ON MAULDIN'S CLASSIFICATION OF REAL FUNCTIONS

EWA STROŃSKA

(Communicated by Lubica Holá)

ABSTRACT. In this paper we investigate the Baire system generated by the family of all Darboux quasicontinuous, almost everywhere continuous functions, and prove that every function \(f \) of Mauldin's class \(\alpha > 1 \) is the limit of a sequence of Darboux functions \(f_n \) of Mauldin's class \(\alpha_n < \alpha, n = 1, 2, \ldots \).

Let us establish some terminology to be used later.

A function \(f: \mathbb{R} \to \mathbb{R} \) is said to be quasicontinuous at a point \(x \in \mathbb{R} \) if for all open neighbourhoods \(U \) of \(x \) and \(V \) of \(f(x) \) there exists a nonempty open set \(W \subset U \cap f^{-1}(V) \), ([5]).

Denote by \(Q \) the family of all quasicontinuous functions \(f: \mathbb{R} \to \mathbb{R} \), by \(A \) the family of all almost everywhere continuous functions \(f: \mathbb{R} \to \mathbb{R} \) (with respect to the Lebesgue measure) and by \(D \) the family of all Darboux functions \(f: \mathbb{R} \to \mathbb{R} \).

Given a fixed countable ordinal number \(\alpha > 0 \) and fixed family \(K \) of functions \(f: \mathbb{R} \to \mathbb{R} \) we put

\[
B_0(K) = K, \\
B_\alpha(K) = \left\{ f: \mathbb{R} \to \mathbb{R} : f \text{ is the limit of the sequence of functions } f_n \in \bigcup_{\beta < \alpha} B_\beta(K), \ n = 1, 2, \ldots \right\}.
\]

Let \(P \) denote the family of all functions \(f: \mathbb{R} \to \mathbb{R} \) such that the set \(C(f) \) of its continuity points is dense.

In [3] it is proved that

\[
B_1(D \cap Q) = P.
\]

Key words: continuity, quasicontinuity, Darboux function, Baire system, Mauldin's classification.
In [6] Mauldin proved that for every countable ordinal number $\alpha > 0$,

$$B_\alpha(A) = M_\alpha,$$

where $f \in M_\alpha$ if and only if there exists a function $g: \mathbb{R} \to \mathbb{R}$ of Baire class α and an F_σ set A of measure zero such that $\{x \in \mathbb{R}: f(x) \neq g(x)\} \subset A$.

In this paper I prove that $B_1(\mathcal{D} \cap \mathcal{Q} \cap A) = M_1 \cap \mathcal{P}$,

$$B_1(M_1 \cap \mathcal{P} \cap \mathcal{D}) = M_2 \quad \text{and} \quad B_1 \left(\mathcal{D} \cap \bigcup_{\beta < \alpha} M_\beta \right) = M_\alpha.$$

Theorem 1. The following equality is true:

$$B_1(\mathcal{D} \cap \mathcal{Q} \cap A) = M_1 \cap \mathcal{P}.$$

Proof. Since $B_1(\mathcal{D} \cap \mathcal{Q}) = \mathcal{P}$ and $B_1(A) = M_1$ we have $B_1(\mathcal{D} \cap \mathcal{Q} \cap A) \subset M_1 \cap \mathcal{P}$.

Let $f \in M_1 \cap \mathcal{P}$. There exist a function $g: \mathbb{R} \to \mathbb{R}$ of Baire class 1 and an F_σ set B of measure zero such that $\{x \in \mathbb{R}: h(x) \neq g(x)\} \subset B$.

