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Math. Slovaca 26,1976, No. 3,185—192 

DARBOUX PROPERTY FOR FUNCTIONS 
OF SEVERAL VARIABLES 

MARTA POPOVlCOVA 

In [1] there are investigated local properties of Darboux {G) functions mapping 
En into R, where G is a basis of En with the following properties: 

(1) Every element of G is a connected set; 
(2) Any translation of an element of G is in G; 
(3) For x e En and U e G, x e U, there exists V e G such, that x e V and 
V-{x}< C/.(t7denotes the closure of U.) 

If G is the class of open intervals in En, n > 1, the condition (3) is not satisfied. 
Troughout this paper 3£ will be the set R2 with the usual topology. Let g be a 

mertic in %! inducing the usual topology. G will denote the class of all open spheres 
in the metric space (#?, g). It is obvious that there is a metric g such that G does not 
satisfy (3). 

Let Jf be a class of subsets of real numbers such that 0Gjf. We define a class 
N3{G) of functions as follows [4]. 

A function f: %?—>R belongs to the class Jf3{C) if for every G e G we have 

{mi f{x), sup f{x))-f{G)e Jf. 
x eG x e G 

If N={0}, then Jf3{G) = 3{G) which is the class of all functions with the 
Darboux property as it is defined in [6]. If N is the class of all sets complements of 
which are dense in their convex hulls, then / belongs to the class W0{G), which is the 
same class as the class 30{G) defined in [7]. For the case of functions of real 
variable this is the same as the class % defined in [2] and the class of functions 
studied by Radakovic in [9]. 

Denote by °U{G) the class of all functions f: Sf—> R such that for every G e G and 

every set M cz % of cardinality less than c we have f{G — M) => (inf f{x), sup f{x)). 
xeG xeG 

{c denotes the cardinality of the continuum.) 
Theorems proved in this paper are similar to Theorem 1 of [1] for functions of 

classes Jf3{6), W0{G), °U{G). For the case of functions of real variable this is 
proved in [3] for 3 and in [4] for Jf3. It is also shown that °ll{6) is the closure of 
the class 3{C) with respect to uniform limits. 
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If x is an element of a metric space (%, g) and r is a positive number, then the 
symbol S(x, r) denotes the set {y; g(x, y)<r} and ^denotes the class {S(x, r); 
x e%, r>0}. 

Let a be a direction in the plane. Put Saxr=Sl
axru{x}, where Saxr is the open 

sphere with radius r whose centre cx lies on the halfline with origin x and direction 
a and g(cx, x) = r. 

Let us denote fa(x) = lim inf {/(y); y e S^,}, 
r—0+ 

/«(.*:) = lim sup {/(y); y e Saxr) and 
r—0 + 

/a(x)=(/a(x),rw). 
Theorem 1. Let N be n hereditary o-additive class of subsets of R such that if an 

open interval belongs to X, then its closure also belongs to X. Then f e N<3)(6) if 
hnd only if for every x e %, a e (0 ,2JT) and r>0 we have Ia(x)-f(Saxr) e JV. 

To prove the theorem we need the following lemma of [4]. 

Lemma 1. Let Jisatisfy the hypothesis of Theorem 1. HE <k N, then there exists 
y0 e E such that for every open interval IczR containing y0 we have InE I Jfand 
for every open interval JaR which has y0 as its end point we have J I Ji. 

Proof of T h e o r e m 1. The necessity of the condition is obvious. The 
sufficiency will be proved indirectly. Let / I N3)(0). There exists G e € such that 

jE" = (inf f(x), sup f(x)) —/(G) £ X. According to Lemma 1, there exists a point 
x eG JceG 

y0 e E such that for every open interval I containing y0 we have Enl £ N and for 
every open interval / for which y0 is one of the end points we have / £ .#. There 
exist points xx and x2 in G such that / ( ^ i ) < y 0 < / ( ^ 2 ) . If for every, x e G, f(x) is 
less than y , there would be a point x' e G such that f(x') >y0. For a equal to the 
direction of the line connecting the point x' with the centre of G we have 
/a(x')>_Vo and fa(x')^y0, which is in contradiction with the assumption of the 
theorem. So there exists G0 e 6 such that xu x2 e G0 and G0czG. 

