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FREELY ADJOINING 
A COMPLEMENT TO A LATTICE 

G . G R Á T Z E R * — H . L A K S E R * * 

(Communicated by Tibor Katriňák ) 

ABSTRACT. For a bounded lattice K and an element a of K — {0,1}, we 
directly describe the s tructure of the lattice freely generated by K and an element 
u subject to the requirement t h a t u be a complement of a. Earlier descriptions 
of this lattice used multi-step procedures. 

As an application, we give a short and direct proof of the classical result 
of R. P. Dilworth (1945): Every lattice can be embedded into a uniquely com­
plemented lattice. We prove it in the stronger form due to C C Chen and 
G. Gratzer (1969): Every at most uniquely complemented bounded lattice has 
a {0,1} -embedding into a uniquely complemented lattice. 

1. Introduction 

1.1. Background. 
E. V. H u n t i n g t o n [12] in 1904 conjectured that a uniquely complemented 

lattice is Boolean. This was disproved in a real tour de force in R. P. D i l w o r t h 
[6] in 1945, after many failed attempts by a number of mathematicians to verify 
the conjecture. (See [7; Chap. VI, Sec "Further Topics and References"] for 
a detailed accounting up to 1975; see [7; Appendix A, Sec 7.1] for the 1998 
update.) D i l w o r t h disproved the conjecture by verifying the following very 
strong result (almost the opposite of the conjecture): 

Every lattice can be embedded into a uniquely complemented lattice. 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Pr imary 06B10; Secondary 06B15. 
K e y w o r d s : relative complement, free lattice, uniquely complemented. 

The research of both authors was supported by the N S E R C of Canada. 
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Let K be a bounded lattice. Let a G K — {0,1}, and let u be an element 
not in K. We extend the partial ordering < of K to Q = K U {u} as follows: 
0 < u < 1. We extend the lattice operations A and V to Q as commutative 
partial meet and join operations. For x < y in Q, define xf\y = x and x\/y = y. 
In addition, let a A w - - 0 and a V w - - l ; see Figure 1. 

<0 

FIGURE 1. The partial lattice Q. 

The proof of D i 1 w o r t h was very complex, using free algebras that went 
way beyond lattices; however, the penultimate step was the description of F(Q), 
the lattice freely generated by Q and preserving the partial joins and meets of Q. 

In C. C. C h e n and G. G r a t z e r [3] (reproduced in G. G r a t z e r [7] and 
also in P. C r a w l e y and R. P. D i l w o r t h [4]), the description of F(Q) was 
reached in two steps. 

1.2. N e w results. 
As opposed to the approaches in [6] and [3], in this paper, we describe F(Q) 

directly. 
To construct F(Q), we consider polynomials (words) A built from Q = 

K U {u} with the operations A and V. A polynomial A naturally represents an 
element (̂ 4) of F(Q). We prove that with a polynomial A, we can associate its 
lower cover A^ and upper cover A* in K. (Recursively computable upper and 
lower covers were introduced for free products in G. G r a t z e r , H. L a k s e r , 
and C. R. P i a t t [11].) The crucial result is Theorem 1, which presents a re­
cursive algorithm to calculate A^ and A* for any polynomial A. 

By identifying x € K with (x), we can view K as a sublattice of F(Q). We 
apply Theorem 1 to describe which pairs of elements are complementary in F(Q) 
— see Theorem 2 — provided that K contain no spanning N5 . The embedding 
theorem of D i 1 w o r t h and its sharper form due to C h e n and G r a t z e r 
immediately follow. 

Another application of Theorem 1 is the solution to the "word problem" in 
F(Q): (A) < (B) in F(Q) if and only if one of the Whitman Conditions (implicit 
in P. M. W h i t m a n [15] to characterize (A) < (B) in a free lattice) hold or 
A* < B^. 
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1.3. Alternative approaches. 
There are alternative, purely lattice theoretic approaches to proving the the­

orem of D i 1 w o r t h : The C -reduced free products of G. G r a t z e r [8] and its 
generalization, the /^-reduced free products of M. E. A d a m s and J. S i c h 1 e r 
[1] and [2] (reproduced, in part, in V. N. S a l i i [14]). /^-reduced free products 
extend C-reduced free products in two important ways: 

(i) An /^-reduction is not necessarily determined by a C-relation (a relation 
imposing complementarity on pairs of elements from distinct components 
of a free product). 

