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ON THE STRUCTURE OF THE POINT ARBORICITY
CRITICAL GRAPHS

PETER MIHOK

1. Introduction

A colouring of the points of a graph is called *““acyclic” if no cycle has all its points
the same colour. The “point arboricity” o(G) of a graph G is defined (see [3]) as
the minimum number of colours in an acyclic colouring of the points of G. In this
paper we investigate graphs which are critical with respect to point arboricity.
A graph G is k-critical if G is connected, 9(G) =k and for each line e of G,
0(G—e)<p(G). It is easy to see that the only 2-critical graphs are cycles,
therefore we take k= 3. The properties of k-critical graphs with respect to o(G)
have been investigated in [4], [S]. In [4] it was shown that every k-critical graph G
has a minimum degree 8(G)=2k — 2. The structure of the subgraph of k-critical
graph G induced by the set of points of degree 2k —2 is presented in §2. All
k-critical graphs having at most one point of degree greater than 2k —2 are
described in §3.

2. The point arboritic analogues to Gallai’s
and Brooks’ Theorems

In general, we follow the notation and terminology of book [2]. For any set S of
points of a graph G the subgraph (S) induced by § is the maximal subgraph of G
with a point set S. By a colouring of a graph G we always mean an acyclic colouring
of the points of G. The set of all points with any one colour is called a colour-class.
Let v be any point of a graph G ; then a k-colouring of G is called a {v}-colouring
of G if 0(G) = k and one of the colour-classes consists of only v. The colour of the
point v in the colouring f of G is denoted by f(v). If the path P: vev,...v, of
a graph G has all its points the same colour c, then it is called a c-path. Let f be
a colouring of the points of a path P: v,v,...v, ; then by recolouring the points of P
we mean such a colouring f’ that f'(v;)=f(vis.) for i=0, 1, ..., n—1; and
f'(v.)=f(vo). The point v of a k-critical graph G is called ‘“secondary” if
deg v =2k —2 or “primary” if deg v >2k — 2. The diagonal of a cycle C in a graph
G is a line of G joining two points of C, but not belonging to C.
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The following lemmas are used in the proofs of our results. As Lemmas 1—4
ollow immediately from the definition of k-critical graphs, we omit the simple
proofs.

Lemma 1. Let v be a secondary point of a k-critical graph G. Then in any
v }-colouring f of G there exists for every colour i, i # f(v), an i-path joining a pair
of points adjacent to v.

Lemma 2. Let v be a secondary point of a k-critical graph G and let u be a point
of G adjacent to v. If we change in a {v}-colouring of G the colours of v and u,
then we obtain a {u}-colouring of G.

Lemma 3. If P is a u —v path in a k-critical graph G and each point of P is
secondary, then after recolouring the points of P we obtain from the {u}-colouring
of G a {v}-colouring of G.

Lemma 4. Let C: vov,...v, be a cycle in a k-critical graph G and let any point of
C be secondary. If we change in a {v,} -colouring of C cyclically the colours of the
points vy, v, ..., U,—., then we obtain again a {v,}-colouring of G.

Lemma S. Let C: vov,...v, be an even cycle in a k-critical graph G and let each
point of C be secondary. If there is a point v; of C which is incident with no diagonal
of C in G, then C contains no diagonal in G.

Proof. If the point v, is incident with no diagonal of C in G, then among the
points of C only v,, and v;,, are adjacent to v;. By Lemma 1, in any
{v;}-colouring of G the points adjacent to v; are coloured pairwise with the same
colour and this property, according to Lemma 4, is preserved after cyclical change
of the colours of points v, ... V.U, ... V4.

Since C is even, it follows that in any {v;}-colouring of G all points but the point v,
of C have the same colour and thus C has no diagonal in G.

Lemma 6. If each even cycle in the block B of a graph G has at least two
diagonals in G, then the block B is a complete subgraph of G.

Proof. This lemma follows immediately from Theorem 1.9 of [1, p. 170].

The following theorem is a point-arboritic analogue to Theorem 1 of T. Gallai

[1].

Theorem 1. Let G be a k-critical graph, k=3, and let M be the set of all
secondary points of G. Then the blocks of the subgraph (M) of G induced by the
set M are complete graphs K;, 0<j<2k —1 or cycles.

Proof. We consider the following three cases:

(1) The block B of (M) contains no even cycle. Then either B=K, or B
contains an odd cycle C,,.,. In case B# C,,+,, then either C.,., has a diagonal in
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M or there is a point of B not belonging to C,..,. In both cases there is an even
cycle in B which contradicts our assumption.

(2) There is an even cycle Cs,.: vov;... V2, in the block B of (M) which contains
a point v; lying in no diagonal of C,, in (M).