Put $h = f - g$. Evidently $h \in M_1 \cap \mathcal{P}$ and

$$\{x \in \mathbb{R}: h(x) \neq 0\} \subset B.$$

Let

$$F_n = \{x \in \mathbb{R}: \text{osc} h(x) \geq 2^{-n}\}, \quad n = 1, 2, \ldots.$$ \hfill (1)

Since all sets $B \cap F_1$ and $B \cap (F_n \setminus F_{n-1})$, $n = 1, 2, \ldots$ are F_σ sets of measure zero, we can write

$$B \cap F_1 = \bigcup_{m} F_{1,m},$$

$$B \cap (F_n \setminus F_{n-1}) = \bigcup_{m} F_{n,m} \quad \text{for} \quad n = 2, 3, \ldots, \hfill (2)$$

where all sets $F_{n,m}$ are closed and pairwise disjoint, $n, m = 1, 2, \ldots$ ([8]).

For a fixed $k \geq 1$ there are pairwise disjoint closed intervals $I_{k,n,m,j} = [a_{k,n,m,j}, b_{k,n,m,j}]$ ($n + m \leq k + 1$, $F_{n,m} \neq \emptyset$ and $j = 1, 2, \ldots$), contained in $\mathbb{R} \setminus F_n \setminus \bigcup_{n+m \leq k+1} F_{n,m}$ such that:

1. if $x \in I_{k,n,m,j}$ there is a point $y \in F_{n,m}$ such that $|x - y| < 1/k$;
2. for each $x \in F_{n,m}$ and for each $r > 0$ there are indices j_1, j_2 such that $I_{k,n,m,j_1} \subset (x, x + r)$ and $I_{k,n,m,j_2} \subset (x - r, x)$;
3. if there is the limit $\lim_{i \to \infty} x_i = x$, where $x_i \in I_{k,n,m,j(i)}$ ($j(i_1) > j(i_2)$ for $i_1 > i_2$) then $x \in F_{n,m}$.
For each interval $I_{k,n,m,j}$ ($n + m \leq k + 1$, $j = 1,2,\ldots$) there is a function $h_{k,n,m,j}: I_{k,n,m,j} \to \mathbb{R}$ such that:

1. $h_{k,n,m,j}(a_{k,n,m,j}) = h_{k,n,m,j}(b_{k,n,m,j}) = 0$;
2. $h_{k,1,m,j}(I_{k,1,m,j}) = \mathbb{R}$;
3. $h_{k,n,m,j}(I_{k,n,m,j}) = [-2^{-n+2},2^{-n+2}]$ for $n > 1$;
4. $h_{k,1,m,j}$ is continuous on the interval $(a_{k,1,m,j},b_{k,1,m,j})$ and for $n > 1$ a function $h_{k,n,m,j}$ is continuous on the interval $[a_{k,n,m,j},b_{k,n,m,j}]$.

Let $h_k: \mathbb{R} \to \mathbb{R}$ be the function defined by

$$h_k(x) = \begin{cases} h_{k,n,m,j}(x) & \text{for } x \in I_{k,n,m,j}, \\ h(x) & \text{for } x \in F_{n,m}, \\ 0 & \text{otherwise} \end{cases}$$

if $n + m \leq k + 1$ and $j = 1,2,\ldots$.

From (9), (6) and (5) it follows that h_k is continuous at all points of the set $G = \left(\mathbb{R} \setminus \bigcup_{n+m \leq k+1} F_{n,m}\right) \setminus \bigcup_{m \leq k} \{a_{k,1,m,j}\}$.

Since $\mathbb{R} \setminus G$ is of measure zero, h_k is almost everywhere continuous.

By (1), (2), (4), (7), (8) and (9), h_k is quasicontinuous and has the Darboux property.

The function g is the limit of a sequence of continuous functions g_k, $k = 1,2,\ldots$. Let $f_k = g_k + h_k$ for $k = 1,2,\ldots$.

The function f_k is quasicontinuous as the sum of the quasicontinuous function h_k and the continuous function g_k ([4]). The same f_k is almost everywhere continuous and continuous at each point of the set G.

Now we shall prove that every f_k ($k = 1,2,\ldots$) has the Darboux property. Assume the contrary that f_k does not have the Darboux property. There are real numbers a, b, c such that $a < b$, $c \in \left(\min(f_k(a),f_k(b)), \max(f_k(a),f_k(b))\right)$ and $c \notin f_k((a,b))$.

