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Math. Slovaca 41; 1991. No. 4, 359—378 

ON THE IDENTITY OF MINIMAL AND MAXIMAL 
REALIZATIONS RELATED 

TO FOURIER SERIES OPERATORS 
JOUKO TERVO 

ABSTRACT. The identity of the maximal and minimal realizations of the linear 
Fourier series operators 

(L(z,D)v>)(*) : = ( 2 x ) - » ^ M*,0Y>/e i ( ' ' x ) 

iezn 

in the appropriate subspaces of periodic distributions are studied. Specifically, 
criteria for the equality of the realizations from BT

 k into B* k are established. 
Here B* k is the subspace of D'T for whose elements u one has (u/k( l)) /€Zn € lP 

( D'w denotes the space of all periodic distributions). In the case when p = 2 and 
k = 1 , one observes that Br

 fc is the space of all periodic L^{W) -functions 
(where W := {x G R n | XJ G ]—TT,^"[})- The equality of the realizations from 
B* k into Lpi(W) n D'T is also examined, where p G ]1,2] and p ' 6 R so that 
\jp + 1/p' = 1 . 

1. I n t r o d u c t i o n 

Denote by L(x,D) the linear Fourier series operator defined in the space 
C£° of all smooth periodic functions <p: R n —» C by the requirement 

(L(x, D)y>)(x) = (27T)"n £ L{x, l)<pE e>^ . (1.1) 
iezn 

Here <pi is the Fourier coefficient of <p. L(*,*) is a mapping R n x Z n —• C so 
that L(-,/) G C£° for any / G Z n and that with the constants Ca > 0 and 
/*a G R the estimate 

sup I (D» £ ) ( * , . ) | < Cafc„a(l) := C„( l + |f|2 )"«/2 (1.2) 
iGW 
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holds (in (1.2) W denotes the cube {x G R n | Xj G ]-7r,7r[}). 

This contr ibut ion deals with the equality of the minimal and maximal real-

izations, say L~ k h and Lpk h , from Bpk into Bph . T h e spaces Bpk (where 

p G [1, oo[ and k lies in the class K'n of certain weight functions) are appropr ia te 

scales of the space D'n of all periodic distributions. T h e equality of the realiza-

tions L~tp.tk and L'#p,k from B;k into Lp.(W)f)D'n (p' G R ; 1 / p + l / p ' = 1) 

are also s tudied, when p G ]1, 2] and k G K'n . 

T h e best known example of the opera tors , which can be defined by (1.1), 

are linear par t ia l differential operators with C£° -coefficients (cf. [4], [3], [1], [6] 

and [7]). It follows from the well-known regularity results of solutions (cf. [4], 

pp . 90-119) t ha t smooth periodic elliptic operators are essentially maximal in 

Hk := B%k , s G R , tha t is the equality Ljk k = L'jfk k holds. Some 

criteria for the essential maximali ty in Hk := L2(W)f]D'n can also be found 

in [8], p p . 28-38. 

Suppose tha t in (+2 ) for any a G N n , p,a = fi + 6\a\ with / i G R and 8 < 1 
and tha t for any | a | < [Nh + n + e] + n + 3 one has 

sup\(Da
xL)(x,l)\<Cak(l)/h(l). (V3) 

xew 

Here Nh is a constant depending only on h G K'n . We show tha t these as-

sumptions are sufficient to guarantee the equality L~kk_^h = L'pkk_ih (cf. 

Theorem 3.5). Specially, this equality implies tha t for any smooth periodic 

par t ia l differential operator L(x,D) =- \_] aa(x)Da, m G N the equality 

\a\<m 

L~kkrn_uk = Lpkkrn_i k holds. Hence any first order par t ia l differential opera

tor with Cn-coefficients is essentially maximal in L2(W)f\D'n (cf. Corollaries 

3.6-3.8). In the case when /ia = \i + 8\a\\ fi G R , 8 < 1, the es t imate 

supftDZLXx^^CokWhil) (I A) 
xew 

holds for \a\ < [n -f e] + n + 3 and when p G ]1, 2] , we establish the identi ty 
LP,v>,k = L't,P',k ( ^ Theorem 4.2). 