(ii) An 7£-reduction can be done in many lattice varieties not only in the 
variety of all lattices. 

1.4. Future d irections. 
The new technique introduced in this paper (the direct description of F(Q) 

by the mutually recursive definition of < and the lower and upper cover) have 
many other applications. We made a start in exploring these in [9] and [10]. 

Here is a sample result from [9]: 

THEOREM. Let K be a lattice, and let [a,b] be an interval of K with a < b. 
If the lattice [a, b] is at most uniquely complemented, then there is a lattice 
extension L of K such that the interval [a, b]L of L is uniquely complemented. 

The methods discussed in Section 1.1 and Section 1.3 cannot be utilized to 
prove this result. 

Here is a sample result from [10]. Let m > 1 be a cardinal. Let us call a 
lattice L transitively (at most) m-complemented if every element of L has (at 
most) m complements and the following (transitivity) property holds: 

If 6 is a complement of a and c is a complement of b, then a = c or 
c is a complement of a. 

THEOREM. Let K be a transitively at most m -complemented lattice. Then 
there is a transitively m-complemented lattice extension L. 

Note that m = 1 is the uniquely complemented case. 

1.5. S u m m a r y . 
The purpose of this paper is to introduce the new direct description of F(Q) , 

and make the first short and elementary proof of the Dilworth theorem available. 
Equally importantly, we present the new technique in a very simple setup, easily 
accessible to algebraists. The more general results we obtain in [9] and [10] 
generalize our present results, but at the cost of very long, technical, and tedious 
proofs. 
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2. The relational system Q 

Let If be a bounded lattice. Let a G K — {0,1}, and let u be an element 
not in K. We extend the partial ordering < of K to Q = K U {u} as follows: 
0 < u < 1. 

We extend the lattice operations A and V to Q as commutative partial meet 
and join operations. For x < y in Q, define xAy = x and xVy = y. In addition, 
let a A u = 0 and aV u = 1; see Figure 1. In this section, we state a number 
of easy results on Q = (Q; A, V, < ) . See, for instance, [7; Sec 1.5] for the basic 
concepts and facts. 

The relational system Q has the property that for any x,y G Q, if x A y 
is defined, then it is the greatest lower bound of x and y in Q = (Q; < ) , and 
dually. This property is sufficient for us to apply D e a n ' s Theorem ([5]) to Q in 
the next section (while the result is due to D e a n , our presentation here follows 
that in H. L a k s e r [13]). 

A subset I of Q is an ideal if it is hereditary and it is closed under the joins 
denned. Dual ideals are denned dually. Observe that a proper ideal I of Q is 
either a proper ideal of K or it is of the form I U {u}, where I is an ideal of K 
with a ^ I. For ideals I and J of Q, the meet is given by 

IAJ = IPIJ. 

The join is described by the rule: 

/ V J = < 

( IVK J if I, J C K and IVKJcK; 

((InK)VK(JnK))u{u} if w G / U J and m 

a <£ (I H K) VK (J H K); U 

<5, otherwise. 

In this formula, we use the convention that if I, J are ideals of K, then IVKJ 
denotes the join of the two ideals in K, while I V J denotes the join of the 
two ideals in Q. Similarly, for x G K, we denote by (x]K the principal ideal 
generated by x in K, while (x] denotes the principal ideal generated by a; in Q. 
Note that (x] = (x]K, unless x = 1. 

If x,y G K, then (x] A (y] = (x A y]. If x G K, then 

( * ] A ( t t ] = ( { 0 } i f * < l . ( 2 ) 

If x,y £ K, then 

(*] V (i/] = (x V y] = J 
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If x G K, then 

/ i / i f Q if a < x ; 

So for x and y in Q, the ideal (x] A (y] of Q is principal; the ideal (x] V (y] 
of Q is principal unless {x, y} = {z, u}, with 2 G if, and a ^ z, in which case, 
(x] V (y] = (2:] U {u}. Now an easy induction proves the following statement: 

LEMMA 1. A finitely generated ideal of Q is either principal or of the form 

(x] V (u] = (x] U {u} with x G K , 0 < x , and a <£ x . 