For definiteness assume that $f_k(a) < f_k(b)$. Let

$$d = \inf\{x \in (a,b) : f_k(x) > c\}.$$

Since g_k is continuous and $f_k = g_k + h_k$ is not continuous at the point d, h_k is not continuous at d. Consequently, $d \in \mathbb{R} \setminus G$.

If $f_k(d) < c$ and there are indices n, m, j such that $m \leq k$ and $d = a_{k,1,m,j}$ then we may observe that the restricted function $h_k|_{I_{k,1,m,j}}$ has the Darboux property and it is of Baire class 1. Consequently, $f_k|_{I_{k,1,m,j}}$ has the Darboux property.
property as the sum of continuous function $g_k |_{I_{k,1,m,j}}$ and the Darboux function $h_k |_{I_{k,1,m,j}}$ which is of Baire class 1 ([1]). If $f_k(d) < c$ and $d = \inf \{ x \in (a, b] : f_k(x) > c \}$ then there is a point $z \in (a, b)$ such that $f_k(z) = c$. This contradicts the relation $c \not\in f_k((a, b))$.

If $f_k(d) < c$ and there is an index $m \leq k$ such that $d \in F_{1,m}$ then, by (4), there is an interval $I_{k,1,m,j} \subset (a, b)$. Since the restriction function $f_k |_{I_{k,1,m,j}}$ has the Darboux property, we have, by (7), $f_k((a, b)) = f_k(I_{k,1,m,j}) = \mathbb{R}$ and $c \in f_k((a, b))$. This contradicts the relation $c \not\in f_k((a, b))$.

If $f_k(d) < c$ and there are indices n, m such that $n > 1, n + m \leq k + 1$ and $d \in F_{n,m}$, then $|h_k(d)| < 2^{-n+1}$. Since $f_k(d) = h_k(d) + g_k(d) < c$, it follows from the continuity of g_k at the point d and from (5) that there is an interval $I = [d, e]$ with $e \in (a, b) \setminus \bigcup_j I_{k,1,m,j}$ such that:

\begin{align}
(10) & \quad |g_k(x) - g_k(d)| < 2^{-n+1}; \\
(11) & \quad h_k(d) + g_k(x) < c
\end{align}

for every $x \in (d, e)$.

From the definition of d there is a point $u \in (d, e)$ such that $f_k(u) > c$.

If there is an interval $I_{k,n,m,j}$ with $u \in I_{k,n,m,j}$ then from (8) and (11) there is a point $w \in I_{k,n,m,j}$ such that

$$f_k(w) = g_k(w) + h_k(w) < g_k(w) + h_k(d) < c.$$

Since $f_k |_{I_{k,n,m,j}}$ has the Darboux property,

$$c \in f_k(I_{k,n,m,j}) \subset f_k((a, b)),$$

which contradicts the relation $c \not\in f_k((a, b))$.

If $u \not\in \bigcup_j I_{k,n,m,j}$ then $h_k(u) = 0$ or $u \in F_{n,m}$. Let $I_{k,n,m,j} \subset I$. Since $|h_k(u)| < 2^{-n+1}$, it follows from (8) and (10) that there is a point $v \in I_{k,n,m,j}$ such that:

$$f_k(v) = h_k(v) + g_k(v) = 2^{-n+2} + g_k(v) > 2^{-n+2} + g_k(u) - 2^{-n+1} = 2^{-n+1} + g_k(u) > h_k(u) + g_k(u) > c.$$

As above, it follows from (11) that there is a point $w \in I_{k,n,m,j}$ such that $f_k(w) < c$ and $c \in f_k((a, b))$, which contradicts the relation $c \not\in f_k((a, b))$.

Similarly, we may consider the case, where $f_k(d) > c$.

So every function $f_k (k = 1, 2, \ldots)$ has the Darboux property.
ON MAULDIN'S CLASSIFICATION OF REAL FUNCTIONS

Since \(f_k = g_k + h_k \), \(f = g + h \) and \(g = \lim_{k \to \infty} g_k \), it is sufficient for the proof of the equality \(f = \lim_{k \to \infty} f_k \) to prove that \(h = \lim_{k \to \infty} h_k \).