2. N o t a t i o n s and def in i t ions o f r ea l i za t ions 

2 . 1 . Denote by W the open cube {x G R n | - n < Xj < n for j = V 
. . . ,n) . tfy (joo We denofe uie space of all smooth (with respect to W) periodic 
functions <p: J^n _^ Q 
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In C£° we set a standard Frechet space topology defined by the semi-norms 
q„(<p) := sup |(Dtrv?)(.2:)|, a G N n . The dual of C£° is denoted by D'n and 

its elements are periodic distributions. In D'n one uses the weak dual topology. 

For u e D'n and / G Z n we define u, G C by 

Ul = u ( e " i ( / ' ) ) . (2.1) 

Then one has for u G D'n and (̂  G C£° 

u(<p) = (2ir)-nJ2uW-i' (2-2) 

where 

V?, := <p(e- i('->) := í V(x) e~ i('-æ) dx. (2-3) 

For <p and ^ G C J ° we denote 

<p(V>) := / V?(x)i/>(.r)dx, 

w 

and so specifically one gets <p(ip) = (27r)~"n V^ <piip-i • 
/ 

Denote by Kn the totality of all positive functions k: Z n —> R 5^cA that /or 
any k G JÎ TT t/iere exist constants 
c > 0, C > 0, m , M G N such that 

ck-m(l) < k(l)< CkM(l) for all I G Z n , 

where ks(l) := (1 + | / | 2 )* / 2 , s G R . Choose Pe[l,oo[. A subspace B^k of D'n 

is defined as follows: 

A distribution u G D'n belongs to B* k if and only if 

\\u\\Ptk := ( (27T)"n J2 l« i*(0r) < oo. (2.4) 

One sees that the mapping u —* | |u| |p i t is a norm in B*k . The linear space 
Bpk equipped with the || • ||p.fc-norm is a Banach space. 

Define SK := I <p G C ~ | <p(x) = (2;r)-n ^ v ? , e i ( , ' x ) with some n^ G N I , 
l \l\<nr J 

that is, Sn is the space of all trigonometric polynomials. One sees that Sn is 
a dense subspace of B^ k and so B* k is (essentially) a completion of 5-- with 

resp^ t to the norm \\<p\\Ptk '= ( (2TT)~U ^ \<pik(l)\p j 
V /ez» / 
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2 . 2 . Let L be a linear operator Sn —» C£° such that the formal transpose 

V: Sn —> C£° exists, in other words, there exists a linear operator V: Sn —> C£° 
so that 

(£v>)M = v(£V) /<"•«" ^ e s w . (2.5) 
г / # Define linear dense operators LPjk,h and V k h ; p G [ l , o o [ , k, b G A ^ by the 

reauz're7nent3 

D(I^p,fc,/i) = SK 1 

Lp,k,h¥ = ^ / o r <P € Sn J 
(2.6) 

D (^ ' f ,*dO = { w G #£,* I ^ e r e ex»5t5 / G Bph such that 

u(L'ip) = f(ip) for all (p G Sn } 

L' ,н" = /• 
(2 7) 

Let p ' G ] l ,oo] so t h a t l/p+ 1/p' = 1 and let kv G Kn so t h a t kv(/) =-
k( — / ) . Since t h e inequality 

IvWI < HvIUWp-.i/tv ^г 9 i e c = (2.8) 

holds, one gets by (2.5) t h a t LPik,h is a closable operator H*" k —> H*" ^ , L ' ^ ft 

is a closed operator B^k —> J5^ ^ and t h a t LPjjb./i C L'^ k h . Let L"^ be the 

smallest closed extension of Lp^,h • T h e n one has L~k h C L'? ^ h . T h e o p e r a t o r 

L~k h is called t h e minimal realizatiov and the opera tor L^k h is called the 

maximal realization of L fiom B* k to B*h. 

