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ON THE STRUCTURE OF THE POINT ARBORICITY 
CRITICAL GRAPHS 

PETER MIHOK 

1. Introduction 

A colouring of the points of a graph is called "acyclic" if no cycle has all its points 
the same colour. The "point arboricity" Q(G) of a graph G is defined (see [3]) as 
the minimum number of colours in an acyclic colouring of the points of G. In this 
paper we investigate graphs which are critical with respect to point arboricity. 
A graph G is k-critical if G is connected, Q(G) = k and for each line e of G, 
Q(G-e)<Q(G). It is easy to see that the only 2-critical graphs are cycles, 
therefore we take k^3. The properties of A:-critical graphs with respect to Q(G) 
have been investigated in [4], [5]. In [4] it was shown that every ^-critical graph G 
has a minimum degree 6(G)2*2k — 2. The structure of the subgraph of fc-critical 
graph G induced by the set of points of degree 2k-2 is presented in §2. All 
k-critical graphs having at most one point of degree greater than 2A; —2 are 
described in §3. 

2. The point arboritic analogues to Gallai's 
and Brooks' Theorems 

In general, we follow the notation and terminology of book [2]. For any set 5 of 
points of a graph G the subgraph (S) induced by 5 is the maximal subgraph of G 
with a point set 5. By a colouring of a graph G we always mean an acyclic colouring 
of the points of G. The set of all points with any one colour is called a colour-class. 
Let v be any point of a graph G; then a fc-colouring of G is called a {v}-colouring 
of G if Q(G) = k and one of the colour-classes consists of only v. The colour of the 
point v in the colouring / of G is denoted by f(v). If the path P: v0Vi...vn of 
a graph G has all its points the same colour c, then it is called a c-path. Let / be 
a colouring of the points of a path P: v0vx...vn; then by recolouring the points of P 
we mean such a colouring / ' that /'(t>,) = /(i>/+i) for / = 0, 1, ..., n — 1; and 
f'(vn) = f(v0). The point v of a ^-critical graph G is called "secondary" if 
deg v = 2k - 2 or "primary" if deg v > 2k - 2. The diagonal of a cycle C in a graph 
G is a line of G joining two points of C, but not belonging to C. 
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The following lemmas are used in the proofs of our results. As Lemmas 1—4 
ollow immediately from the definition of k-critical graphs, we omit the simple 

proofs. 

Lemma 1. Let v be a secondary point of a k-critical graph G. Then in any 
x v} -colouring f of G there exists for every colour i, i±f(v), an i-path joining a pair 
of points adjacent to v. 

Lemma 2. Let v be a secondary point of a k-critical graph G and let ubea point 
of G adjacent to v. If we change in a {v}-colouring of G the colours of v and u, 
then we obtain a {u}-colouring of G. 

Lemma 3. If P is a u — v path in a k-critical graph G and each point of P is 
secondary, then after recolouring the points of P we obtain from the {u}-colouring 
of G a {v}-colouring of G. 

Lemma 4. LetC: v 0vx...vn be a cycle in a k-critical graph G and let any point of 
C be secondary. If we change in a {v0} -colouring of C cyclically the colours of the 
points vu v2, ..., v„_i, then we obtain again a {v0}-colouring of G. 

Lemma 5. Let C: v0vx. ..vnbe an even cycle in a k-critical graph G and let each 
point of C be secondary. If there is a point vf of C which is incident with no diagonal 
of C in G, then C contains no diagonal in G. 

Proof. If the point v, is incident with no diagonal of C in G, then among the 
points of C only v}-x and vi+x are adjacent to vh By Lemma 1, in any 
{?;,}-colouring of G the points adjacent to Vj are coloured pairwise with the same 
colour and this property, according to Lemma 4, is preserved after cyclical change 
of the colours of points vi+x ... vnvx ... vf-x. 
Since C is even, it follows that in any {v^-colouring of G all points but the point v, 
of C have the same colour and thus C has no diagonal in G. 

Lemma 6. If each even cycle in the block B of a graph G has at least two 
diagonals in G, then the block B is a complete subgraph of G. 

Proof. This lemma follows immediately from Theorem 1.9 of [1, p. 170]. 
The following theorem is a point-arboritic analogue to Theorem 1 of T. Gal l a i 

M. 
Theorem 1. Let G be a k-critical graph, k^3, and let M be the set of all 

secondary points of G. Then the blocks of the subgraph (M) of G induced by the 
set M are complete graphs Kh 0 ^ / ^ 2 k — 1 or cycles. 

Proof. We consider the following three cases: 
(1) The block B of (M) contains no even cycle. Then either B = K2 or B 

contains an odd cycle C2„+i. In case B+ C2n+U then either C2„+i has a diagonal in 
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M or there is a point of B not belonging to C2n+X. In both cases there is an even 
cycle in B which contradicts our assumption. 

