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DARBOUX PROPERTY FOR FUNCTIONS
OF SEVERAL VARIABLES

MARTA POPOVICOVA

In [1] there are investigated local properties of Darboux (0) functions mapping
E, into R, where O is a basis of E, with the following properties:

(1) Every element of O is a connected set;
(2) Any translation of an element of O is in O;
(3) For x e E, and U € 0, x € U, there exists V € @ such, that x € V and
V —{x} < U.(Udenotes the closure of U.)

If @' is the class of open intervals in E,, n > 1, the condition (3) is not satisfied.

Troughout this paper & will be the set R? with the usual topology. Let ¢ be a
mertic in & inducing the usual topology. @ will denote the class of all open spheres
in the metric space (%, ). It is obvious that there is a metric @ such that & does not
satisfy (3).

Let & be a class of subsets of real numbers such that @ € &#. We define a class
ND(0) of functions as follows [4].

A function f: — R belongs to the class N9(0) if for every G € O we have

(inf f(x), sup f(x)) = f(G) € .

If /={@}, then ¥D(0)= 2(0) which is the class of all functions with the
Darboux property as it is defined in [6]. If & is the class of all sets complements of
which are dense in their convex hulls, then f belongs to the class %,(@), which is the
same class as the class 2,(0) defined in [7]. For the case of functions of real
variable this is the same as the class %, defined in [2] and the class of functions
studied by Radakovi¢ in [9].

Denote by %(0) the class of all functions f: £ — R such that for every G € O and

every set M = Z of cardinality less than ¢ we have f(G — M) > (inf f(x),sup f(x)).
xeG xeG

(¢ denotes the cardinality of the continuum.)

Theorems proved in this paper are similar to Theorem 1 of [1] for functions of
classes ¥D(0), U,(0), %(0). For the case of functions of real variable this is
proved in [3] for @ and in [4] for /9. It is also shown that %(0‘) is the closure of
the class 2(0) with respect to uniform limits.
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If x is an element of a metric space (€, @) and r is a positive number, then the
symbol S(x, r) denotes the set {y; o(x, y)<r} and O denotes the class {S(x, r);
xe &, r>0}.

Let a be a direction in the plane. Put S,..,.=S..,u{x}, where S... is the open
sphere with radius r whose centre ¢, lies on the halfline with origin x and direction
a and o(c., x)=r.

Let us denote f,(x) = lim inf {f(¥);y € Sau),

f*(x)=lim sup {f(y); y € S axry and
L (x) = (fu(x), f*(x)).

Theorem 1. Let N be a hereditary o-additive class of subsets of R such that if an
open interval belongs to N, then its closure also belongs to N. Then f € N%(0) if
and only if for every x € &, a € (0,2x) and r>0 we have I,(x)—f(S...) € N.

To prove the theorem we need the following lemma of [4].

Lemma 1. Let N satisfy the hypothesis of Theorem 1. If E ¢ N, then there exists
Yo € E such that for every open interval I c R containing y, we have InE ¢ N and
for every open interval Jc R which has y, as its end point we have J € N.

Proof of Theorem 1. The necessity of the condition is obvious. The
sufficiency will be proved indirectly. Let f ¢ /2(0). There exists G € O such that
E = (inf f(x), sup f(x))—f(G) ¢ N. According to Lemma 1, there exists a point

xeG xe€eG

Yo € E such that for every open interval I containing y, we have EnI ¢ A and for
every open interval J for which y, is one of the end points we have J ¢ A. There
exist points x, and x, in G such that f(x,)<y,<f(x,). If for every. x € G, f(x) is
less than y , there would be a point x’ € G such that f(x')>y,. For a equal to the
direction of the line connecting the point x’ with the centre of G we have
fe(x")>yo and f,(x")<y,, which is in contradiction with the assumption of the
theorem. So there exists G, € O such that x,, x, € G, and G,c G.

