Ján Jakubík
Convergences and complete distributivity of lattice ordered groups

Persistent URL: http://dml.cz/dmlcz/131742

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1988

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these *Terms of use.*

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project *DML-CZ: The Czech Digital Mathematics
Library* http://project.dml.cz
CONVERGENCES AND COMPLETE DISTRIBUTIVITY
OF LATTICE ORDERED GROUPS

JÁN JAKUBÍK

C. J. Everett and S. Ulam [2] investigated the order convergence of sequences in an abelian lattice ordered group G. Some other types of convergences in G were studied by F. Papangelou [10]. An axiomatic treatment of sequential convergences on G was performed by M. Harminc [3], [4], [5] (in some results of [5] the lattice ordered group G need not be abelian).

Higher degrees of distributivity in lattice ordered groups (including complete distributivity) were studied by several authors (cf. e.g., Weinberg [8] and the author [6]).

Let $\text{Conv} G$ be the system of all sequential convergences on G (for the definition, cf. below). The system $\text{Conv} G$ is partially ordered by inclusion. In [5] it was shown that $\text{Conv} G$ need not be a lattice and it was proved (without assuming the commutativity of G) that the following conditions are equivalent:

(i) $\text{Conv} G$ has a greatest element.
(ii) $\text{Conv} G$ is a lattice.
(iii) $\text{Conv} G$ is a complete lattice.

In the present paper it will be shown that each archimedean completely distributive lattice ordered group satisfies the condition (i).

1. Preliminaries

Throughout the paper, G denotes a lattice ordered group. For denotations, cf. the monographs of P. Conrad [1] and V. M. Kopytov [7]. The group operation will be denoted additively.

Let N be the set of all positive integers. The direct product $\prod_{n \in N} G_n$, where $G_n = G$ for each $n \in N$, will be denoted by G^N. The elements of G^N will be denoted by $(g_n)_{n \in N}$, or simply (g_n). If there exists $g \in G$ such that $g_n = g$ for each $n \in N$, then we denote $(g_n) = \text{const } g$.

(g_n) is said to be a sequence in G. The notion of a subsequence has the usual meaning.
Let \(a \) be a convex normal subsemigroup of \((G^N)^+\) such that the following conditions are satisfied:

(I) If \((g_n) \in a\), then each subsequence of \((g_n)\) belongs to \(a\).

(II) Let \((g_n) \in (G^N)^+\). If each subsequence of \((g_n)\) has a subsequence belonging to \(a\), then \((g_n)\) belongs to \(a\).

(III) Let \(g \in G \). Then \(\text{const} g \) belongs to \(a\) if and only if \(|g_n - g| \in a\).

Under these assumptions \(a\) is said to be a convergence in \(G\). The system of all convergences in \(G\) will be denoted by \(\text{Conv} \ G\); this system is partially ordered by inclusion. (Cf. [5], Definition 1.4 and Lemma 1.9.)

For \((g_n) \in G^N\) and \(g \in G\) we put \(g_n \to_a g\) if and only if \(|g_n - g| \in a\).

Let \(A \subseteq (G^N)^+\). We denote by \(\delta A\) the system of all subsequences of sequences belonging to \(A\). The convex closure (in \(G^N\)) of the set \(A \cup \{\text{const} 0\}\) will be denoted by \([A]\). Next let \(\langle A \rangle\) be the subsemigroup of \(G^N\) generated by the set \(A\). The symbol \(A^*\) will denote the set of all sequences in \(G\) for which each subsequence has a subsequence belonging to \(A\).

1.1. **Proposition.** (Cf. [5], Theorem 1.18.) Let \(\emptyset \neq A \subseteq (G^N)^+\). Assume that \(G\) is abelian. Then the following conditions are equivalent.

(a) There exist \(a \in \text{Conv} \ G\) such that \(A \subseteq a\).

(b) If \(g \in G\), \(\text{const} g \in [\langle \delta A \rangle]\), then \(g = 0\).

2. **Complete distributivity**

For the notion of complete distributivity of lattice ordered groups cf. [8] or [6].

2.1. **Theorem.** (Cf. [8].) Let \(G\) be a completely distributive archimedean lattice ordered group. Then there exist linearly ordered groups \(G_i\) \((i \in I)\) and a complete isomorphism of \(G\) into \(\Pi_{i \in I} G_i\).

