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MATHEMATICA SLOVACA 

VOLUME 29 1979 NUMBER 2 

TRANSITIVE PLANAR GRAPHS 

HERBERT FLEISCHNER—WILFRIED IMRICH 

A graph whose group of automorphisms acts transitively on its set of vertices is 
called vertex-transitive, whereas it is called edge-transitive if its automorphism 
group is transitive on the set of edges. In this paper all edge-transitive finite planar 
graphs are determined. The triply connected vertex-transitive graphs turn out to be 
the nets of the uniform convex polyhedra and the triply connected edge-transitive 
graphs are the nets of the Platonic bodies, the cuboctahedron, the icosidodecahed-
ron, the rhombic octahedron and the rhombic triacontahedron. 

The arguments in this paper are similar to those used to determine the Platonic 
and Archimedian solids. Man i [5] has shown that one can find a convex 
polyhedron P to every finite planar three-connected graph G such that the net of P 
is isomorphic to G and such that the symmetry group of P is isomorphic to the 
automorphism group of G. Theorem 1 and 3 are immediate consequences of 
Mani's result. However, his proof is long and it may be worthwhile to give a more 
direct proof of these results. 

We should also like to draw the reader's attention to the papers [8] and [9] by 
Z e l i n k a , whose results are closely related to Theorem 3. 

The uniform convex polyhedra are the convex polyhedra with vertex-transitive 
symmetry group and regular faces. Their symmetry groups, considered as permuta
tion groups on the set of vertices, are identical with the automorphism groups of 
their nets. However, if one wants to represent such a net as a polyhedron whose 
symmetry group is the same as that of its net the result is unique only if one requires 
all edges of the polyhedron to be of the same length. Nevertheless one can 
combinatorially characterize the uniform convex polyhedra as those polyhedra 
whose net is vertex-transitive, whose symmetry group is the group of its net and 
whose faces, considered as polygons, have the same groups as the faces of the net, 
considered as simple circuits. The Platonic bodies, the cuboctahedron, the 
icosidodecahedron and the duals of the latter two are completely described by the 
requirement that they be edge-transitive and that they have the same groups as 
their nets. 

It should be noted that the Platonic bodies can be combinatorially characterized 
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by the requirement that their nets and the duals of the nets be triply connected 
regular graphs, and that their symmetry groups be the same as the automorphism 
groups of their nets [6]. 

The main graph theoretical results used here are W h i t n e y ' s theorem on the 
unique embeddability of triply connected planar graphs into the plane and E u 1 e r ' s 
polyhedral formula. By Whitney's theorem we can assume that every planar 
triply-connected graph is already given with an embedding into the plane. Every 
automorphism of the graph maps faces into faces and either it preserves the cyclic 
order of the edges on the boundary of the faces and the cyclic order of the edges 
with a common vertex, or it reverses all these orders [3]. In other words, every 
automorphism of a triply connected planar graph can be considered to be induced 
by a deformation of the identity mapping of the plane or by a deformation of an 
inversion of the plane. Results of Wat kins [7] allow an easy determination of the 
connectivity of transitive graphs by the degrees of the vertices. We shall not go into 
geometric details of uniform polyhedra. In fact we shall only determine the 
modified Schlafl i symbols of their nets and leave it up to the reader to show that 
the nets are uniquely determined by these characteristics and also their polyhedra, 
under the possible additional requirement of edges of equal length. Constructions 
of nets are exemplified in the book of G r u n b a u m [4] and there exist a number of 
books with excellent diagrams of the uniform polyhedra and their nets, for example 
the books by Fe jes T o t h [2] and Cundy and Ro l l e t [1]. 

Let G be a finite triply connected planar graph, and let v, e. and p denote the 
number of vertices, edges and faces of G. Then Euler's formula read as follows: 

p —e + v =2. 

Denoting the number of faces whose boundary consists of k edges with pk and the 
number vertices of degree k with vk one can deduce the following equation from 
Euler's formula: 

p3 + u3 = 8 + 2(*-4)(u*+P*) (1) 
k=*5 

The deduction of this formula is simple and it can be found for example in [4] on 
page 237. It implies that every triply connected planar graph has at least 8 3-valent 
elements. We shall also use the fact [6] that every finite planar graph has at least 
one vertex of degree ^ 5 . By dualization this implies that every finite triply 
connected planar graph has at least one face whose circumference is at most 5. 