Similarly, we are able to define minimal and maximal realizations, say L~ k 

a n d L'*q%k from B^k to Lq(W)f]D'n, where p G [ l , o o [ , O G [l,oo[ and 

k G A V ' 

2 . 3 . Let L(-,-) be a function from R n x Z n to C such t h a t L(-,/) G C ^ 
for any / G Z n and t h a t with some constants Ca > 0 and fia G R one h i s 

sup \(D%L)(x,l)\ < Cak^a(l) for all / G Z n . (2.9) 
x£W 

Then the Fourier series operator L(x,D) defined by 

{L{x,T>)*)(x) = (2«)-nYlH*,l)<PiJ('''\ V^C? (2-10) 

maps C£° continuously into C£° (cf. [9]). Hence, specifically, the inclusion 

C ~ C D ( £ ; i f c i f c ) f | D ( £ ~ , , f c ) 
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holds. In the case when fia = fi + 6\a\ wi th some / i E R and 8 < 1 we know 
tha t the continuous formal t ranspose Z / ( x , D ) : C£° —• C£° of Z ( x , D ) exists 
(cf. [9]). W h e n L'(x,D): C£° —• C£° exists, then Z ' ( x , D ) is always cont inuous . 
This follows from the Closed G r a p h Theorem. 

Suppose tha t Z ' ( x , D ) : C£° —• C£° exists. T h e n we are able to define the 
continuous extension L: D'n —• D^ of Z ( x , D ) by 

(Lu)(cp) = u(L'(x,D)<p) for <p£C™. (2.11) 

Denote by An the space of mappings Z ( - , - ) : R n x Z n —* C such tha t Z(- , / ) G 
C£° for any / G Z n and tha t for each Z(-, •) G A*, there exists /i G R and <5 < 1 
such t ha t 

sup \(Da
x L)(x, / ) | < CQk^6\a\(l) for / G Z n . (2.12) 

T h e space of operators { L ( x , D ) | L(x,D) is defined by (2.10), where L(*,-) G 
A,-} is denoted by An . Then for any Z ( x , D ) G -4-r the formal t ranspose 
Z ' ( x , D ) : C™ -+C™ exists . 

We denote by K'n the subset of Kn such tha t for any k G Kf
n there exist 

con t an t s Ck > 0 and Nk > 0 with which 

*(/ + *) <CkkNk(l)k(z) for ! , z G Z n . (2.13) 

T h e smallest integer, which is greater or equal to a G R is denoted by [a]. 

Choose h from K'n. We denote CUi£ih := C/* . 7~* ^ N . ^ - ( n + c ) ( 0 > where 

7n,£,/i G R so tha t 

£ / 2 a >7LA+n+, ] (0 ^ /GZ". 
| a |<[N h + n+£] 

T h e o r e m 2 . 1 . Suppose that k,b G IvJ- anrf 2tW 7£ is a subset of An such 
that 

sup |(D£ JJ)(x, / ) | < Cak(l)/h(l) for all 
xew 

M < [-V/* + n + e] and It(-, •) G 7£. (2.14) 

Then one has 

\ R(x,-D)<p\\p,h < Cn,t,h[ Y, Cl]1/2Mp,k for all 
\a\<[Nh + n+e] 

V € C R(-,-)eK and p G [ l , o o [ (2.15) 
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P r o o f . A. We shall show tha t 

,11/2 , 
£|(Д(.,-.)),_И(1/*V(.)) < (2x)"ťЛ,г,h[ £ CЦ (l/hv(z)) 

\a\<[Nlt+n+e) (2-16) /ez" 

a n d t h a t 

11/2 
] T |(-R(., -/))/_,|bV(^) < (27T)»Cnfeffc [ X ) C ' j ^ ^ (2'1 7) 

Z-Z" N<[_V fc + n+e_ 

T h e n the T h e o r e m 4.4 in [9] (cf. also the relation (4.17) in [9]) implies t h a t 
(choose k <-> l / k v and k~ +-> ( k / b ) v ) 

||jг'(.r,D)v.||_,,1/Jfev 

< (c-.«,J £ c« ) V^I/P+1/P' 
m\p'A/h* 

N<[N л +n+e] (2 .1 , 

— Cn,_,/t ^ Ca 

N<[_/ л + n+_] 

1/2 _ 

MlpM/fc v 

for any __>' £ ] 1, oo [. 

