)) = R(x), where R(x)={x(E): E € B(R")} is the range of x, (ii) m-pres-
erving if m(t(a))=m(a) for all a € L, (iii) ergodic in m if it is m-preserving and
7(a) = a implies m(a) € {0, 1}. We put % x=x, " 'ox =ToT"0x, n=1.

An observable x is bounded if there is compact subset C = R" such that x(C) =1
and it is called simple if x{0, 1} =1. To any a €L there is a (unique) simple
observable x, such that x,{1}=a and x,{0}=a*. If E€ B(R") is such that
x(E)=1 for the observable x and t is a o-homomorphism, then 7.x(E)=
1(x(E)) = t(1) = 1. This implies that if x is bounded, Tox is bounded, too.

3. Joint distributions of observables

Compatible observables have joint distributions in any state. Joint distributions
for observables not necessarily compatible were introduced in [4] in the following
form.

Definition 1. We say that the observables x, xa, ..., X, have a joint distribution in
a state m if there is a measure u on B(R") such that

U(Ei X E: X ... X E,)=m(x1(E)Ax2(E2)A...Ax.(E.)) (1)

for any measurable rectangle E, X E; X ... X E,.
It is easily seen that if the joint distribution exists, it is uniquely defined.
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The following theorem has been proved in [5]. Here we shall give a more
elementary proof.

Theorem 2. Observables xi, x2, ..., x, have a joint distribution in the state m if
and only if

M (EDA ... AX(E)A...Ax.(E,)) =
=:zlm(xl(El)/\---/\xi(E{:)A.../\x,,(E,,)) 2)

for any E,, E,, ..., El, ..., E.€ B(R"), E.=E!UE?}, EInE}=0, 1<i<n.
Proof. If the joint distribution exists, then there is a measure p satisfying (1).
Condition (2) then follows from the o-additivity of the measure u.
Now let (2) hold. Let us define

F(t, t, ..., ;) =m(xi(—, ) Ax2(—®, L)A...AX.(—, 1)) (3)

We shall show that F(t, ..., t.) is a distribution function.
() Letti<s,i=1,2, ..., n. Then (=, t)u(t, s;)=(—, s;). Using (2), we get

F(Sl, ceey S,.)=F(t1, ceey t,.)+2m(x1(—°°, t;)A...Ax,--;(—OO, t,‘_x)/\.
i=1
AXi({tiy $))AXir1(— 0, Siv)A ... AX(— 2, 54)),
and therefore F(ti, ..., t.) <F(si, ..., S»).
(ll) Let (t'l, t2y ...y t,.)/'(h, 12y ..oy t,.). Then

lF(tx, t2y ...y t,.)—F(ti, t2y ..., t,,)l = |m(x1(—°°, t1)/\X2(—‘°°, tz)/\.../\x,.(—oo, t,.))—
—m(xi(=, ) Ax2(=0, L)A...AX(—, t,))| =
=mx<ti, i) Ax2(—0, LA ... Ax (=, ,))<m(x,<ti, 1,))>0

as i— », because m(x1(—», t)) is a distribution function.
(iii) Evidently, F(—, t, ..., t,) =0, F(o, ..., ®)=1.
(iv) We have to show that for non-negative hi, h, ..., h,

F(t1+h1, t2+ hz, ceay tn +hn)—ZF(tl+hl, t2+h2, seey

tici+ hicy Gy Lt + Rier,y ooy o+ h) + 2 F(ti+hy, ...,
i,ij<-il
tici+ hicy, Gy tivr + hivq, ooy o1+ Bz b, G+ By,
v bt )+ .+ (1) F(ty, t, ..., t,)=0.

We shall proceed by induction. For n =2 we obtain

F(t; + hy, to+ hz)—F(tl, L+ hz) - F(tl + hl, tz) + F(tla tz) =
=m(x1<t, i+ h)Ax2<t, b+ hy)).
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This can be obtained by direct computation from (2). Now let us suppose that for
n=k,

F([1+h1, ceey tk+hk)+...+("1)k F(tl, vy b)) =
=m(x1<t1, t1+h1)/\X2<tz, t2+h2)/\.../\xk<tk, te +hk))

For n=k+1 we get

k+1

F(t|+h1, t2+ .’12, ey e + kk, tk+1+hk+1)_ 2 F(11+h1,

i=1

veey biy ooiy Ik +hk, tk+1+hk+|)+...+(—1)k+l F(tx, veey by ’k+l)=
=m(x1(—°°, t1+h1)/\.../\xk(_°°, t + hk)/\xk,,l(—w, lic+1 +hk+1))—

k+1

—ZM(M(—W, i+ h)A L AX{(=0, A AX(=%0, b+ B) AXir1(— 9, oo+ Byyy)) + 4
=
+(—1)k+l m(X1(—°°, tl)/\...Axk(—OO, tk)/\xk+1(—°°, tk+1)).