Theorem 1. The finite, simple, planar edge-transitive triply connected graphs are 
the nets of the Platonic solids and the nets of the rhombic dodecahedron, the 
rhombic triacontahedron, the cuboctahedron and the icosidodecahedron. 

Proof. Let G be a finite, planar edge-transitive triply connected graph. We can 
assume that G is already given with an embedding into the plane. By Whitney's 
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theorem every automorphism of G maps faces of G into faces of G. Now we 
partition the vertex set V(G) of G and its set of faces F(G) into classes on which 
the automorphism group A (G) of G acts transitively. Since every edge is incident 
with two vertices and two faces we get at most two classes each, because of the 
edge-transitivity of G. 

In case A(G) acts transitively on the set of vertices and faces G is regular and 
also its dual. As G is triply connected any two faces of G have at most one edge in 
common. There are exactly five graphs with the property that G and its dual are 
regular and that two faces have at most one edge in common, namely the five 
Platonic solids. A short proof of this can be found in [6] on page 113. The five 
Platonic solids are indeed edge-transitive. 

Let us assume now that A (G) does not act transitively on the set of vertices of 
G. Then there are two classes of the set of vertices, say Vx and V2, on which A (G) 
acts transitively. As every edge connects a vertex in Vx with one in V2, we can 
consider the edges of G as directed arcs with the initial vertex in V, and the 
terminal one in V2. The automorphism of G preserves the direction of these arcs, 
otherwise Vx and V2 would coincide. Thus G is bipartite and has only even circuits, 
hence, the boundary of each face has even length. If A (G) does not act transitively 
on the set of faces, it follows by dualization of the above construction that all 
vertices have even degrees. 

It is therefore impossible that A (G) is neither vertex-transitive nor transitive on 
the faces of G, otherwise G would have no 3-valent elements. As the dual of 
a threeconnected simple graph is three-connected we can restrict attention to the 
case, where A(G) is not vertex-transitive, but acts transitively on the set of faces. 
In this case the number c of edges on the boundary of each face has to be even. As 
3 ^ c ^ 5 w e have c = 4. Further 3 ^ d x ^ 5 and we can assume dx<d2, otherwise G 
and its dual would be regular and G would be a Platonic solid. 

From e = dx(3x = d2p2 we get /3X = e/dx and /32 = e/d2. As v = (3X + (32 this implies 

dx + d2 
v = e A A ' dxd2 

Now 2e = cp and c = 4 yield p=e/2. Substitung for v and p in Euler's formula and 
solving for e we get 

= __4dxd2__ 
6 2(dx+d2)-dxd2' 

As the denominator has to be larger than zero 

:>d2 
2d, 

d,-2"a2-

For d, = 5 we would have therefore d2<10/3 and for d, = 4 we would get 4>d2, 
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which is impossible. The case dx = 3 gives 6>d2, allowing the possibilities d2 = 4 
and d2 = 5. By an easy calculation one arrives at the two solutions 

V = U, e=2A, p = 12, j3, = 8, /32 = 6 

in case dx=3, d2 = 4 and at 

u = 3 2 , e = 60, p = 3 0 , /3, = 20, /32 = 12 

in case dx = 3, d2 = 5. The first solution is the rhombic triacontahedron. Together 
with their duals, namely the cuboctahedron and the icosidodecahedron, these* are 
the four edge-transitive polyhedral graphs different from the Platonic solids. 

Theorem 2. The finite, simple, connected edge-transitive planar graphs which 
- are not triply connected are the single vertex, the single edge, stars, simple circuits 

and the graphs obtained from the single edge, simple circuits and the nets of the 
Platonic solids, the cuboctahedron, and the icosidodecahedron by replacing every 
edge by K2,„, where n is a fixed positive integer. 

R e m a r k . By replacing an edge [a, b] by K2,n we mean the deletion of [a, b] 
followed by the identification of the vertices of degree n in K2,„ with a and b, 
respectively. This procedure is unique unless n=2, in which case we identify any 
pair of nonadjacent vertices with the pair a, b. 