From (2.18) one gets tha t for any p £ ] l ,oo[ (cf. [9], Lemma 4.3) 

\\R(x,D)>p\\,s<Cneh[ J2 cZ]1,2W<P\\p*-
| a | < [ N h + n + £] 

Since for any tp £ C£° one has 

IMIPM -* IMk* w i t n p-+ i> 

we see tha t the inequality (2.15) holds also in the case when p = 1 . 

B. We show the est imates (2.16)-(2.17). In vir tue of (2.13) one gets 

(2.19) 

hv(z)<ChkNh(z-l)hv(l) 

and 

(2.20) 

(2.21) l/hv(l)<ChkNh(z-l)(\/hv(z)). 

For any | a | < [Nh + n -f _] and i?(-, •) € 72. we obtain 

|(7 - _)Q(R(; - 0 ) i - « l = I ( ( D : iJ) (•, - 0 ) , - - 1 <: (2^)nCa(k
v(l)/hv(l)) (2.22) 
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and so 

. 1 - / - . 7n,.,n|(I?(-,-l))/-z| < (2n)n[ £ Cl] (kV(l)/hV(l))k_[Nh+n+€](z-l). 
\a\<[Nk + n+c] 

(2.23) 
Here we used the inequality 

£ l2" > 72,.>„^/,+n+£](l), 
|a|<[IVfc + n+e] 

which implies by (2.22) that 

7 2 , г ,„fc 2 N f c +n+£](2-0l(Д(-,-0).-z | 2 

< £ |(l-гГ(iг(-,-0)/-г|
2 

|a |<[ЛГ л +n+£] 

< (ï*fn £ 
|a|<[N» + n+г] 

(ť(l)/h\l)) 

and so we get (2.23). 
In virtue of (2.20), (2.21) and (2.23) we obtain that 

£|(Җ-,-/)).-,|(-/*v(0) 
/ 

^ 7ñ,Ц(-т)n [ £ cl]Чi £(i/лv(l))fc_[NA+n+£](г - \) 
| l / 2 . 

/ 

| 1 / 2 , 

|a|<[/Vfc + n+e] 

< iZ^TCH [ £ Cl] lf\Y k-(n+e)V)) (1AV W) 
|a|<[IV,.+n+_] / 

(2.24) 
and then (2.16) holds. 

Similarly, we get 

£l(_г(.,-/))._,|лv(-) 
z 

-- <,_(-*)" [ £ c<2 

| a | < [ N л + n + í ] 

11/2 „-- (2-25) 

oft£fcv(/)fc_(n+£)(z-/), 

which implies (2.17). This completes the proof. 
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2.4. Let 0 be in C§°(B(0,1)) so that f6(x)dx = l. 
w 

Define 0 m G C0°° := C0°°(Rn) by 

Qm(x) = mnQ(mx), m G N. 

Furthermore, define 0 m G S (here S denotes the Schwartz class) by 

0 m = (27r)"F-1(0; ; ) ) 

where F: S —> 5 is the Fourier transform. Define a Fourier series op rator 
Om(D) by 

(Om(D)^)(z) = (2ir)-n Y, ©m(/V/e i ( / 'x ) . (2.26) 
iezn 

Let O m : Df
n —• D'n be the continuous extension of Om(D) (cf. (2.11); note that 

0 m ( D ) exists). Then one sees that for any u G D'K one has 

(0 r o t i ) /= ( 0 m u ) ( e - i ( / ' ) ) = t i ( 0 ,
m ( D ) ( e - i ^ > ) ) = Li(0m(/)e"i(/') ) = 0m ( / )u/ . 