3. The free lattice F(Q) 

We now discuss the lattice F(Q) , the lattice freely generated by Q and 
preserving the partial joins and meets of Q. Note that Q is a {0,1}-extension 
of K, so F(Q) is a {0,1}-extension of Q. 

We consider the set P(Q) of polynomials on the elements of Q formed with 
the operations A and V. Each polynomial A determines an element (A) of F(Q) 
if we interpret A as the meet operation in F(Q) and V as the join operation. 
Given A,B G P ( Q ) , we set A = B if (A) = (B) in F(Q). Let A < B if 
(̂ 4) < (B) in F(<3); < is a quasi-ordering on P(<2). 

We now recall the solution to the "word problem" in F(Q), which is a set of 
rules that determine when A < B in P(Q) for polynomials A and B. 

We associate, with each polynomial A, a finitely generated ideal A of Q, its 
lower cover ideal in Q, and a finitely generated dual ideal A of Q, its upper 
cover dual ideal in Q, as follows. 

If x G Q, then x = (x] . Inductively, 

AAB = AAB = AnB, 

AW B = AW B. 

Clearly, A is a finitely generated ideal of Q. Dually, we define A, a finitely 
generated dual ideal of Q. 

The solution to the word problem in F(Q) is given by the following result. 
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DEAN'S THEOREM (for Q). Let A,B G P(Q) . Then A < B if and only if 
it follows from the following rules: 

(E) A = B. 
(AW) A = A0 A A1 with A0 < B or AX<B. 
(vW) A = A0 V A1 with A0 < B and A1 < B. 
(WA) B = B0AB1 with A < B0 and A<BX. 
(Wv) B = B0 V B1 with A<B0 or A<BX. 

(CQ) ins^. 

Conditions (E), (AW), (VW), (WA), (Wv) are called the Whitman Condi­
tions, while (CQ) is the covering condition for Q. The following statements 
follow from this result: 

C O R O L L A R Y . 

(i) Q is a subposet of F(Q). 
(ii) A = {x G Q : x < A} (and dually for A ) . 

(iii) A < B implies that ACB. 

It follows from Lemma 1 that, given any polynomial A G P ( Q ) , there 
are uniquely defined elements A^ and A* of K with A n K = (A^]K and 
A fl K = [A*)K. So we have: 

LEMMA 2. x < A if and only if x < A^ for any x G K. If A < B, then 
K<B^. 

The most important properties of A^ and of u < A are summarized as 
follows: 

THEOREM 1. The following statements hold: 

(i) u <u. If x G K, then u < x if and only if x = 1. 
(ii) u^ = 0. If x G K, then x%= x. 

(iii) u< A l\B if and only if u < A and u < B. 
(iv) ( 4 A B ) , = A , A B , . 
(v) u < AW B if and only if either u < A, or u < B. or A^W B = 1. 

(vi) 

(I if a < A±y F? and either u < A or u < B\ 
( A V B ) =«{ " ~ "" 

^ A^VB^, otherwise. 

P r o o f . 
(i) This statement is contained in Statement (i) of the Corollary to Dean's 

Theorem. 
(ii) ;u fl K = {0}, and so u^ = 0 . If x G If, then x fl K = (x]K, implying 

that x^= x. 
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(iii) A A B < A and A A B < B by (E) and (AW). Therefore, if u < A A B, 
then u < A and u < B by the transitivity of < . The converse follows from 

(wA). 

(iv) Since 

{(AAB)>]K = AABnK = AnBnK = (Af]Kn(BJK = (A,ABf}K, 

the generators are equal. 

(v) j4<4VBandB<j4VBby(E) and (W v ) . Therefore, if u < A or 
u < B, then u < A V B, by the transitivity of < . Also, if 1 = A, V B^, then 
1 EunA V J B , and SO, by (C Q ) , u < AV B. 