Let us denote A = {x\ x e G0, f(x)>y0), and B = {x\ x e G0, f(x)<y0). We 
show that for x e A we have/ a(;c)^y ( ) for all a e (0, 2JT). Let / a o(*)<yo for some 
a0. Since x e A,fa°(x)>y0 and so y0 e /«,,(*). We obtain Enl^x)-f(SaoXr) e Jf, 
for Sai)Xrcz G„, which contradicts a property of y0. It follows that for x e A and any 
natural number m there exists an open set HA(x) e 0, x e HA(x) such that 
for z e HA(x), f(z)>y0-\lm. Similarly for xeB and any natural num­
ber m, fa(x)^y0 and there exists an open sphere HB(x) e €, x e HB(x) such 

that for z e HB(x) we have f(z)<y0+ \lm. G0a \J HB(x)u IJ HA(x) 
x e B x € A 

and so (5„= U HA(x)nG«u\J HB(x)nG0. Since G„ is connected, 
* e / \ XeB 
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U HA(x)n\J HB(x)±0. Hence there exist points zx e A and z2 e B such that 
x e A x e B 

HA(zx)nHB(z2)^0. Let A0 = sup{A; / ( ( l - ^ z , + //z2)>>>0, O ^ ^ A } and *„ = 
(1 — A„)z, + A0z2. Then we show that f(x0) = y0. Let f(x0)>y0. Let a be the 
direction of the line x0z2. Then/a(jc0)=^yo and fa(x0)>y0 but this is contradictory to 
the property of y0. Similarly we can show that f(x0) is not less than y0. So f(x0) = y0 

which contradicts the assumption that y0 e E. 
Let °U0(C) denote the class of all functions f: %*—> R such that every G e € we 

have f(G) => (inf f(x), sup f(x)). 
xe& x eC3 

As it was said, °U0(€)=J{Q)(€) if N is the class of all sets complements of which 
are dense in their convex hulls. But this class of sets is not additive, so Theorem 1 is 
not valid for functions of °U0(€). A similar theorem for %,(€) can be proved. 

Theorem 2. A function f belongs to °U0(€) if and only if for every x e Sf, 

a e (0,2Jr) and r>0 we have /„(*)<=/(So*-)-
To prove Theorem 2 we need the following generalization of Lemma of [3]. 

Lemma 2. Let g: M-+R, where Mis a connected set in d£. Let g(x) + 0 forx e M 
and let there be points xx, x2 e M such that g(xx) g(x2)<0. Then there exists a 
point x0 e M such that g(x) takes both positive and negative values in every 
neighbourhood of x0. 

Proof. As M= {x\ x e M, g(x)>0}u{x; x e M, g(x)<0} and Mis connec­
ted, it follows that 

{x\x e M, g(x)>0}u{x; x e M, g(x)<O}nM±0. 

Proof of Theorem 2. It is obvious that the condition is necessary. 
To prove the sufficiency of the condition, we argue by contradiction. Let 

y0 e (inf f(x), sup f(x)) -f(G) for some G. Then there are points JC„ x2 e G such 
xeG • xeG 

that f(xx) <yo</(*2). Let there be f(x) <y0 for all x e G, then there exists x0 e G 
such that f(x0)>y0. Let a be a direction of the line x0xx, where xx is the centre of 

G, then fn(x0)<y0 and fa(x0)>y0 and / ( 8 ( ; , ) c / ( G ) for S ^ G , /(5„or) = 

f(Saxl)r)v{f(x0)} which is in contradiction with the fact that /„(*)<=/(S^,.). Put 

y,=sup{z; zef(G\ z<y 0}, y2 = inf{z; z e /(G), z>y0}. Then yu y2ef(G) 

and (y.,y2)n/(G) = 0. Define a function g by g(x)=f(x)-(yx +y2)/2. The 
function g satisfies on G the conditions of Lemma 2. Hence there is a point x0 such 
that in every neighbourhood of x0, f(x) takes the values both greater or equal y2 

and smaller or equal yx. 
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Now we prove that there is a„ such that Iao(x0)zj(y], y2) and the proof of 
Theorem 2 will be finished. 