Let us denote A={x; x € G,, f(x)>y,}, and B={x; x € G,, f(x)<y,}. We
show that for x € A we have f,(x)=y, for all a € (0, 2x). Let f, (x) <y, for some
a,. Since x € A, f*(x)>y, and so y, € I, (x). We obtain ENL,(x) — f(Sa..) € N,
for S.,..<= G,, Which contradicts a property of y,. It follows that for x € A and any
natural number m there exists an open set H,(x) € O, x € H,(x) such that
for z € Ha(x), f(z)>y,—1/m. Similarly for x € B and any natural num-
ber m, f*(x)<y, and there exists an open sphere Hp(x) € O, x € Hp(x) such
that for z e Ha(x) we have f(z)<yo+1/m. Goc U Hs(x)uU Ha(x)

xeB X€eA

and so  Go=J Ha(x)nGoul Hs(x)nG,. Since G, is connected,

reA x€B
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U H.(x)nUJ Hs(x)+# 0. Hence there exist points z, € A and z, € B such that

X€EA x€B
H,(2))NHp(z:) #0. Let A,=sup{A; f((1—u)z,+uz)>ys, O<sp<i} and x,=
(1—-4,)z, + A0z.. Then we show that f(x,)=y, Let f(x,)>y, Let a be the
direction of the line x,z,. Then f,(x,) <y, and f*(x,) > y, but this is contradictory to
the property of y,. Similarly we can show that f(x,) is not less than y,. So f(x,) =y,
which contradicts the assumption that y, € E.

Let %,(0) denote the class of all functions f: — R such that every G € O we

have f(G)= (inf f(x), sup f(x)).
xeG xeG

As it was said, %,(0) =ND(0) if N is the class of all sets complements of which
are dense in their convex hulls. But this class of sets is not additive, so Theorem 1 is
not valid for functions of %,(0). A similar theorem for %,(0) can be proved.

Theorem 2. A function f belongs to %, 0) if and only if for every x € %,

a € (0,27) and r>0 we have L(x) < f(Sa ).
To prove Theorem 2 we need the following generalization of Lemma of [3].

Lemma 2. Let g: M— R, where M is a connected setin Z. Let g(x) #0 forx e M
and let there be points x,, x, € M such that g(x,)-g(x,)<0. Then there exists a
point x, € M such that g(x) takes both positive and negative values in every
neighbourhood of x,.

Proof. AsM={x;x e M, g(x)>0}u{x; x € M, g(x)<0} and M is connec-
ted, it follows that

{x;xeM, gx)>0u{x;x e M, g(x)<0}nM+0.

Proof of Theorem 2. It is obvious that the condition is necessary.
To prove the sufficiency of the condition, we argue by contradiction. Let

. yo € (inf f(x),sup f(x)) — f(G) for some G. Then there are points x,, x, € G such
xeG . G

xeG

that f(x,) <y,<f(x,). Let there be f(x)<y, for all x € G, then there exists x, € G
such that f(x,) > y,. Let a be a direction of the line x,x,, where x, is the centre of

G, then f,(x,)<y, and f*(x4)>y, and f(S((:.x“r)Cf(G) for S...,cG, f(Sruo')=
(S8, )U{f(x,)} which is-in contradiction with the fact that I (x)c<f(S..,). Put
yi=sup{z; z € f(G), z<y,}, y.=inf{z; z € f(G), z>y,}. Then y,, y, € f(G)

and (), y2)Nf(G)=@. Define a function g by g(x)=f(x)—(y,+y.)/2. The
function g satisfies on G the conditions of Lemma 2. Hence there is a point x, such
that in every neighbourhood of x,, f(x) takes the values both greater or equal y,
and smaller or equal y,. '
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Now we prove that there is a, such that I, (x,)>(yi, y,) and the proof of
Theorem 2 will be finished.

Put A, ={a; f*(x,)<y,} and A,={a; f.(x,)=y.}. We consider two cases.