Conversely, by Dean's Theorem, u < AV B if and only if either u < A, or 
u < B, or H Pi -4 V 29 7-- 0 — since (Wv) or (CQ) applies. The last condition 
is equivalent to u G AV B, because u = {u, 1}, so if u fl A V B ^ 0, then 
1 G AV B or ue AV_B, and both imply that u G AV B. If u < A or u < B, 
then we are done. So assume that u $£ A and u jt B. Then A = (AJ^- and 
B = (B^]K by Lemma 1. Thus if A^ V B^ < 1, then by the first equality in (3), 

Ay_B = (Am]K V (B.]K = (A, V B^]K , 

contradicting that u G A V B. We conclude that A, V i?, = 1. 

(vi) First, assume that u ^ A and u ^ B. If A, V Bm < 1, then as above, 
A V B = (A, V Bm]K, and so (-4 V B)^ = A, V B^. If A, V B^ = 1, then 
AVff = Q = ( A , V i ? J , s o a g a i n (AV B).= AmV B.. 

Second, assume that u < A or u < B; say, u < A. Then u e A, and so 
A = ( A J K U {u}. Since B C (B^]K U {u}, we have that 

A,BC (A, V BJK U {u} C A V E , 

the last containment since A„., B^, ?/ are all elements of i V B . 

As rJie first subcase, assume that a ^ A^ V B , . Then (A+ V -BJ#- U {u} is an 
ideal in Q. Thus A v f f = (A, V £ J K U {u}, and so (A V B)^ = A, V £ , . 

As the second subcase, assume that a < A, V B^. Since w < A, it follows 
that u,a G i V B , and so 1 = ix V a e A Vff. Thus i V B = Q. Therefore, 
(AvB). = l. 

This concludes the proof of the theorem. • 

Note that this theorem gives a mutually recursive definition of u < A and A^. 
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4. Complements 

In this section, we shall investigate complements in F(Q) . We want a result 
that describes all complemented pairs (A), (B). Obviously, we cannot get such 
a result if K contains a spanning iV5, that is, if K has a sublattice {0, p, g, r, 0} 
with p < q and ^ A r = 0, p V r = 1, isomorphic to the five-element nonmod-
ular lattice iV5. Indeed, in this case, for almost any polynomial A, the element 
(p V (A)) A q would be a complement of r in F(Q) . 

T H E O R E M 2. 

(i) The only complement of u in F(Q) is a. 
(ii) Let K contain no spanning N5. Let (A). (B) be complementary in 

F(Q) . Then either 

{(A),(B)}CK 

or 

{{A),(B)} = {u,a}. 

P r o o f . 

(i) Let A G P(Q) be such that (A) is a complement of u in F(Q) , that is, 

AAu = 0 and A\/ u = l . 

By Statement (vi) of Theorem 1, 

t A^, otherwise. 

So either a < A^ or 1 = A^; in either case, a < A^. Dually, a > A* • Thus 

A<A*<a<A^<A, 

and so A = a . 

(ii) We have, by assumption, 

A A J B = 0 and A v £ = l . 

By Statements (ii) and (iv) of Theorem 1, 

A , A £ , = 0 , (5) 

and, dually, 

A* V B* = 1 . (6) 
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Since u < A V B, we conclude, by Statement (v) of Theorem 1, that either 

A , V B . = 1, (7) 

or 

u<A, (8) 

or 

u < B. (9) 

Dually, since u > A A B, either 

A*AB* = 0, (10) 

u>A, (11) 

u>B. (12) 

or 

or 

First case: (7) holds. 
If (10) holds, then 

A* V £* = 1 = A^ V B , , 

A, A B , = 0 = A* A £ * . 

Since A^ < A* and iJ^ < B*, and since if contains no spanning 7V5, we 
conclude that A* = A^ and B* = B^, that is, that (A), (B) e K. 

If (11) holds, then 0 = u^ = A^, and so, by (7), 1 = B , . 

Thus £* < 1 = B^ , that is, £ = l . T h e n A = 0, and so {(A),(B)} = {0,1}. 

Similarly, if (12) holds, then {(,4), (B)} = {0,1}. 

Thus, in this case, {(A), (B)} C K. 

Second case: (10) holds. 
By duality, we conclude that {(A), (B)} C K. 

Third case: One of (8) or (9) holds, and one of (11) or (12) holds. 
If (8) and (11) hold, then A = u, and, by Statement (i) of our theorem, B = a, 
that is {(A)/(B)} = {u,a}. 

If (8) and (12) hold, then B < A, and so A = 1 and B = 0. 