(2) There is an even cycle C2n: v0vx...v2n in the block B of (M) which contains 
a point Vj lying in no diagonal of C2n in (M). 

We shall show, that C2n is a block of (M). Let us suppose that C2n is a proper 
subgraph of the block B. Since, by Lemma 5, C2n contains no diagonal in (M), 
there exists a point u of B not belonging to C2n. Let C : v0vx...u...v2n be a cycle in 
B containing the point u and the line v0vx and let us denote by ux (resp. u2) the first 
(respectively last) point of C not belonging to C2n. Let us take any {v0}-colouring 
/ of G. By Lemma 5, all points of C but v0 have the same colour c=£ (ui). However, 
after recolouring of the points of C we obtain a contradiction. 

(3) The block B of (M) contains an even cycle C2n different from B. Then by 
(2) each point of any even cycle in B is incident with one diagonal in (M) at least. 
According to Lemma 6, B is a complete subgraph of G. 

The proof of Theorem 1 is completed. 
Theorem 2 is a point-arboritic analogue to the well-known Brooks'Theorem. We 

are presenting another proof of this Theorem, first proved by Kronk—Mitchem 
in [5]. 

Theorem 2. If G is connected, not complete and g(G) = k, k^3, then A(G)^ 
2k-\. 

Proof. Let us assume that G is connected, not complete, g(G) = k and 
A(G)-^2k — 2. We can assume that G is the smallest graph with the above 
mentioned properties. Then G is k-critical, 6(G) ^ 2 k — 2, so that all the points of 
G are secondary. According to Theorem 1, G is complete and this contradiction 
proves Theorem 2. 

Corollary. The only k-critical graph G without principal points is K2k-X. 

3. Critical graphs having exactly one principal point 

In [4, 5] it was shown that if G is a 2-connected graph with g(G) = k having at 
most one point of degree exceeding 2k - 2, then G is k-critical. The following two 
theorems describe the structure of all k-critical graphs having exactly one point of 
degree exceeding 2 k - 2 . The structure of all k-critical graphs having two (or 
more) principal points is much more complicated and it cannot be characterized in 
a similar way. 

A block B of a graph G is called a K7-block if it is a complete graph Kt and 
a Cn -block if it is a cycle Cn. An end-block of a graph G is a block containing 
exactly one cut point of G. 

Theorem 3. A graph G is a k-critical graph, k^A, having exactly one principal 
point, denoted z, if and only if all of the following conditions (1)—(6) hold: 
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(1) G - z is connected. 
(2) The degree of any point v in G — z is 2k - 3 ^ d e g v^2k-2. 
(3) G — z consists of K2, K2k 3, Klk 2 and Cn-blocks. 
(4) EachcutpointvofG-zliesinaK2k ^-block or in a K2k 2-block of G ~~ z 

(5) G-z consists of at least three blocks. 
(6) vz is a line of G if and only if deg v in G-z is equal to 2k - 3. 

Proof. Let G be a k-critical graph having exactly one principal point z. Then G 
is 2-connected, < 5 ( G ) ^ 2 k - 2 so that (1), (2) and (6) hold. According to 
Theorem 1, all the blocks of G — z are complete graphs or cycles. Let v be 

a cutpoint of G - z. Let us assume that the greatest natural number/, for which v is 
a point of a K,-block of G - z, is smaller than 2k - 3 or that all the blocks of G - z 
containing the point v are cycles. For A = {v ; z}, denote by L:, / — 1, 2, ., r the 
connected components of G-A and by G, the subgraphs of G induced by 
V(Lt)uA. Then, since k^4, in each {?;}-colouring / of G there is a colour 
ct£f(z) in any block Bt of GM which contains the point v, so that at most one point 
of Bt is coloured with ct. Let us recolour the point v in Gf, / = V 2, .. , r by the 
colour c,; then we obtain to each / = 1, 2, ,.., r a ( k - l)-colouring/, of G,, in which 
f(v)i^f(z). However, this implies that there exists a (k - l)-colouring of G, which 
is in contradiction with the fact that g(G) = k. Hence each cutpoint v of G - z lies 
in a K2* 3-block or a K2k ^-block of G - z and (3), (4) and (5) hold. 

Conversely, let G be a graph satisfying the conditions (1)—(6). In verifying that 
G is k-critical, it suffices to show that g(G)^k. We use the induction on the 
number m of the K^k ^-blocks of G-z. 

I. If m = 0, the desired result is implied by Theorem 3.3 of [1] (p 184) which 
states that if m = 0 and G satisfies (1)—(6), then G has the chromatic number 
x(G) = 2k-l. Since x(G)^2g(G) (see [3]), we have g(G)^k. 