We shall divide the right-hand s:de into two parts. In the first part we assemble the
members with the interval (- ©, ti+1 + hi+1) on the (k + 1)-th place, in the second
part we assemble the members with the interval (—, t.1) on the (k + 1)-th place.
We obtain in both parts the same number of members which differ only on the
(k + 1)-th place and have oppcsite signs. If we omit in botk parts the (k +1)-th
place, we get the same expressions as for n = k. Using (2), we have for the first
member

m(x1(ty, i + M)Ax2(t2, b+ M)A ... AX (b, b+ B ) A Xier1(— 0, teer + hiir)),

and for the second member

—m(x1<t1, t1+h,)/\x2(tz, t;+h2)/\.../\Xk<tk, b+ hk)/\xk+1(—°°, tee1))-

By substracting the two members and using (2) again we obtain

0< m(xl(tl, t+h)A .../\xk(tk, b+ M)A Xian <tk+1, tesr + hiiyr)).

We have thus shown that F(t,, t,, ..., t.) is a distribution function. Then there is
a measure u on B(R") such that

F(tl, tz, ceey t,.)=y((—‘°°, t1)x(‘_°°, tz)x X (_w, tn))

for any (t1, t, ..., t.) € R". It is easily seen that u satisfies (1), i.e. it is the required
joint distribution.

Let us set D={0,1}, d=(di, d, ..., d,)eD", a®=a*, a'=a for ae L. The
following theorem has been proved in [3]. :
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Theorem 3. Condition (2) of Theorem 1 is equivalent to the condition
1=m ( V xl(El)"'sz(Ez)"M...Ax,.(E,.)“~) =
deD"

= > m(xi(E)" Ax2(E2)%A ... Axa(En)™). 4)

deD"

Definition 1 can be generalized to any set of observables as follows.

Definition 4. Let {x.: a € A} be any set of observables on a logic L. We shall say
that {x,: a € A} have a joint distribution in the state m if for anyn=1, 2, ... and
any ai, oz, ..., d, the observables Xa,, Xay; -.., Xa, have a joint distribution in the
state m.

A logic L is said to be separable if any subset of mutually orthogonal elements of
L is at most countable. We recall (see [17]) that if {a,: a € A} is any subset of
elements of a separable logic L, then there is a countable subset I = A such that

Vite=Vao (A= \a)-

Let {x.: a€ A} be a set of observables on a separable logic L. For any finite

subset S ={ay, ..., a.} of A (with ay, ..., a, not necessarily all different) let us set
as(Ey, Es, ..., E.)= V x&(E)“A...AXo,(E.)™, )
deD"
where E,, E,, ..., E,e B(R"), and
as = /\ as(E1, Ez, ceey E,,) (6)
(E1, Ea, ..., En)

where the infimum is to be taken over all E;. E,, ..., E, € B(R"). Finally,

a= /\ as (7)
ScA
where the infimum is to be taken over all finite subsets S of A.

By Theorem 3, the observables {x.: a € A} have a joint distribution in a state m
if m(as(Ey, ..., E,))=1 for any Sc A and any E,, ..., E. € #(R").

Let 0#aeL. The set Lio,.j={be€L: b<a} is a logic with the partial ordering
inherited from L, with the greatest element a and with the relative orthocomp-
lementation b’ =b*Aa. If x is an observable on L such that x<a (i.e. x(E)oa
for any E € B(R")), then the map x A a defined by x Aa(E)=x(E)Aa, E € B(R"),
is an observable on the logic Lio,a).

Proposition 5. Let K = {a.: a € A} be any set of elements of a separable logic L.
For any finite subset S ={o, az, ..., a.} = A we put

as= V alina@a...nadk, 8)
deD" .
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a= /\ as. (9)
ScA
Then (i) a, «aforalla € A, (ii) if m(as)=1 forany S c A (m is a state on L) then
m(a)=1, (iii) {a.Aa: a € A} are mutually compatible.
For the proof, see [6].
We shall call the element a defined by (9) the commutator of the set {a.: a € A}.
It is easily seen that the element a defined by (7) is the commutator for the set
U R(x.) where R(x.) is the range of x..

aeA

Proposition 5 gives rise to the following theorem.
Theorem 6. Let {x.: a € A} be a set of observables on a separable logic L. Let m

be a state on L, and let a be the commutator of | J R(x,). Then

a€eA
(i) {x«: a € A} have a joint distribution in the state m if and only if m(a) =1,
(ii) for any a€ A, x,<>a and the observables {x,Aa: a€ A} on Ly are
mutually compatible.

