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HYPERINVARIANT SUBSPACE LATTICE
OF ISOMETRIES

MICHAL ZAJAC

1. Introduction

Let $ be a complex separable Hilbert space and let B($) be the algebra of all
bounded linear operators on . A subspace (i.e. a closed linear manifold) £ = §
is called invariant for Te B(9) if TQ < £. L is hyperinvariant for T if it is
invariant under eagh 4 e B(9) that commutes with T. We denote Lat(7) and
Hyplat(T) the set of all invariant and hyperinvariant subspaces of T, respecti-
vely.

If {€,, yeTI} is a family of hyperinvariant subspaces of T, then both the

intersection () £y and the closed linear span \/ £y are from Hyplat(7), i.e.
yell yel
Hyplat(7) is a complete lattice.

Let Te B($). We denote by {T}, {T}" the commutant and the double com-
mutant of T, respectively:

{TY ={SeB(9): ST=TS} {T}" = SQ}'{S}’-
If Se{T}", then both
KerS = {he$: Sh =0} and Ran S = SH
belong to Hyplat(T) (see [9]).
In [7], [8], [9] it was proved that some completely non-unitary contractions
(among them all c.n.u. weak contractions) have the following property:

Definition 1.1. An operator Te B(9) is said to have the property (L) if
Hyplat(T) is the smallest complete lattice which contains all subspaces of the forms
Ker S and Ran S for Se{T}".

It was not known whether there exists an operator not having the property
(L). The purpose of this paper is to show that an isometry need not have the
property (L). We shall even obtain a characterization of the isometries having
the property (L).
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Let V be an arbitrary isometry on the space § (i.e. | VAl < | 4| for all he H).
According to the Wold decomposition ([5], Theorem 1.1.1) g then decomposes
into an orthogonal sum = 9, ® 9, such that H, and 9, belong to Lat(7), V9,
is unitary and V]9, is a unilateral shift. Moreover

Do = ﬁ I"$ and so H,e Hyplat(V). (1.1
n=0

It is easy to show that every unitary operator has the property (L) [9]. We
shall show that the unilateral shift has the property (L) as well.

2. Unilateral shifts.

An isomtery Ve B(9) is called a unilateral shift if there exists a subspace
£ < $ such that V"2 is orthogonal to V7€ for all pairs of non-negative integers
n # m and EBO V' = $. In what follows we shall use a functional model for
unilateral shifts on Hardy spaces.

Let A7, 1 < p < o0, be the Hardy spaces of analytic functlons in the unit disc
D. It is well known that we may consider H” as a subspace of the space L” on
the unit circle of those fe L? which have the Fourier coefficients with negative
indices zero. For more detail see Chapter I11.1 of [5].

Let pe L™, we denote M(p) the operator of multiplication by ¢ on L2 If
@€ H™, then M(¢p)H? = H? and we denote T(p) = M(¢)|H the analytic Toeplitz
operator with symbol ¢.

If (") = e€", then S = T(y) is the unilateral shift of multiplicity 1. Then
{SY = {S} = {T(p): o H*} ([6], Chapter 3). We call an inner function every
ue H* such that |u(e”)] = 1 almost everywhere with respect to the Lebesgue
measure on the unit circle (a.e.). As was shown in [6], p. 42 Lat(S) = {T(@)H*: ¢
is an inner function}. Obviously, Hyplat(S) Lat(S) and S has the property (L).

Every unilateral shift of multiplicity n(1 < n < 00) S, is unitary equivalent to

the orthogonal sum of n copies of S. S, is defined on the space H> = @ H,
i=1
H,= H* for
1Z5i<n+1.
With respect to this orthogonal sum every operator in the commutant of S,
is an operator of multiplication by an n x n matrix over H®. The following

lemma describes the double commutant of the unilateral shift of arbitrary
multiplicity.

Lemma 2.1. {S,}" = {¢(S,): pe H*}.
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Proof. For Ae{S,}’ denote 4, the (i,j)th entry of the corresponding ma-
trix. Let 4€{S,}" and i # j. If X is an operator with X; = 1 and X, = 0 for all
(k,1) # (i,)), then Xe{S,}’ and we have

Aji = (AX)” = (XA)jj =0
Aii = (AX)U = (XA)ij = Ajj'

This means that 4 = ¢(S,), where p = 4 (1 Si<n+1).
By Chapter V.3.4 of [5] or by [3] every €€ Hyplat(S,) is of the form £ = pH>,
where ¢ is an inner function. This means that S, has the property (L).