II. Let us assume for any graph G satisfying conditions (1)—(6) and having less 
than m K2k ^-blocks that g(G)^k. We shall assume that G* is a graph satisfying 
(1)—(6) having exactly m K-k ^-blocks, g(G*)^k — 1 and we shall show that this 
L dstc a contradiction. Let / be a (k - l)-colouring of G* and let v be a cutpoint 
of G* - z. Further, let us for A = {t>, z} denote by Lf, / = 1, 2, . ., r the connected 
components of G* A and by G* the subgraphs of G* induced b> A u V ( L ), 
f = l, 2, .. , r . 

Let us consider the following casts: 
(1) v is a point of a C„-block B of G* - z\ 
1.1. If f(z)^=f(v), then let us denote by 17 the pomts of this connected 

component Z7 of G* - A which contains the points of B. We define a graph H as 
follows: Let Gx = K2*--, G2 = K->k 2 and G^ = G* - U are mutually disjoint graphs, 
Vi and v2 arbitrary points of G, and G2, respectively. Let us join the point v of G< 
with u, and v2 and the point z of G3 with all the remaining points of Gx and G . 
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Then it is easy to see that the obtained graph H has a ( k - l)-colouring and it 
satisfies (1)—(6), which contradicts our inductive assumption. 

1.2. If f(z) = f(v), then one of the points of B has the colour different from f(z) 
and thus we can continue as in case 1.1. 

(2) G * - z contains no C„-block; Let us select an arbitrary K2*-3-block B of 
G * - z and a point v0 of B for which f(v0) = f(z). Since g(K2k-3) = k- 1, such 
a point v0 exists. 

2.L If v0z is a line of G*, then there is no /(t>0)-path joining the points v0 and z 
which passes a K2-block of G* - z. We define a graph H as follows: For / = 0, 1,2, 
..., 2 k - 4 let v, be the points of B, let A, = {z, v{}; now we denote by V an 
arbitrary connected component of G - A, containing no points of B. Let us remove 
from G* the line v0z and all points and lines of the subgraph G' = (V(L')) of G* 
induced by the points of L \ /= 1, 2, ..., 2k —4. Now we take a new point u and we 
join it with all the points of B. The obtained graph H obviously satisfies (1)—(6) 
and it has a (k-l)-colouring, however, by the inductive assumption this is 
impossible. 

2.2. If v0z is not a line of G*, then we proceed similarly as in the case 2.1. 
This completes the proof. 
Since K^ is a cycle, the structure of the 3-critical graphs is somewhat complicated. 

We shall describe it in the following theorem. 

Theorem 4. A graph G is a 3-critical graph having exactly one principal point, 
denoted z, // and only if all of the following conditions (1)—(6) hold: 

(1) G — z is connected. 
(2) The degree of any point v in G — z fulfils the inequalities 3^deg v ^ 4 . 
(3) G-z consists of K2, K4 and Cn-blocks. 
(4) The set M of all Cn-blocks of G — z is divided into two disjoint classes MUM2, 

so that no two blocks of the same class have a common point and each cutpoint 
v of G-z lies in a K4k-2-block of G-z or in a Cn-block of Mx. 

(5) G — z consists of at least three blocks. 
(6) vz is a line of G if and only if deg v in G — z is 3. 

The proof of Theorem 4 is omitted, it proceeds similarly to the proof of 
Theorem 3. 

Remark. Similarly as in fl,p. 186—189], using Theorem 1, the following 
theorem can be proved. 

Theorem 5. Let G be a k-critical graph, k^3, with n>2k-\ points and m 
lines, then 

m>n(k-1) + 4kTTo-
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О СТРУКТУРЕ ВЕРШИННО-ДРЕВЕСНОСТНЫХ КРИТИЧЕСКИХ ГРАФОВ 

Петер Ми го к 

Резюме 

Граф С = (X, Г) называется ациклически раскрашенным к красками, если каждая его верши­
на раскрашена одной из к красок и вершины ни одного цикла в С не получают одинакого цвета. 

Вершинная древесность д(С) графа С определяется как наименьшее к, для которого 
существует ациклическая раскраска графа С к красками. 

Граф С = (X, Г) называется А:-критическим, если С связен, д(С) = к и для любого ребра е е Г, 
д(С-е)<д(С). В [4] показано, что если С ^-критический граф, то б(С)^2(к- 1). 

В статье доказывается, что в А:-критическом графе С блоки подграфа, порожденного 
вершинами степени 2к — 2, являются полными графами и циклами. Далее изучаются графы 
которых степень любой вершины, кроме одной, равна 2к — 2. 

106 


		webmaster@dml.cz
	2012-07-31T23:04:28+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