Case 1. (0, 2w)—(A,UA,)#0. Then for a, € (0,27)—(A,UA,) we have
fro(xo)Zy, and f, (x0)<y;. Thus L (x0) 2 (y1, y2)-

Case 2. A,UA,=(0,27). Let a, € b(A,)nb(A,), where b(A) denotes the
boundary of A with respect to the usual topology on the interval. There is a
sequence {a.}7-, convergent to a,, a, € A, for n=1, 2, 3, ... and we have
f..(x0) <y,. Similarly there exists a sequence {2 };_, convergent to a,, & € A, for
n=1, 2, 3, ... and we have f*(x,)=y, so that I, (x,)> (¥, y2).

The following theorem can be proved in a similar way.

Theorem 3. A function f belongs to %(0) if and only if for every x, a € {0, 2),

v >0 and for every set M c & of cardinality less then ¢ we have I, (x) c f(S... — M).

As it is shown in [2] for the case of real variable, the class % is the class of
uniform limits of sequences of Darboux functions. A similar characterization for
the class Z(0) is given. ~

Let us denote Cy(f, x) (C(f, x)) the set of all points y such that for every set
G € O such that x € G and for every neighbourhood N of y the set
fT'(N)NG# (has cardinality c).

Let us denote Ci(f, x, O) (C*(f, x, 0)) the set of all points y such that for every
neighbourhood N of y and for every r>0 the set f~'(N)NS,,,+ @ (has cardinality
c). '

Theorem 4. For a function f: Z— R the following conditions are equivalent:
(a) fe %(0).

(b) Cu(f, x) is a closed interval for every x € Z.

(c) For every Ge O we have | CJ(f, x)=(inf f(x), sup f(x)) (for

xeG xeG xeG

x € G — G instead of C,(f, x) we take Ci(f, x, O) for a equal to the direction of
xox, where x, is the centre of G).

Proof. (a) implies (b). Suppose that C,(f, x,) is not an interval. Then the convex
hull co (Cy(f, x.)) of C,(f, x,) contains a point y which does not belong to ‘C,(f, x,).

Since f € %(0), we have f(G)> (inf f(x), sup f(x)) Dco(Cy(f, x,)) for G which

xeG x

contains x,. Let N be neighbourhood of y. Then f~'(N)NnG# @ and consequently
y € Go(f, x0).

(b) implies (c). Let Cy(f, x) be a closed interval for every x € . Let G € O and
K=U Cf. ).

xeG
We will show that K is dense in its convex hull co(K). Let there be an interval
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(a, b)cco(K)— K. C(f, x) is a closed interval hence either Cy(f, x) = (— =, a)
or Cy(f, x) = (b, ) for each x € G. Let Cy(f, xo) = (— =, a). Let there be a, such
that, for every r>0, S.,,.,- contains a point x, with the property Cy(f, x,) = (b, ).
Then there exists y € Co(f, Xo) such that y = b and this is a contradiction. For all a
let 85 denote the supremum of all 6 such that y € C,(f, x) implies y <a for every
x € S, Then 83> 0. Let 85 #  and z, be a point of the boundary of S, Then
every set H € O containing the point z, contains also a point z, such that
sup C,(f, z;) <a and it follows sup Cy(f, z,)<a. We can apply to the point z, the
same consideration as for x,. Thus we get that for all x € X we have sup C,(f, x) <
=a.

Let ¢ € co(K). According to the preceding for every n there is an x, € G such
that C,(f, x,)n(c—1/n, ¢+ 1/n) #0. We can suppose that x, converges to x, € G.
Then there exist points z, € S(x,, 1/n)nG such that f(z,) € (c—1/n, c+ 1/n).
Hence ¢ € C\(f, x,) =K.

Since there exist points x,, x, such that inf f(x)e C,(f,x,) and
xeG

sup f(x) € C,(f, x,) the condition (c) follows.
*XeG

(c) implies (a). The proof is very similar to that for the case of a real variable [2,
Theorem 3.1].

Let A, Bc Z. The set A will be called c-dense in B if for every G € O for which
GNB+0 the set GNA has cardinality c.