We shall show, that C,, is a block of (M). Let us suppose that C,, is a proper
subgraph of the block B. Since, by Lemma 5, C,, contains no diagonal in (M),
there exists a point u of B not belonging to C.,,. Let C': vyv,...u...v2, be a cycle in
B containing the point u and the line v,v, and let us denote by u, (resp. u,) the first
(respectively last) point of C’ not belonging to C.,. Let us take any {v,}-colouring
f of G. By Lemma 5, all points of C but v, have the same colour ¢# (u;). However,
after recolouring of the points of C’ we obtain a contradiction.

(3) The block B of (M) contains an even cycle C,, different from B. Then by
(2) each point of any even cycle in B is incident with one diagonal in (M) at least.
According to Lemma 6, B is a complete subgraph of G.

The proof of Theorem 1 is completed.

Theorem 2 is a point-arboritic analogue to the well-known Brooks’Theorem. We
are presenting another proof of this Theorem, first proved by Kronk—Mitchem
in [5].

Theorem 2. If G is connected, not complete and o(G)=k, k=3, then A(G)=
2k —1.

Proof. Let us assume that G is connected, not complete, o(G)=k and
A(G)<2k —2. We can assume that G is the smallest graph with the above
mentioned properties. Then G is k-critical, 6(G)=2k — 2, so that all the points of
G are secondary. According to Theorem 1, G is complete and this contradiction
proves Theorem 2.

Corollary. The only k-critical graph G without principal points is Kjx—;.

3. Ciritical graphs having exactly one principal point

In [4, 5] it was shown that if G is a 2-connected graph with o(G)= k having at
most one point of degree exceeding 2k — 2, then G is k-critical. The following two
theorems describe the structure of all k-critical graphs having exactly one point of
degree exceeding 2k —2. The structure of all k-critical graphs having two (or
more) principal points is much more complicated and it cannot be characterized in
a similar way.

A block B of a graph G is called a K;-block if it is a complete graph K, and
a C,-block if it is a cycle C,. An end-block of a graph G is a block containing
exactly one cut point of G.

Theorem 3. A graph G is a k-critical graph, k =4, having exactly one principal
point, denoted z, if and only if all of the following conditions (1)—(6) hold:
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(1) G-z is connected. .

(2) The degree of any point v in G—z is 2k —3<degv=<2k—2.

(3) G —z consists of K,, K, 3, K.« » and C,-blocks.

(4) Each cutpoint v of G — z liesin a K, -block orina K« »-block of G — 7
(5) G —z consists of at least three blocks.

(6) vz is a line of G if and only if deg v in G —z is equal to 2A — 3.

Proof. Let G be a k-critical graph having exactly one principal point z. Then G
is 2-connected, §(G)=2k —2 so that (1), (2) and (6) hold. According to
Theorem 1, all the blocks of G —z are complete graphs or cycles. Let v be

a cutpoint of G — z. Let us assume that the greatest natural number j, for which v is
a point of a K;-block of G — z, is smaller than 2k — 3 or that all the blocks of G — 7
containing the point v are cycles. For A ={v; z}, denote by L,, i — 1,2, ., r the
connected components of G—A and by G; the subgraphs of G induced by
V(L:)UA. Then, since k=4, in each {v}-colouring f of G there is a colour
¢, # f(z) in any block B, of G,, which contains the point v, so that at most one point
of B, is coloured with c¢;. Let us recolour the pomnt v in G, i=1,2, .., r by the
colour ¢, ; then we obtain toeach i =1, 2, ..., ra (k — 1)-colouring f, of G,. in which
fi(v) # f.(z). However, this implics that there exists a (k — 1)-colouring of G, which
is in contradiction with the fact that o(G) = k. Hence each cutpoint v of G — 7 lies
in a Ky s-block or a K, »-block of G-z and (3), (4) and (5) hold.

Conversely, let G be a graph satisfying the conditions (1)—(6). In verifying that
G is k-critical, it suffices to show that p(G)=k. We use the induction on the
number m of the K-, ;-blocks of G —z.

I. If m =0, the desired result is implied by Theorem 3.3 of [1] (p 184) which
states that if m =0 and G satisfies (1)—(6), then G has the chromatic number
x(G)=2k — 1. Since x(G)<20(G) (see [3]), we have o(G)=k.

II. Let us assume for any graph G satisfying conditions (1)—(6) and having less
than m K,. ;-blocks that o(G)= k. We shall assume that G* is a graph satisfying
(1)—(6) having exactly m K-, :-blocks, o(G*)< k — 1 and we shall show that this
1. ds tc a contradiction. Let f be a (k — 1)-colouring of G* and let v be a cutpoint
of G* — z. Further, let us for A = {v, z} denote by L;, i=1, 2, . ., r the connected
components of G* A and by G* the subgraphs of G* induccd by AuV(L),
1=1,2, ..,r.