Put A] = {a; / " (*„)^y .} and A2={a; fn(x0)^y2}. We consider two cases. 
Case 1. (0, 27r ) - (A 1 uA 2 ) -£0 . Then for a„ e (0, 2n)-(A,uA2) we have 

/"°(*o)^y2 and AX^O^y, . Thus /„„(.*:„) =)(y,, y2). 
Case 2. A , u A 2 = (0, 2JT). Let a„ e b(A])nb(A2), where 6(A) denotes the 

boundary of A with respect to the usual topology on the interval. There is a 
sequence {al

n}n=] convergent to a„, an e A, for n = \, 2, 3, ... and we have 
/„„(.*•(>)^yi- Similarly there exists a sequence {cfn}™=] convergent to a„, a2

n e A2 for 
n = 1, 2, 3, ... and we have fa"(x0)^y2 so that Ia{)(x0)zD(yl, y2). 

The following theorem can be proved in a similar way. 

Theorem 3. A function f belongs to %(6) if and only if for every x, a e (0, 2;r), 

r > 0 a/7(1 /or every set M cz % of cardinality less then c we have Ia (x) cz f(Saxr — M). 
As it is shown in [2] for the case of real variable, the class °lt is the class of 

uniform limits of sequences of Darboux functions. A similar characterization for 
the class °tt(€) is given. 

Let us denote C„(/, x) (C(f, x)) the set of all points y such that for every set 
G e € such that x e G and for every neighbourhood IV of y the set 
/ - ' ( I V ) n C ^ 0 (has cardinality c). 

Let us denote Co(f, x, 6) (C a ( / , x, €)) the set of all points y such that for every 
neighbourhood IV of y and for every r>0 the set f~*(N)nSaxr±0 (has cardinality 
c). 

Theorem 4. For a function f: %-*R the following conditions are equivalent: 
(a) / e %l€). 
(b) C„(/, x) is a closed interval for every x e St. 

(c) For every G e O we have U C0(f, x) = (inf f(x), sup / (x ) ) (for 
x e G x eG x e G 

x e G- G instead of C„(/, x) we take Ql(f, x, 0) for a equal to the direction of 
x0x, where x0 is the centre of G). 

Proof, (a) implies (b). Suppose that C„(/, x0) is not an interval. Then the convex 
hull co (C„(/, x0)) of C„(/, x0) contains a point y which does not belong to C„(/, x0). 

Since / e %,(€), we have f(G) ZD (inf f(x), sup f(x)) =>co(C„(/, x0)) for G which 
x e G x eG 

contains x0. Let IV be neighbourhood of y. Then f~l(N)r^G^h0 and consequently 
y e C„(/, x0). 

(b) implies (c). Let C„(/, x) be a closed interval for every x e $£. Let G e € and 

K = U C„(/,x). 
j r e G 

We will show that K is dense in its convex hull co(K) . Let there be an interval 
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(a, b)^co(K)-K. C0(/, x) is a closed interval hence either C0(f, x)<^(-™,a) 
or C0(f, x) cz (b, oo) for each x e G. Let C0(/, *„) cz ( - oo, a). Let there be a„ such 
that, for every r > 0 , 5 f W contains a point .rr with the property C0(f, xr) cz (b, oo). 
Then there exists y e C0(f, x0) such that y^b and this is a contradiction. For all a 
let <5» denote the supremum of all 6 such that y e C0(f, x) implies y^a for every 
x e SaX(}». Then do>0. Let 6^4= oo and z. be a point of the boundary of 5 ^ . Then 
every set H e 6 containing the point z. contains also a point z2 such that 
supC„(/, z2)^a and it follows supC0(/, zx)^a. We can apply to the point zx the 
same consideration as for x0. Thus we get that for all x e X we have sup C0(f, x) ^ 
^a. 

Let c e co(K). According to the preceding for every n there is an xn e G such 
that C0(/, xn)n(c - \ln, c + \ln) ± 0. We can suppose that xn converges to x0 e G. 
Then there exist points zn e S(xn, \ln)nG such that f(zn) e (c-l/n, c+l/rz). 
Hence c e C0(f, x0)aK. 

Since there exist points xx, x2 such that inf f(x) e C0(f, xx) and 
X Є G 

sup f(x) e C0(f, x2) the condition (c) follows. 
x e G 

(c) implies (a). The proof is very similar to that for the case of a real variable [2, 
Theorem 3.1]. 

Let A, Bag?. The set A will be called c-dense in B if for every GeOfor which 
GnBJ=0 the set GnA has cardinality c. 