4. Hilbert space logic

A very important example of a logic is the lattice of all closed linear subspaces of
a Hilbert space H (real or complex). Let H be a complex Hilbert space
3<dim H<R,. We denote by L(H) the set of all closed linear subspaces of H
ordered by the inclusion and with the orthocomplementation defined by M* =
{ue H: (u, v)=0 for all ve M}. Obviously, L(H) is a separable logic. The lattice
operations on L(H) are M, A Mz = MinM,, and M;UuM, = (M, + M;)~ (the closure
of the linear envelope of M; and M.). The elements of L(H) are in one-to-one
correspondence with the orthogonal projections. We shall write P™ for the
projector corresponding to the subspace M. Due to the spectral theorem [7], the
observables are in one-to-one correspondence with self-adjoint operators on
L(H). If A is a self-adjoint operator, we shall write P**’ for the corresponding
spectral measure, i.e. the observable corresponding to A. Due to the Gleasson
theorem [8] any state on L(H) can be written in the form

m =;w'm0’i’ mq’i: M'—')(PM(P-', (P.)

where {@:}; is a sequence of mutually orthogonal unit vectors in H.

The elements M;, M, of L(H) are compatible (M« M,) if and only if the
corresponding projectors commute, i.e. PM PM:= P2 PMi, We shall write in this
case PM o P™:. Two observables x = P(-), y = P®(-) are compatible if P*® o
PP® for any E, Fe B(R"). If x and y are bounded, then they are compatible if and
only if the corresponding self-adjoint operators commute, i.e. if AB = BA.
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Let M be a subspace of H and A a self-adjoint operator. The subspace M
reduces the operator A, i.e. AM c M if and only if PM & A. In this case A can be
considered as a self-adjoint operator on the Hilbert space M; the logic L(M)
corresponds to Lo, »y. The operator A reduced to M, written A/M, corresponds to
the observable PA()A PM = pACOPM,

If A and B are bounded self-adjoint operators on L(H), the sum A + B is also
a self-adjoint operator. It is natural to consider the corresponding observable
PA*BO) a5 the sum of the observables A and B. Clearly, if A< P and Bo P,
where P is a projector, then also (A + B) & P, so that if A and B reduce a subspace
M e L(H), then also A + B reduces M. Moreover, A/M+ B/M=(A + B)/M, i.e.
P(A/M+B/M)(~) — P(Af-B)(~)APM.

In the logic L(H) we can introduce the convergences of observables analogically
to the measure theoretical convergences (see [9]). We shall need only the almost
everywhere convergence. '

Definition 7. We shall say that the sequence of bounded observables {x:}: on the
logic L(H) converges to the observable x a.e. in a state m if

m(V AGu=x)(-e,)=1 (10)

n=1 k=n

for any €=0.

5. Individual ergodic theorem on the logic L (H)

In [2] the following individual ergodic theorem was proved.

Theorem 8. Let m be a state on a logic L, T be an m-preserving o-homomorph-
ism of L and x be an observable on L such that m(x) < and {t'ox}iZo be pairwise
compatible. Then there is an observable X on L such that

(i) Tox=x a.e. [m], i.e. m((tox){0})=1

(i) m(x)=m(x)

o 1S -
(iii) -~ Stox— i ae. [m].
i=0
We are now in the position to prove the main result of this paper, an individual
ergodic theorem on the Hilbert space logic.

Theorem 9. Let H be a complex Hilbert space, 3 <dim H<,. Let L(H) be the
logic of all closed subspaces of H. Let A be a bounded self-adjoint operator on H,
t: L(H)— L(H) be a o-homomorphism and m be a t-invariant state on L(H). Let
Po be the commutator for the observables {t'oA}i-0, and let t(Po)=Po and
m(P,) =1. Then there is an observable A on L(H) such that

(i) TcA=A ae. [m],
(i) m(A)=m(A),
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n—1
(iii) %ZTioA-—)A a.e. [m].
i=0