3. The operator U @ S does not have the propety (L)

Let Ve B(9) be an arbitrary isometry. By the Wold decomposition
H=9D9,, where H, and 9, reduce V, H,eHyplat(¥) and V, = V]9, is
unitary, ¥; = V]H, is a unilateral shift. We have shown that both ¥; and V] have
the property (L). Now we shall show that V need not have (L).

Example 3.1. The operator V= U@ S on the space L’ ® H?, where U is
the bilateral shift: (Uf)(e") = €"fe"), fe L? and S is the unilateral shift, has not the
property (L). '

Proof. Denote by J: H*— L? the natural imbedding of H? into L? i..
Ju = u for ue H*. Then the operator

G o)
0 0
commutes with V. {S} = {T(¢): e H*} ={S}" and {U} = {M(f): feL*} =
={U}".{V}" < (U} ® {S}" (Lemma 1.1 of [1]). Every Te{V}" is of the form

T = (M(f) 0 ) felL®, pe H®.T commutes with (0 J), it follows that
0 T(p) 00
JT(9) = M()], i.e. M(f)| H* = T(¢) and so f = ¢. We conclude

(VY ={p(V): pe H*}. Let @ = @, be the inner-outer factorization of
@€ H®. By the theorem of Beurling [5, Proposition II1.1.2] we have that if ¢ is
not identically zero, then

Ran o(V) = oL’ ® pH* = L’ + o’
and Ker ¢(V) = (0).

It follows that the smallest complete lattice containing all Ran 4 and Ker 4 for
Ae{V}" is formed by the zero subspace and L? @ mH? for all inner functions m.
But Hyplat(¥) contains also the subspace £ = L¥0, n) @ (0), where L0, 7) =
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= {ue L*:u(e") = 0 for te(x,2n)}. To show this we observe that every A e{V}
has the form

(j‘ j2> where A4,e{U}, A,e{S}, 4,8 = UA, and A, =0 because L’®
3 4

@ (0) = e V'(L* @ H? e Hyplat(V). This means that A, = M(u) for a function

=0
uel” and AL < L.

We conclude this section by some remarks

1) Example 3.1 shows that 7, ® T, need not have (L) if both 7, and T,
have (L).

2) We have proved that all completely non-unitary weak contractions have the
property (L). The operator U@ S is not a weak contraction because its spec-
trum is the whole unit disc. In a subsequent paper we shall prove that every weak
contraction has the property (L).

3) The operator U @ S is subnormal. So our example shows that not every
subnormal operator has the property (L). It shows also that if T"has the property
(L) and LeLat(7), than 712 need not have the property (L).

4) The example 3.1 is a special case of the result of the following chapter
where we shall give a characterization of the isometries having the property (L).

4. General case

Let Ve B(9) be an isometry. Similarly as in [2] we consider the unique
decomposition $ = Hys D Dy, D H, such that V3 = V]|H,s is a singular unitary
operator (i.e. its spectral measure is singular with respect to the Lebesgue
measure), V,, = V]9, is an absolutely continuous unitary operator and
Vi = V19, is a unilateral shift. R. G. DOUGLAS [2] showed that

Hyplat(V) = Hyplat(¥,5) @ Hyplat(ly, @ V). 4.1

According to [1] this is equivalent to both following relations:
VY ={hg' @@ "}, 4.2)
VY ={hs"®{V, @ W} 4.3)

If Ae{Vys)", Be{V,, ® V;}", then the operators A0, ADIL,0DB, I®B
belong to {V}" and

KerA® ((0)=Ker4 @)D,
RanA® (0) =Ran(4®0),
0)® KerB=Ker(/ @ B),
(0)® Ran B = Ran(0 @ B).

4.4)
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V,s has the property (L) because every unitary operator has (L). Relations
(4.1) — (4.4) show that V has the property (L). if and only if ¥, @ V] has the
property (L).

According to the theory of spectral representations of normal operators [4]
we may suppose that ¥;, is the operator of multiplication by ¢ on the space

HE)®IAE)® ..., 4.5

where E, o E, o ... are measurable subsets of the unit circle and the measure
considered is always the normalized Lebesgue measure. If y; is the characteris-
tic function of E,, then IXE,) = xE"LZ. Denote by M(E,) the restriction of the
bilateral shift U to I*(E,). From [6, Theorem 1.20] it follows similarly as for the
whole shift that

{M(E,)} ={M(E,)}" = {M(f):fe L*(E,)}.

Lemma 4.1. Let E, o E, o ... be measurable subsets of the unit circle and let
Voa=ME)DME)D ...