Theorem 5. The following conditions are equivalent:-
(a) / e W(€). 

(b) For every G e Owe have \J C(f, x) = inf f(x), sup f(x)) (for x e G-G 
xeG x eG x eG 

instead of C(f, x) we take Ca(f, x, 6), for a equal to the direction of the line x0x, 
where x0 is the centre of G). 

(c) / e °U0(€) and, for every open interval I, f~x(I) is empty or c-dense in 
itself. 

(d) / e °ll0(€) and the graph of f is c-dense in itself. 
Proof will be omited because it is very similar to that for the case of one variable 

[2, Theorem 3.2]. 
It is easy to see that Lemma 4.1 [2] holds also in %. 

Lemma 3. Any A<^c£ c-dense in itself is a union of countably many disjoint, 
non-empty subsets each of which is c-dense in A. 

Theorem 6. Let f e °U(€) and £>0. Then there exists g e °U(6) such that g is 
not constant on any sphere, the range of g is countable and | |/ — # | |<£. 

Proof. Let f(x) = a, for all x edC Let {r,}r=i be the rational numbers lying in 
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the interval (a-e/2, a + e/2). Let {Ai}T=] be a decomposition of St into subsets 
c-dense in <% (as it is given by Lemma 3). Define g(x) = n, for x e A(. 

Let / be not constant. Then we can assume that /(Sf) = R, R = Q L, |/„ | < £, 

Ijnlk =0, for I'^k, where In =(an_,, an) are half-open intervals having irrational 
end points. Put An =f~l(fn), where /n denotes the interior of In. Let {rn,*}£_. be a 
sequence of rational numbers belonging to In. Since / e °U(€), An is C-dense in 
itself. If An were not C-dense in itself, then there would exist Gn e 6 such that 
card(GnnA„)<C and f(Gn-(GnnAn))=f(Gn-An)=f(Gn)-rn and this is in 

contradiction with the fact that (inf f(x), sup f(x))czf(Gn-(GnnAn))-
x eG x 6(5 

f{G„)-Г„. 
Put 

g{x)=\ rn.kiorxeBn,k, 
{f(x)ioxx£ U A„, 

n = l 

where An = U Bn k is the decomposition of the set An given in Lemma 3. 
* = i 

It is obvious that ||/—#|| <£ and the range of g is countable, and since Bnk are 
C-dense in An, g cannot be constant on any sphere. 

Let x, a be given. Denote Ja(x) = {In;In nla
(x) * 0}, where Ia

(x) = (ga(x), ga(x)) 
(similarly Ia

(x)). Then for I e Ja(x) we have la
(x)nl±0. Indeed let lnnla

(x) = 0 for 
some In e Ja(x). Since f~\Tn) = An and An is C-dense in itself, there exists r„ such 
that for r<r0 it follows that S^nA,, =0. Hence, for such r, g(Saxr)nPn =0 and 
since g~l(an)nSaxr=f~l(an)nSaxr we have g(Saxr)nIn=0, a contradiction. 

Let ga(x) = oo. Then, since fe °U(€), we have f(Saxr-C)nFn + 0 for every 
In e Ja(x), r>0 and for every C with cardinality less then c. Then the set 
g(Saxr- C) contains all rational numbers of the intervals of Ja(x). Let z e S^-C 
be such that f(z) e Fn for In e J>a(x). Obviously, z e An. Then 
(Bn i - C)nSaxr + 0 for every /. Therefore g(Saxr- C) contains all rational numbers 
of u{In; In eJa(x)}. 

Let ga(x)<™. Then there exists In() such that ga(x) e Irt(). Let fa(x) e I°no or 
f«(x) = ano. Since / e °U(€), according to Theorem 3 we have f{Smr- C)nl°no±0 
for every r>0. Therefore g(Saxr— C) contains all rational numbers of the interval 

I,,-
Similarly as in the case of ga(x) = oo we can prove that g(Saxr— C) contains all 

rational numbers of {In; In e Ja(x) — {I„()}}. Hence, by Theorem 3, it follows that 
g e %(€). 

Theorem 7. Letf e °ll(€) be a function with a countable range and not constant 
on any sphere. Then f is a uniform limit of a sequence ofDarboux (O) functions. 
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The proof of Theorem 7 is very similar to that for the case of real variable [2, 
Theorem 4.2]. 