Proof. Let Hy=P,H. By Theorem 6, t'cA < Py, i=0,1,2, ..., and so T'- A
can be considered as self-adjoint operators on Ho. Moreover, again by Theorem 6,
t'.A/H, are mutually compatible. As T(Po)=P, T can be considered as

a o-homomorphism of the logic L(Ho). Let m = > wim,,. Since m(Py)=1 then
=1

1= wimy,(Po), which implies my, (Po) =(Pog:, ¢:) = || Pogi|| =1, so that @€ H,,
i=1

i=1,2,.... Hence m can be considered as a state on L(H,). We can apply
Theorem 8 to obtain that there is a self-adjoint operator Ao on L(H,) such that

(i) ToAo=A, ae. [m],
(ii") m(Ao)=m(A/Hp),
(iii") %ErfoA/Ho—»Ao ae. [m].

Let us take a real number ¢ and set

PAO = P20y PO PG (11)
where
PC‘E’={O if c¢E
1 if ceE,
E € B(R").

It is easily checked that PA*” is an observable and the corresponding self-adjoint
operator is

A=AOP0+C(1_Po). (12)

Clearly, A & Poand A/Ho= A,. We show that A is the operator we looked for.
(i) T(PA®) = ¢(PA®)y t(PC®) A T(Pt) = T(P*®) v PC® AP}, Therefore we
obtain that (1oA)/Ho=ToA,. Thus

('L'oA - A)/Hoz TGA/HO— A/Ho= TOAQ— Ao.

As m(Po))=1, we obtain m(P®*A~D®) =y (PC-A-DE)\ Py = py (P> AomAE))
E € B(R"), which implies

m(P(toA—A)(O)) - m(P(nAo-Ao)(O)) =1

(i) As m(Po)=1, we get m(PA®)=m(P*®), Ee B(R'), which implies
m(A)=m(A,). Similarly, m(P*®) = m(P*®P,) and thus m(A)=m(A/H,). By
(ii’) we derive m(A)=m(A).
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n—1
(iii) Let us denote A, =% > 1'0A. Then
i=0

m (\7 /°'\ PAn-Ae0) _ <\'°/ /"\ PA—AX-eop )

n=1 k=n n=1 k=n

=m <\7 7\ P((A,.—A)/Ho)(—e,z)) =1

n=1 k=n

for any € >0. The above equalities follow from the fact that t'c A < Po, i =0, 1, ...
implies A, Py, n=1,2, ..., i.e. P4 D= P, for n=1, 2, ... This implies by
[10] that

\7 ;\ P(A"-A)(_:,E)(_)PO,

n=1 k=n

[ \"/ 7\ P(A..-A)(-e.z)]/\ Po= \"’/ /"\ PA—Ax-eo , p

n=1 k=n n=1 k=n

The setup of the latter theorem can be slightly simplified if T is an automorphism.

Proposition 10. Let T be an automorphism of a separable logic L. Let a be the
commutator of the set M= {1'(a.): a € A}in-». Then t(a) =a.
Proof. The case a =0 is trivial. Let a# 0. For a finite subset F = { by, b, ..., b.}
of M set
a(F)= \ bfiAb$A...AbM

deD"

a= A a(F).

FcM

By the definition,

Clearly,
t’(a(F))=dV (b)) A...AT (D)™, j==1,
€Dn

and {v/(b1), ©'(b2), ..., T(b.)} = M. As the logic is separable, there is a sequence
(Fy, Fs, ...} such that a= Aa(F). Then t(a)= At(a(E)), but t(a(F)) is a(G.)
i=1 i=1

for some finite subset G; of M. This implies that a < t(a(F)),i.e. a< 7\r(a(E—)) =
i=1

t(a). Similarly, a<t7'(a), i.e. T(a)=a.

According to Proposition 10 if 7 is an automorphism, then we can in Theorem 9
use the set {t'0A}in_» instead of the set {T'0c A }io. If we have m(Po)=1 for its
commutator Py, then the individual ergodic theorem follows.

Let us make a final observation.

Lance [11] proved following individual ergodic theorem.
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Theorem 11. Let a be an automorphism of a von Neumann algebra o and let o
be a faithful normal a-ivariant state. For each A in &f and € >0 there is a projection
E in o with o(E)>1— € such that

13, o
(— SacA —A) Eh—+0 as n— oo,

n i=o

It would be of some interest to compare Theorem 9 with Theorem 11. One can
also look for the conditions under which an equivalent of Theorems 9 and 11 or
other theorems on operator algebras [12], [13], [14] could be proved in so-called
sum logics (introduced in [15] and [16]).
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