Theorem S. The following conditions are equivalent :

(@) fe #(0).
(b) Forevery G € Owe have J C(f, x)=inf f(x), sup f(x)) (forx e G- G

xeG xeG

instead of C(f, x) we take C*(f, x, 0), for a equal to the direction of the line x,x,
where x, is the centre of G). '

(c) fe€ %(0) and, for every open interval I, f~'(I) is empty or c-dense in
itself.

(d) f e %,(0) and the graph of f is c-dense in itself.

Proof will be omited because it is very similar to that for the case of one variable
[2, Theorem 3.2].

It is easy to see that Lemma 4.1 [2] holds also in &.

Lemma 3. Any A c & c-dense in itself is a union of countably many disjoint,
non-empty subsets each of which is c-dense in A.

Theorem 6. Let f € %(0) and £ >0. Then there exists g € %(0) such that g is
not constant on any sphere, the range of g is countable and ||f —gl||<e.
Proof. Let f(x)=a, for all x € Z. Let {r;};=, be the rational numbers lying in
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the interval (a —¢€/2, a+¢€/2). Let { A}, be a decomposition of Z into subsets
c-dense in & (as it is given by Lemma 3). Define g(x)=r,, for x € A,.

Let f be not constant. Then we can assume that f(Z)=R, R= Lj I, |L|<e,
n=1

NI, =0, for j* k, where I,=(a,_,, a,) are half-open intervals having irrational
end points. Put A, = f'(I)), where I denotes the interior of I,. Let {r, }7_, be a
sequence of rational numbers belonging to I,. Since f € %(0), A, is c-dense in
itself. If A, were not c-dense in itself, then there would exist G, € O such that
card (G,nA,)<c and f(G,—(G.nA,))=f(G,—A,)=f(G,)—E and this is in -

contradiction with the fact that (inf f(x), sup f(x))cf(G,—-(G.nA,))=
xeG xeG
f(G.)— L.
Put
r,« forx € B, .,

g0 =] !
f(x) for x¢ L_J A,,

where A, =J B, . is the decomposition of the set A, given in Lemma 3.
k=1

It is obvious that ||f — g|| < € and the range of g is countable, and since B, , are
c-dense in A,, g cannot be constant on any sphere.

Let x, a be given. Denote $*(x) = {I,; I,n I, # @}, where I3, = (g.(x), g*(x))
(similarly If,). Then for I € $°(x) we have If,,nI+@. Indeed let I, nI%,,=@ for
some I, € #°(x). Since f~'(I2)= A, and A, is c-dense in itself, there exists r, such
that for r<r, it follows that S.,,nA, =@. Hence, for such r, g(S...)nE =0 and
since g~'(4,)NS.., =f'(a.)NS,,, we have g(S..,)NI, =¥, a contradiction.

Let g*(x)=o. Then, since fe #%(0), we have f(S.,— C)nE*@ for every
I, € $°(x), r>0 and for every C with cardinality less then c. Then the set
g(S....— C) contains all rational numbers of the intervals of #*(x). Let z € S,,..,— C
be such that f(z)e L for I, € $°(x). Obviously, ze A,. Then
(B,..— O)nS..,#0for every i. Therefore g(S..,— C) contains all rational numbers
of U{l,; I, € $*(x)}. :

Let g*(x)<w. Then there exists I, such that g*(x) € I,. Let f*(x) € I}, or
f*(x)=a,, Since f € %(0), according to Theorem 3 we have f(S,.,—C)nI #0
for every r>0. Therefore g(S...— C) contains all rational numbers of the interval
L.

Similarly as in the case of g“(x)= o we can prove that g(S...— C) contains all
rational numbers of {I,; I, € $*(x)—{I, }}. Hence, by Theorem 3, it follows that
g € %0).

]

Theorem 7. Let f € %(0) be a function with a countable range and not constant
on any sphere. Then f is a uniform limit of a sequence of Darboux (O) functions.
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The proof of Theorem 7 is very similar to that for the case of real variable [2,
Theorem 4.2].

Lemma 4. If fe B, and for each x, f(x) € ((L(x)), @ € (0,2r), then

fe(0), Where (L(x))o= (hm inf {f(z), z € S%.}, llroq sup {f(z), z € So.}).