Lemma 4. If f e SSX and for each x, f(x) e f\(Ia(x))0, <* e (0, 2JV), then 
a 

fe®(0), where (Ia(x))0= (Hm inf {/(z), z e S^,}, Urn sup {/(z), : e S L } ) . 

(33, denotes the functions of Baire class 1) 
Proof. Let there exist G e 6and a real number rf such that Gn{x;f(x) = d} = 

= 0, but none of the sets A = G.n{x; f(x)>d}, B = Gn{x; f(x)<d} are empty. 
The boundary b(A) of A is non-empty, because G is connected. If b(A)nG = 0, 
then b(A)aG-G, then either A = G or B = G, which contradicts the assump­
tion. 

Let 6(.4) contain an isolated point z. Then there exists Gz e 6 such that 
Gznb(A) = {z}. Therefore Gz-{z} is connected and Gz - {z}<=B or Gz - {z} c 

cz ,4, which is in contradiction with the property that f(z)<=:(^\(Ia(z))o, 
a 

a 6 (0, 2JT). 

Hence b(A)nG'\s non-empty and dense in itself. We will prove that Anb(A) is 
dense in Gnb(A). Let Anb(A) be not dense in Gnb(A). Then there exists an 
open sphere Ha G with the centre z0 eBnb(A) such that HnAnb(A) = 0. Let 
Z\ be a point of AnH such that £>(z., Hc)>2g(z\, z0). (FIC denotes the comple­
ment of H.) Let Hxe O such that z, e HxczAnH and £>(//„ Hc)>g(Hx, z0). Let 
z2e B such that p(z2, Zi) = p(z., 5 ) then z2 6 / / . For a equal to the direction of 
the line ZiZ2 there is r such that SaZ2rc:A, which is contradictory to our assumption 

that f(z2) e r\(Ia(z2))o, a e (0, 2K). Similarly Bnb(A) is dense in Gnb(A). 
a 

The function / is not continuous in the points of b(A)nG, which is in 
contradiction with the fact that / e fflx. 

Theorem 8. 2J(0)@X = <%(6)®\ = %,(€)&,. 

Proof. According to Lemma 4, it is sufficient to prove that if / e <t£0(0)9tu then 

f(x) e f](Ia(x))0, a e (0,2JT), for every x e S£. Let there exist x0 such that 
a 

f(x0) £ f](Ia(x))09 a e (0,2^). It follows that there exist a0 such that 

f(x0) £ (I^Xo^o, Then I<Xo(x0)czf(SaoXor) cannot hold. 
A similar characterization as is given in [8] for W2da can be proved for functions 

of W((?)38a. (38a denotes the functions of Baire class a.) 

Lemma 5. Let there be given f e W(G)&a, g e % ande>0 such that\\f~g\\ ^ 
e, then there exists h e 9)(6)&max(0,2) such that \\f-h\\^2e. 
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Proof. We apply the method of the proof of Lemma 7 of [8], where Jn are the 
open spheres with rational radii centres of which have rational coordinates. The 
existence of nowhere dense perfect subsets Pk follows from 
Alexandroff s-Hausdorff s theorem [5, p. 355]. For details see [8]. 

Theorem 9. A function f belongs to °U(€) if and only if f is a uniform limit of a 
sequence of 3)(6) functions. Moreover if f is in Baire class a then the approxima­
ting function can be taken from Baire class a. 

Proof, i) If / is an arbitrary function then the necessity is proved by applying 
Theorems 6 and 7. The proof of sufficiency is similar to that for the case of one 
variable [2, Theorem 4.3]. 

(ii) If / e ffla then for or = 0 the assertion is trivial. For a = 1 it is a consequence 
of Theorem 8. For a ^ 2 the theorem is a consequence of Lemma 5. 
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СВОЙСТВО ДАРБУ ДЛЯ ФУНКЦИИ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ 

Марта Поповичова 

Р е з ю м е 

В статье определяются классы функции Л3)(б), Щ(С) и %0(0), которые являются обобщением 
классов функции ЛО) [4], ^ и ^ ( ) [2], для функции двух переменных. Исследуются их локальные 
свойства и обобщаются результаты работ [2] и [8] касающиеся равномерной сходимости функции 
Дарбу. 
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