Proof . As has been shown by Watkins [7] the connectivity of connected 
edge-transitive graphs G is the minimal degree of the graph. Let [a, b] be an edge 
of G, and denote the degree of a by d, and the degree of b by d2. We can choose 
the notation so that dx ^d2. If dx is one G is a single edge or a star. If dx and d2 are 
two G is a circuit. So we only have to consider the case where d, = 2 and d2>2. 
Clearly A(G) acts transitively on the vertices of degree d2 and on the vertices of 
degree 2. Every vertex of degree 2 is connected with two vertices of degree d2. If 
we replace every such pair of adjoining edges by a single one, we get a regular 
(multi-)graph of degree d2 ^ 3 whose group acts transitively on the set of edges and 
on the set of vertices. We identify multiple edges to obtain a simple edge- and 
vertex-transitive graph G. By the above and Theorem 1 Gis a single edge, a simple 
circuit, the net of a Platonic body, the cuboctahedron or the icosidodecahedron. 
This proves the theorem. 

To characterize the triply connected vertex-transitive planar graphs we use the 
fact that automorphisms either preserve or reverse the cyclic order of the faces 
incident with every vertex. Given such a cyclic order for an arbitrary vertex v we 
therefore list the circumferences of the faces incident with v in that order. Any two 
such listings, e.g. 

{3 ,6 ,8} , {6 ,8 ,3} or {8 ,6 ,3} , 

are considered the same if one arises from the other by a cyclic transformation or 
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by inversion. These symbols are called modified Schlafli symbols and are used to 
characterize uniform convex polyhedra. We do not show that they uniquely 
determine their planar, triply connected graphs, although this is important because 
we want to characterize the uniform convex polyhedra combinatorially. 

Theorem 3. The connected, simple, planar vertex-transitive graphs are the single 
vertex, the single edge, simple circuits and the nets of the uniform convex 
polyhedra, namely the nets of regular prisms and antiprisms, the Platonic and the 
Archimedian bodies. 

Proof. Every vertex-transitive graph is regular. Trivially the single vertex, the 
single edge and simple circuits are the connected planar regular graphs whose 
degree is at most two. Regular connected vertex-transitive graphs of at least third 
degree are three-connected [7], and we can apply Whitney's results to them. As 
every planar graph has vertices of degree smaller than or equal to five, we only 
have to consider the degrees 3, 4 and 5. 

We treat the case d = 3 first. Let G be a vertex-transitive planar graph of degree 
three. We choose a vertex g of G and denote the faces of G incident with g by a, 
(3, y in positive cyclic order. Further we denote by [a] , [)3] and [y] the set of faces of 
G which are (transitively) equivalent with a, (3 and y respectively. Of course they 
need not be different. If fi is for example equivalent to y, symbolically jS~y, the 
classes [f$] and [y] coincide. Without loss of generality we can choose the notation 
such that the circumference c (a ) of a is minimal. As every triply connected planar 
graph has faces whose circumference is at most five there are only three 
possibilities for c(a), namely c (a ) = 3, 4 or 5. 

Suppose one of the faces a, (3, y, say a, has odd circumference. We shall show 
first that the other two faces are equivalent. In case c (a ) = c(/S) = c(y), the only 
solutions are the Platonic bodies {3, 3, 3} and {5, 5, 5} for which the assertion is 
true. Thus, we can assume c(a) ^ c(/3). Clearly c(a) being odd implies c(/3) = c(y) 
by vertex transitivity. Hence, every automorphism mapping a boundary point of a 
into a boundary point of a stabilizes a. This implies /3 — y, for otherwise the faces 
having an edge in common with a would have to be alternatingly in [(3] and [y], in 
contradiction to c(a) being odd. 

If c (a ) = 3 we therefore have (3~y. For a~ (3 we get the solution 

{3,3,3} , 

the tetrahedron. In case a is not equivalent to (3 it is easily seen that the faces 
having a common edge with (3 are alternatingly in [a] and [j8]. Consequently c(/3) 
has to be even. This gives the solutions 

{3 ,4 ,4} , {3 ,6 ,6} , {3,8 ,8} and {3,10,10}. 