Throughout this section we assume that \(G\) is a completely distributive archimedean lattice ordered group. In view of 2.1, we can suppose without loss of generality that \(G\) is an \(l\)-subgroup of a lattice ordered group \(\Pi_{i \in I} G_i\), where each \(G_i\) is linearly ordered and all joins and meets in \(G\) are performed component-wise. Moreover, we can assume that for each \(i \in I\) and each \(x' \in G_i\) there exists \(g \in G\) such that the \(i\)-th component of \(g\) is \(x'\).

2.2. **Lemma.** Let \(i \in I\). Let \(a_i\) be a non-discrete convergence on \(G_i\). Let \((x_n)\) be a sequence in \(G_i\), \(x_n \geq 0\) for \(n = 1, 2, \ldots\). Then the following conditions are equivalent:

(i) \(x_n \to_{a_i} 0\).

(ii) If \(0 < a' \in G_i\), then there exists a positive integer \(m\) such that \(x_n < a'\) for each \(n \geq m\).

(iii) The sequence \((x_n)\) \(o\)-converges to 0 in \(G_i\).
Proof. According to [5], Theorem 2.10, (i) \Leftrightarrow (ii). The equivalence (ii) \Leftrightarrow (iii) is obvious.

2.3. Lemma. Let $a \in \text{Conv } G$, $0 < a \in G$, $i \in I$. Assume that $a(i) > 0$. Let (x_n) be a sequence in G such that $x_n \to_a 0$. Then there is a positive integer m such that $x_n(i) < a(i)$ for each $n \geq m$.

Proof. By way of contradiction, assume that the assertion to be proved fails to hold. Then there is a subsequence of (x_n) such that the i-th component of each member of this sequence is greater than or equal to $a(i)$. For simplifying the notation, let us suppose that (x_n) coincides with the subsequence under consideration. Put $y_n = x_n - A \cdot a$. Hence $y_n \to_a 0$ and $y_n(i) = a(i)$ for each positive integer n.

Denote $z_n = y_1 \wedge y_2 \wedge y_3 \wedge \ldots \wedge y_n$ for each positive integer n. Then $0 \leq z_n \leq y_n$, hence $z_n \to_a 0$. Moreover, $z_1 \geq z_2 \geq \ldots \geq z_n \geq \ldots$. Hence we must have $\bigwedge_{n=1}^{\infty} z_n = 0$. Since G is a closed sublattice of $\Pi_{j \in I} G_j$ we infer that $\bigwedge_{n=1}^{\infty} z_n(i) = 0$. But $z_n(i) = a(i) > 0$ for each positive integer n, which is a contradiction.

Since for each $i \in I$ there exists $0 < a \in G$ with $a(i) > 0$, from 2.2 and 2.3 we obtain:

2.4. Corollary. Let $a \in \text{Conv } G$, $i \in I$. Let (x_n) be a sequence in G such that $x_n \to_a 0$. Then $(x_n(i))$ o-converges to 0 in G_i.

Let us denote by a_0 the system of all sequences (x_n) in G^+ such that for each $i \in I$, $(x_n(i))$ o-converges to 0 in G_i.

2.5. Lemma. $a_0 \in \text{Conv } G$.

Proof. From the definition of a_0 we obtain that for $a_0 = A$ we have $[\langle \delta A \rangle]^* = A$ and that the condition (b) from 1.1 is satisfied. Hence according to [5], Thm. 1.18 we obtain $a_0 \in \text{Conv } G$.

Now, according to 2.4 we have $a \leq a_0$ for each $a \in \text{Conv } G$. Thus we have arrived at the following result:

2.6. Theorem. Let G be an archimedean completely distributive lattice ordered group. Then the partially ordered set $\text{Conv } G$ possesses a greatest element.

REFERENCES

Received March 25, 1987

Matematický ústav SAV
Dislokované pracovisko
Ždanovova 6
040 01 Košice

СХОДИМОСТЬ И ПОЛНАЯ ДИСТРИБУТИВНОСТЬ
РЕШЕТОЧНО УПОРЯДОЧЕННЫХ ГРУПП

Ján Jakubík

Резюме

В статье доказано, что упорядоченное множество Conv G всех сходимостей на вполне дистрибутивной архимедовой решеточно упорядоченной группе G является полной решеткой.