Let us consider the following cascs:

(1) v 1s a point of a C,-block B of G*—1z;

1.1. If f(z)# f(v), then let us denote by U the pomts of this connected
component I, of G*— A which contains the points of B. We define a graph H as
follows: Let G, = K;i--, G>= K-, 2 and G.= G* — U are mutually disjoint graphs,
v, and v, arbitrary points of G, and G,, respectively. Let us join the point v of G,
with v, and v, and the point z of G, with all the remaining pomnts of G, and G .
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Then it is easy to see that the obtained graph H has a (k — 1)-colouring and it
satisfies (1)—(6), which contradicts our inductive assumption.

1.2. If f(z) = f(v), then one of the points of B has the colour different from f(z)
and thus we can continue as in case 1.1.

(2) G*—z contains no C,-block; Let us select an arbitrary K,,_;-block B of
G*—z and a point v, of B for which f(v,)=f(z). Since 0(Kx-3) = k—1, such
a point v, exists.

2.1. If vez is a line of G*, then there is no f(v,)-path joining the points v, and z
which passes a K,-block of G* — z. We define a graph H as follows: For i =0, 1, 2,
..., 2k —4 let v, be the points of B, let A; = {z, v;}; now we denote by L' an
arbitrary connected component of G — A; containing no points of B. Let us remove
from G* the line v,z and all points and lines of the subgraph G'=(V(L")) of G*
induced by the pointsof L', i=1,2, ..., 2k — 4. Now we take a new point u and we
join it with all the points of B. The obtained graph H obviously satisfies (1)—(6)
and it has a (k—1)-colouring, however, by the inductive asgumption this is
impossible.

2.2. If vez is not a line of G*, then we proceed similarly as in the case 2.1.

This completes the proof.

Since K, is a cycle, the structure of the 3-critical graphs is somewhat complicated.
We shall describe it in the following theorem.

Theorem 4. A graph G is a 3-critical graph having exactly one principal point,
denoted z, if and only if all of the following conditions (1)—(6) hold:

(1) G —z is connected.

(2) The degree of any point v in G — z fulfils the inequalities 3<deg v <4.

(3) G-z consists of K,, K, and C,-blocks.

(4) The set M of all C,-blocks of G — z is divided into two disjoint classes M,, M,
so that no two blocks of the same class have a common point and each cutpoint
v of G—z lies in @ Ku—-»-block of G —z or in a C,-block of M,.

(5) G —z consists of at least three blocks.

(6) vz is a line of G if and only if deg v in G —z is 3.

The proof of Theorem 4 is omitted, it proceeds similarly to the proof of
Theorem 3.
Remark. Similarly as in [1, p. 186—189], using Theorem 1, the following
theorem can be proved.

Theorem 5. Let G be a k-critical graph, k=3, with n>2k —1 points and m
lines, then

n
4k +10°

m>n(k—1)+
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O CTPYKTYPE BEPUIIMHHO-APEBECHOCTHbIX KPUTNYECKHNX I'PA®OB
[Tetep Murok

Pe3ome

I'pad G = (X, I') Ha3bIBaeTCs AUMKINYECKH PACKPALLEHHBIM kK KpacKaMH, ecllv Kaxas ero BepLiu-
Ha pacKpalleHa OHOI U3 k KpacOK M BEPLIMHBI HA OJHOTO LMK/IA B G He MONy4aloT OIMHAKOTO LBETA.

Bepumunnast pgpesecHocts o(G) rpacda G onpefensieTcs Kak HaiMeHbluee Kk, I KOTOPOTO
CYLIECTBYET aLMKIH4ecKasi packpacka rpada G k kpackamu.

I'pad G = (X, I') nasbiBaeTcs k-kpurunyeckuM, ecin G casizeH, 0(G ) = k v gst mo6oro pebpa e € I,
0(G - ¢)<p(G). B [4] noka3auo, uto ecnu G k-kpurnueckuit rpad, to 6(G)=2(k —1).

B crartbe pokasbiBaeTcs, 4TO B k-kputuyeckoM rpade G 6Gnoku nogrpacda, MopoXmgeHHOrO
BEpLIMHAMK CcTeneHu 2k — 2, ABAsSIOTC NMoNHbIMU rpacdhamu v uukinamu. [danee u3yvarorcs rpadbi
KOTOPbIX CTENEHb J1000N BEPUINHBI, KPOME OHOW, paBHa 2k —2.
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