If \(x \in F_{n,m} \) then \(h_k(x) = h(x) \) for \(k > n + m \) and \(h(x) = \lim_{k \to \infty} h_k(x) \).

Suppose that \(h \) is continuous at \(x \). For fixed \(\varepsilon > 0 \) there is an index \(k_0 > 1 \) such that \(2^{-k_0 + 2} < \varepsilon \). Since \(x \notin F_{k_0} \), there is a positive number \(r \) such that

\[
(x - r, x + r) \cap F_{k_0} = \emptyset.
\]

Let \(k_2 > k_0 \) be an index such that \(1/k_2 < r \). From (3), (8) and from the definition of \(h_k \) it follows, that for \(k > k_2 \), \(|h_k(x)| \leq 2^{-k_0 + 2} < \varepsilon \). So \(\lim_{k \to \infty} h_k(x) = 0 = h(x) \).

Now, let \(x \in F_n \setminus B \), for some index \(n \). Since \(F_n \subset F_k \) and every \(I_{k,n,m,j} \subset \mathbb{R} \setminus F_k \subset \mathbb{R} \setminus F_n \) for \(k > n \), it follows from (2) and from the definition of \(h_k \) that \(h_k(x) = 0 = h(x) \) for \(k > n \). So \(\lim_{k \to \infty} h_k(x) = h(x) \). This completes the proof.

\[\Box \]

Theorem 2. The following equality is true:

\[
\mathcal{M}_2 = B_1(\mathcal{M}_1 \cap \mathcal{P} \cap \mathcal{D}).
\]

Proof. Since \(\mathcal{M}_2 = B_1(\mathcal{M}_1) \), \(\mathcal{M}_2 \supset B_1(\mathcal{M}_1 \cap \mathcal{P} \cap \mathcal{D}) \).

Now, let \(f \in \mathcal{M}_2 \). There exist a function \(g \) of Baire class 2 and an \(F_\sigma \) set \(B \) of measure zero such that:

\[
\{x \in \mathbb{R} : f(x) \neq g(x) \} \subset B.
\]

We can write \(B = \bigcup_{n=1}^{\infty} B_n \), where all the sets \(B_n \) are closed and \(B_n \subset B_{n+1} \) for \(n = 1, 2, \ldots \).

The function \(g \) is the limit of a sequence of functions \(g_n \) of Baire class 1. For \(k = 1, 2, \ldots \) let

\[
h_k(x) = \begin{cases} g_k(x) & \text{for } x \in \mathbb{R} \setminus B, \\
 f(x) & \text{for } x \in B_k.
\end{cases}
\]

Evidently, every function \(h_k \) \((k = 1, 2, \ldots)\) is pointwise discontinuous. For \(k = 1, 2, \ldots \) there is ([2]) an almost everywhere continuous function \(t_k : \mathbb{R} \to \mathbb{R} \) of Baire class 1 such that:

- \(\{x \in \mathbb{R} : t_k(x) \neq 0 \} \) is \(F_\sigma \) set of measure zero;
- \(\{x \in \mathbb{R} : t_k(x) \neq 0 \} \cap B = \emptyset; \)
- \(\{x \in \mathbb{R} : t_{k_1}(x) \neq 0 \} \cap \{x \in \mathbb{R} : t_{k_2}(x) \neq 0 \} = \emptyset \) if \(k_1 \neq k_2 \) \((k_1, k_2 = 1, 2, \ldots);\)
- \(h_k + t_k \in \mathcal{P} \cap \mathcal{D}. \)
Let $f_k = h_k + t_k$, $k = 1, 2, \ldots$. Since
\[\{x \in \mathbb{R} : f_k(x) \neq g_k(x)\} \subset \{x \in \mathbb{R} : t_k(x) \neq 0\} \cup B_k, \]
we have $f_k \in \mathcal{M}_1$. So $f_k \in \mathcal{M}_1 \cap \mathcal{D} \cap \mathcal{P}$ for $k = 1, 2, \ldots$.