These are the triangular prism, the truncated tetrahedron, the truncated cube and 
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the truncated dodecahedron. That {3, m, m) is not realizable for m > 10 is shown 
as follows: By (1) we have 

v+p3 = 8 + (m-4)p„. (2) 

Further v = 3p3 = m-pm/2. Substituting in (2) for v and p3 and solving for pm we 
get 

24 
Pm 12-m9 

and henceforth 1 2 > m . 
In case c(a) = 4 we immediately have the solutions 

(4, 4, 4} and {4, 4,m) with m ^ 5 ; 

i.e., the cube and m-gonal prisms. If one of the numbers c(/3) and C(Y) is odd the 
other has to be equal to c(a). Thus we have to investigate the case {4, k, m) with 
even k, m and 4 < k ^ m . To be able to treat the cases k<m and k = m jointly we 
set gk = pk and qm = pm for k<m and pk = 2qk for k = m. Then we have 

v = 4p4 = kqk = mqm 

and equation (1) becomes 

v = 8 + (k-4)qk + (m-4)qm. 

Solving for p4 we get 

_ 2km 
P 4 ~ 4 ( k + m ) - k m ' 

The denominator has to be positive, and therefore 

hL>l (3) 
k m 4 v ' 

From k^m follows that 1/k > 1/8 and hence 8 > k . As k is larger than four, k can 
only be 6. Substituting again into (3) one can see that 1 2 > m . This allows the 
solutions 

{4, 6, 6}, {4, 6, 8} and {4, 6, 10}, 

the truncated octahedron, the truncated cuboctahedron and the truncated 
icosidodecahedron. 

If c (a) = 5 the face jS has to be equivalent to y, for a—(3 we get the 
pentagondodecahedron 

{5 ,5 ,5} . 
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In case a -/- j8 we can show as we did for c(a) = 3, that c(fi) is even. Thus we have to 
investigate the case {5, m, m} with even m. Using equation (1) and the relation 

v=5p5 = mpm/2 

we can show by the same methods as before that 2 0 > 3 m . This gives the truncated 
icosahedron 

{ 5 , 6 , 6 } . 

The next step is the investigation of regular graphs of degree four. Again we 
choose a vertex g of such a graph G and denote the faces of G incident with g by 
a, (3, y, <5 in positive cyclic order. Equivalence of faces is defined as before, and 
again we can assume c(a) to be minimal. As there are no vertices of degree three 
we have c(a) = 3 by (1). 

We assume first that a -/-/?, y, <5. If /3 -/-<5 the faces having a common edge with a 
would have to be alternatingly in [(3] and [8], which is impossible since c(a) = 3. 
Therefore /3 ~ 8. As every face having a common boundary with y is in [/S] the face 
y cannot be equivalent to /3. We observe that the faces around j8 are alternatingly 
in [a] and [y], and therefore c(/3) has to be even. For c(/3) = 4 we definitely get the 
solutions 

{ 3 , 4 , 4 , 4 } , { 3 , 4 , 5 , 4 } , 

corresponding to the rhombicuboctahedron and the rhombicosidodecahedron, 
respectively. The numerical solution {3, 4, 3, 4} corresponds to the cuboctahedron, 
for which a~Y- Since we assumed a -/-(3, y, 8 this case cannot be included here. It 
should also be noted that c(a) = c(y) does not necessarily imply a~Y-

There is no solution {3,4, m, 4} with m>5. Equation (1) becomes p3 = 
8 + (m—4)pm in this case, and v = 3p3 = mpm. This implies pm(6 — m) = 12 and 
therefore m<6. 

Now we consider {3, k, m, k}, where k is even and larger than four. For m = 3,4 
or k the following relations hold: 

m = 3 : 2v = 3p3 = kpk 

m = 4: v = 3p3 = kpk/2 
m = k:v= 3p3 = kpk/3 

In any case 3p3^kpk/3 and equation (1) assumes the form 

p3 = 8 + (k-4)pk, 

from which follows pk(9 — 2k) ^ 1 8 , which is not possible for k^6. Now let mj=3, 
4, k. Then 

v =3p3 = mpm = kpk/2 
and by (1) 
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p3 = S + (k- 4)pk + (m- 4)pm. 