The two remaining cases are similar to the two immediately above, with the 
roles of A and B reversed. • 
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5. Applications 

Now we state the result of C. C. C h e n and G. G r a t z e r [3]: 

THEOREM 3. Let K be a bounded, at most uniquely complemented lattice 
(that is, a lattice with zero and unit, in which every element has at most one 
complement). Then K has a {0,1}-embedding into a uniquely complemented 
lattice L. 

P r o o f . Since K is at most uniquely complemented, it contains no spanning 
JV5. If K is uniquely complemented, there is nothing to do. If not, pick an 
a £ K that has no complement, define Q = K U {u}, and form Lx = F(Q). By 
Theorem 2, Lx is an at most uniquely complemented {0,1}-extension of K, and 
a has a complement in Lx, namely, u. By transfmite induction, we obtain an at 
most uniquely complemented {0,1}-extension L of K in which every element 
of K has a complement. Repeating this construction uptimes, we obtain the 
lattice L of this theorem. D 

The classical result of R. P. D i 1 w o r t h [6] now easily follows. 

THEOREM 4. Every lattice can be embedded into a uniquely complemented 
lattice. 

P r o o f . Starting with an arbitrary lattice V, let K be the lattice we obtain 
by adjoining a new zero and unit to V. Then K is at most uniquely comple­
mented, indeed, only the zero and the unit have complements. By Theorem 3, 
K has a {0, l}-embedding into a uniquely complemented lattice L. Of course, 
this L will do for V. D 

But Theorem 3 says a lot more than its application to Theorem 4. If we start 
with a bounded, at most uniquely complemented lattice K, then in Theorem 3 
we find an extension L of K preserving the bounds of K and preserving all 
existing complements. 

We give one more application of Theorem 2. The reader should have no 
difficulty with coming up with many more variants. 

Let m be a cardinal number. A lattice K is called (at most) m-complemented 
if K has 0 and 1, and every x G K — {0,1} has (at most) m complements. 

THEOREM 5. Let K be an at most m-complemented lattice with no spanning 
JV5. Then K has a {0,1}-embedding into an m-complemented lattice L. 

P r o o f . Follow the idea of the proof of Theorem 3 . D 

Dean's Theorem can be made considerably sharper for Q. By applying The­
orem 1, we now show that Condition ( C Q ) of Dean's Theorem involving the 
ideal B and the dual ideal A of Q can be replaced by a condition involving 
only the pair of elements B^ and A* of K. 
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THEOREM 6. Let A,B e P(Q). Then A < B if and only if at least one of 

the following six conditions holds: 

(E) A = B; 
(AW) A = A0 A Ax with A0 < B or A1 < B; 
(VW) A = A0 V Ax with A0 < B and A1 < B; 
(WA) B = B0 A Bx with A < B0 and A < B1 ; 
(Wv) B = B0W Bx with A < B0 or A<BX; 
( C J - 4 * < B , . 

P r o o f . The first five conditions are just the Whitman Conditions as in 
Dean's Theorem. 

Our Condition ( C J is just the statement 

AnBHK^®, 

which trivially implies Condition (Cg) of Dean's Theorem. We thus need only 

show that if A < B and the Whitman Conditions fail, then A n B n K ̂  0 . 

Assume, to the contrary, that 

AnBnK = ®. (13) 

Then, since A < B and the Whitman Conditions fail, it follows that Af]B -= {u}. 
Thus, since u e u and u G u, we have that 

A<u <B. 

Since the Whitman Conditions fail for A < B, it follows that B is not a meet. 
Thus either B = C V D for polynomials C and D , o r B G Q , that is, B £ K 
or B = u. 
First case: B = C V D. 
Then, by (v) of Theorem 1, either u < C , or u < D, or C^ V D^ = 1. But the 
first two of these possibilities imply that (Wv) holds for A < B. Thus 

l = C t V D ^ ( C V D ) ^ B , . 

But then 
A* < B , 

contradicting (13). 
Second case: B G K. 
Then 

thus again 

< B* = B = вџ, 

A*<B., 

contradicting (13). 
Third case: B = u. 
The dual of the above argument shows that A = u. Thus A = B, contradicting 
our assumption that (E) does not hold for A < B. • 
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