Then (V)" = {M() @ M(N D ...:fe L°(E))}

Proof. {V,,}' <« {M(E))}" ® {M(E,)}" @ ... because for each i=1, 2, ...
the operator A, given by the matrix (corresponding to the decomposition (4.5))
with 4; =1 and all the other entries zero commutes with ¥, (See [1]). If
Be{V,,}", then its matrix representation is a diagonal matrix:

By = M(). fE L%, j= 1.2, .
For k > j let B, be the orthogonal projection of LXE,) into L¥(E), i.e. the
operator M(XE)ILZ(E,().

Let X be the operator with the matrix:

X,; = B, and all the other entries zero. Xe{V;,}’, therefore XB = BX. It
follows that f; = x%fk (for each k > j). This means that B is the operator of

multiplication by f; and the proof is finished.

Lemmad.2. If$ = IX(E) ® H*, where E is a measurable subset of the unit circle
and V = M(E)® S, then

VY ={o(V): pe H*}.

Proof. The proof is essentially the same as that in Example 3.1 for
U® S. Instead of the operator Ju = u (ue H*) we have to use the operator
Jeu = xzu (ue HY). Then the operator

o o)
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commutes with V. Every operator from {V'}" is of the from f{AM(E))® (p(S):
feL*, pe H*. It follows that
Je(S) = AM(E)) .-
If we apply this equation to the constant function 1 (which is from H?), we
obtain:
X9 = 1, 1.e. AM(E)) @ o(S) = o(V).

Theorem 4.3. Let E, o E, o E, o ... be measurable subsets of the unit circle.
Let us suppose that at least E, is of the positive Lebesgue measure and1 £ n £ .

F$=@E)OH and V=& ME)®S,, then (VY = {o(V): pe H*}.
i=0 i=0
Proof. According to [1, Lemma 1.1]

vy {@mal o).

Applying the lemmas 2.1 and 4.1 we obtain that every Ae{}}" is of the form
A=MNHOMND...)® S,), feL”, pe H™.

Let us consider the following decomposition of H:
$=LE)OHOH @ & L(E).

Because A|IX(E,) ® H? = M(f) ® M(¢p) belongs to {M(E,) ® S} lemma 4.2
asserts that f{z) = ¢(z) for ze E, i.e. A = (V).

Theorem 4.4. Let V be an arbitrary isometry on a separable Hilbert space .
Then V has the property (L) if and only if either V is unitary or the absolutely
continuous unitary part of V is zero.

Proof. As mentioned at the beginning of this section we may assume that
the singular unitary part of V is zero. If V is unitary or if ¥ has no unitary part
(i.e. Vis the unilateral shift), then ¥ has the property (L). If V is as in Theorem
4.3 with at least E, of the positive Lebesgue measure, then {V}" = {@(}): pe

€ H*}. For each pe H*, ¢ 0 Kero(V) = (0) and Ran (V) = éoLz(Ej)@
i=

@ @,H?, where ¢, is the inner factor of @. (See the proof of Example 3.1). If
F, < E, is a meassurable subset of E, such that both F, and its complement in

E, have the positive Lebesgue measure, then the subspace x, (16_90 LZ(EJ')> @ (0)

is hyperinvariant for ¥V, but it is not contained in the smallest complete lattice
containing all Ker o(¥: and Ran ¢(V) for pe H*.
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PEIIETKA Tr'MITEPUHBAPUAHTHBIX MOAMPOCTPAHCTB U3OMETPUI
Michal Zajac

Pe3omMe

B craTthe M3y4aloTCs YCIOBHS, MPH KOTOPHIX H30MeTpHs V' B ruiab6epTOBOM NMpPOCTPaHCTBE
obanaeT creAyIOUIUM CBOHCTBOM: .

(L) PewieTxa noAnpocTpaHCTB, FTHIIEPHHBAPHAKTHBIX JUIS V NOPOXAEHA NMOANPOCTPAHCTBAMH,
SBJISIOUIMMHCS HYJIb-NIPOCTPAHCTBOM HJIH 3aMbIKaHHEM 06JIaCTH 3HaYeHHs onepaTopa A U3 BTOpO-
ro KOMMyTaHTa V.

Hoxka3wbiBaercs, uto V obnamaer csoiictBoM (L) Toraa u TOJBKO TOraa, koraa Jiu6o V —
YHUTapHbI onepartop, W60 ero abcoNMoOTHO HenpepbIBHAS YHHTapHas 4acTh HyJeBas.
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