Solving for pm we get 

6k 
6m + 3 k —2km ' 

and hence 6/k + 3 / m > 2 . As 1 ^ 6 / k this implies 3 > m , which is not possible. 
The next case is the one, where a is equivalent to at least one of the faces (3, y, 6. 

By construction g is one of the vertices of a. Let e a n d / be the other ones, and let 
the notation be chosen so that a and (3 have the edge [f, g] in common and a, d the 
edge [e, g]. If a —/? we consider the faces incident with e. They have to be a, (3, y, 
d in positive or negative cyclic order. Hence 6 ~ a or / is incident with three faces 
equivalent to a, and therefore also g. In any case a has to be equivalent to at least 
one of the faces y, 6. Without loss of generality let a~Y- Th1s gives the solutions 

{3 ,3 ,3 ,3} and {3,3,3, m) with m ^ 4 , 

namely the octahedron and the m-gonal antiprisms. 
In the above we began with the assumption a ~ / 3 . We would have arrived at the 

same results from a ~ 3. Now let a ~ y and a -/- /3, d. Then /3 ~ 6 since c (a) is odd 
and have to consider {3, k, 3, k}. For even k this has already been done. It should 
be noted that we did not need any assumptions about the equivalences of a, (3, y 
and 6 to do this, only equation (1) and the relation 3p3 = kpk. For odd k the case 
k=3 is trivial. Thus we can assume k^5. This gives 3p3 = kpk and p3 = 
8 + (k—4)pk. Consequently, pk(12 — 2k) = 24 and k<6. Therefore the result is 
the icosidodecahedron 

{ 3 , 5 , 3 , 5 } . 

Finally we have to consider regular graphs of degree 5 . As before we choose 
a regular graph of degree 5 and a vertex g. The faces incident with g we denote as 
usual by a, (3, y, 5, rj in positive cyclic order, and we suppose c(a) to be minimal. 
Clearly c (a ) = 3. If one of the faces incident with g has a circumference m ^ 5 
equation (1) gives 

p3^8 + v + (m-4)pm. (4) 

Denoting the number of triangles incident with g by k3 and the number of m-gons 
by km we get 

3p3/k3 = mpjkm = v 

and k3 + k,„^5. Substituting for v and p3 in (4) we obtain 

p m ( 1 2 k „ - m ( 3 + 3 k m - k 3 ) ) ^ 2 4 k m . 
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The second factor on the left side has to be positive, and this implies 

\2km>m(3 + 3km-k3). (5) 

Taking into account that k3 ^ 5 — km it' follows that 

6km>m(2km-\\ (6) 

and therefore 6>m. Hence m has to be 5. Using equation (6) again we see that 
5 > 4 k m , and thus km = \. Substituting into (5) this gives 12>5(6 — k3), and 
consequently k3>3. Since k3 is smaller than 5 it has to be 4. The solution is the 
snub dodecahedron 

{ 3 , 3 , 3 , 3 , 5 } . 

Henceforth we can assume that our graphs contain only triangles and quadrilate
rals. Obviously 3p3lk3 = v and p3 = S + v. Substituting for v we obtain 

P3(k3-3) = 8k3, 

which implies k3>3. This gives the remaining two solutions 

{ 3 , 3 , 3 , 3 , 4 } and { 3 , 3 , 3 , 3 , 3 } , 

namely the snub cube and the icosahedron. 
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ТРАНЗИТИВНЫЕ ПЛАНАРНЫЕ ГРАФЫ 

Герберт Флайшнер-Вильфрид И м р и х 

Р е з ю м е 

Применяя результат Витны об однозначной вложимости планарных 3-связных графов 

в плоскость и формулу Эйлера, авторы находят все конечные 3-связные планарные графы 

с реберно-транзитивной или вершинно-транзитивной группой автоморфизмов. Это достигается 

число комбинаторным способом. Кроме того, находятся все конечные планарные графы 

с реберно-транзитивной группой автоморфизмов, которые не являются 3-связными. 
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