If $x \in B$ then there is an index n such that $x \in B_k$ for $k \geq n$ and consequently, $f_k(x) = f(x)$ for $k > n$. So $\lim_{k \to \infty} f_k(x) = f(x)$.

If $x \notin B$ then $h_k(x) = g_k(x)$ for $k = 1, 2, \ldots$. Since $\lim_{k \to \infty} g_k(x) = g(x)$ and $\lim_{k \to \infty} t_k(x) = 0$, we have

\[\lim_{k \to \infty} f_k(x) = \lim_{k \to \infty} g_k(x) = g(x) = f(x). \]

This completes the proof. \qed

From Theorems 1 and 2 there follows:

Corollary 1. For denumerable ordinal numbers $\alpha > 1$ the following equality is true:

\[B_\alpha(A) = B_\alpha(A \cap Q \cap D). \]

Theorem 3. For every denumerable ordinal number $\alpha > 0$ the following equality is true:

\[B_1(D \cap \bigcup_{\beta < \alpha} \mathcal{M}_\beta) = \mathcal{M}_\alpha. \]

Proof. For $\alpha = 2$ this theorem follows from Theorem 2. For $\alpha = 1$ the proof is the same as the proof of Theorem 2, where the g_k are continuous and consequently $h_k \in \mathcal{A}$. (Instead of [2] we need [7].)

Assume that $\alpha > 2$. The inclusion

\[B_1(D \cap \bigcup_{\beta < \alpha} \mathcal{M}_\beta) \subset \mathcal{M}_\alpha \]

is obvious. If $f \in \mathcal{M}_\alpha$ then there exist a function g of Baire class α and an F_σ set B of measure zero such that

\[\{x \in \mathbb{R} : f(x) \neq g(x)\} \subset B. \]

The function g is the limit of the sequence of functions g_n of Baire class β_n, where $\beta_n < \alpha$ ($n = 1, 2, \ldots$) and $B = \bigcup_{n=1}^{\infty} B_n$ where $B_n \subset B_{n+1}$ and all the sets B_n are closed ($n = 1, 2, \ldots$).

Let $C_{n,m} \subset \mathbb{R} \setminus B$ $(n, m = 1, 2, \ldots)$ be a family of pairwise disjoint perfect sets of measure zero such that for every open interval I and for every $n = 1, 2, \ldots$ there is m such that $C_{n,m} \subset I$. For all $n, m = 1, 2, \ldots$ let $h_{n,m} : C_{n,m} \to [-m, m]$ be a continuous function.
ON MAULDIN'S CLASSIFICATION OF REAL FUNCTIONS

For \(k = 1,2,\ldots \) let us put

\[
f_k(x) = \begin{cases}
h_{k,m}(x) & \text{if } x \in C_{k,m}, \quad m = 1,2,\ldots, \\ f(x) & \text{if } x \in B_k, \\ g_k(x) & \text{otherwise.} \\
\end{cases}
\]

Obviously, \(f_k \) has the Darboux property. Since

\[
\{ x \in \mathbb{R} : f_k(x) \neq g_k(x) \} \subset B_k \cup \bigcup_m C_{k,m}
\]

and the set \(B_k \cup \bigcup_m C_{k,m} \) is an \(F_\sigma \) set of measure zero, the function \(f_k \in \mathcal{M}_{\beta_k} \), where \(\beta_k < \alpha \).

The equality \(f(x) = \lim_{k \to \infty} f_k(x) \) for every \(x \in \mathbb{R} \), is obvious. \(\square \)

PROBLEM 1. Is it true the following equality

\[
\mathcal{M}_{\alpha} \cap \mathcal{P} = B_1 \left(\bigcup_{\beta < \alpha} \mathcal{M}_{\beta} \cap Q \right)
\]

for \(\alpha > 1 \)?

REFERENCES

Received May 24, 1995
Revised September 10, 1997