(%, denotes the functions of Baire class 1)
Proof. Let there exist G € O and a real number 4 such that Gn{x f(x)=d} =

=0, but none of the sets A = Gn{x; f(x)>d}, B=Gn{x; f(x)<d} are empty.
The boundary 5(A) of A is non-empty, because G is connected. If 5(A)NG =4,
then b(A)c G — G, then either A = G or B =G, which contradicts the assump-

tion.
Let b(A) contain an isolated point z. Then there exists G, € O such that

G,nb(A)={z}. Therefore G, —{z} is connected and G, — {z} c Bor G, —{z} c
c A, which is in contradiction with the property that f(z)<[(L(2))o,

a e (0, 2m).

Hence #(A)N G'is non-empty and dense in itself. We will prove that Anb(A) is
dense in GNb(A). Let Anb(A) be not dense in GNb(A). Then there exists an
open sphere H c G with the centre z, e Bnb(A) such that HNANb(A)=0. Let
z, be a point of AnH such that o(z,, H?)>20(z,, z,). (H° denotes the comple-
ment of H.) Let H, € O such that z, € H,c AnH and o(H,, H)>o(H,, z,). Let
Z, € B such that 9(z,, z:) = 0(z,, B) then z, € H. For a equal to the direction of
the line z,z, there is r such that S¢,,,c A, which is contradictory to our assumption

that f(z,) € (1(L.(z2))o, @ € {0, 27r). Similarly Bnb(A) is dense in. GNb(A).

The function f is not continuous in the points of b(A)nG, which is in
contradiction with the fact that f € %,. ‘

Theorem 8. D(0)RB,= U%(O)RB, = U(0)RB,.
Proof. According to Lemma 4, it is sufficient to prove that if f € %,(0)%,, then
f(x) e NL(x))o, @ € (0,27), for every x € . Let there exist x, such that

f(xo)éﬂ(l,,(x))o, a € (0,27). It follows that there exist @, such that

f(x0) € (Ly(%0))o, Then L, (%o) € f(Sux,) cannot hold.
A similar characterization as is given in [8] for %, can be proved for functions

of #(0)AB,. (B, denotes the functions of Baire class a.)

Lemma 5. Let there be given f € %(0)RB., g € B and £ >0 such that||f — gl <
€, then there exists h € D(O)Braxs.2 SUCh that ||f — k|| <2e. :
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Proof. We apply the method of the proof of Lemma 7 of [8], where J, are the
open spheres with rational radii centres of which have rational coordinates. The
existence of nowhere dense perfect subsets P4 follows from
Alexandroff’s-Hausdorff’s theorem [5, p. 355]. For details see [8].

Theorem 9. A function f belongs to %(0) if and only if f is a uniform limit of a
sequence of P(0) functions. Moreover if f is in Baire class a then the approxima-
ting function can be taken from Baire class a.

Proof. i) If f is an arbitrary function then the necessity is proved by applying
Theorems 6 and 7. The proof of sufficiency is similar to that for the case of one
variable [2, Theorem 4.3].

(ii) If f € %, then for @ =0 the assertion is trivial. For @ =1 it is a consequence
of Theorem 8. For @ =2 the theorem is a consequence of Lemma 5.
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CBOWVICTBO JAPBY I ®YHKIIMU HECKOJIbLKNX NMEPEMEHHBIX
Mapra [TonoBuuyosa
Pesome

B cratbe onpenenstotcs Knacchl GyHKUUH ND(0), %(0) n %,(0), KOTOpbIE ABAAOTCH 060611EHHEM
KnaccoB pYHKUMK ND [4), U w U, [2], ans dyHkumH 1BYX nepeMeHHbIX. MccenyroTes Ux NoKalbHblE
CBOJMCTBA H 06061al0TCs pe3ynbTaThl paboT [2] u [8] kacatowuecs paBHOMEPHOM CXOAUMOCTH (PYHKLMU
Ilap6y.
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