(2.27) 
Thus we obtain for p < oo 

Lemma 2.2. Let u be in BZ h . Then one has 

0mu G Cn and | |0mw - ix||j,,* —• 0 tvzr-ti m —> oo. (2.28) 

P r o o f . One has (recall that F"1 <f> = (2i:)~nF(j)s/) 

0 m ( / ) = (FOm)(l) = J mn6(my)e-1^ dy = (FO) (l/m). 

R 

Furthermore, we obtain for any ip G C£° (cf. (2.2) and (2.27)) 

(9mtl)(<p) ~ (2K)-n ] T em(l)unp^ = [(27T)-n Y Qrn(l)ut e ^ ] (<p). 
I I 

Thus Omi/ - (27r)~n ^ ( F 0 ) ( / / m ) i t / e i ( / ' ] e C™ . In addition, one gets 
/ 

|(Omti)/|fc(/) = |(F6)(//m)ii,fc(/)| < | 0 | L l ( W ) M ( / ) | 

and 

(Omti)/fc(/) -> (.FO)(0)ii/fc(/) ( / © x)dx Ju/fc(/) u/k(/). 

VV 

Thus 

H O m t i - t i l ^ ( 2 7 r ) - n ^ | ( ( O m i / ) / - t / / ) f c ( / ) | - * 0 with m - + o o , 
/ 

which finishes the proof. 

366 



3. On the equality L~kfh = L'*kjh 

3.1. For the first instance we shall deal with the composition 
( 0 m o L)(x,D) := 0 m ( D ) o L(x,D). 

Lemma 3 .1 . Let £(-,•) be a mapping R n x Z n —> C so that -_-(-,/) G C£° 
/or any / G Z n and that (with Ca > 0 and fia G E j ihe estimate 

sup\(DaL)(x,l)\<Cak,a(l) for leZn (3.1) 

holds. Then one has 

6 m ( D ) o __(x,D) = L(x,D) o 6 m ( D ) + Rm(x,D), (3.2) 

гvhc 

Rm(x, J) = £ / E (5 7 0-)( / + *~0((->Z L)(-- 0), e**^ dt (3.3) 
M=io ^z" 

P r o o f . For any ip G C£° we obtain 

[ (0 m oL)(x,D) V ] ( i ) = (27r)-n £ 6m(2)(L(x,D)V))ze i< r '* ) 

z€Z" 

= (2„)~» ^ em(_)[(2„)-» £(_.(•,.))_-.*>.] e'**̂  (3.4) 

-ЄZn /єzn 

= (27г)-» X _ ( 2 т ) _ n £ m ( . ) ( Д - , 0 ) г - / e i ( г - ' - l ) < ŕ / Є

i < ' ' 
/ЄZn гЄZ 

x) 

where the order of summation is legitimate to change, since 0 m £ S. In the 
third step we used the relation 

( £ ( _ , D V ) . = ( 2 T T ) - " / ] T L(i,/)9,e i<'-*'x)c_c 

=(27r)"nE IL(x,l)VlS
1-^ Ax, 

'Gz"vv 

which is valid, since the sum VJ L(_:, Z)y>. e'< , x ) is by (3.1) uniformly con-
f_Z" 

vergent in ft" . 

367 



From (3.4) we see that 

( O m o L ) ( x , 0 = (27r)-» Yl Qm(l + z)(L(.,l))ze^ 
zezn 

(note that (OmoL)( . , - ) is a function R n x Z n -» C so that (OmoL)(- , / ) G C£° 
for any / G-Zn and that | D " ( 0 m o L)(x,/)| < Cak^a(l)). Due to the Taylor 
formula we obtain 

(emoL)(x,o = (27r)-» £ om(0(-:(-,0)*ei(,'l) 

zezn 

1 

+ (2TT)-" Y [ E /(37em)(; + ^)]^(i(-,0),ei(2,l)dt 
2ez" | 7 | = i ^ 

1 

= L(x,/)Om(/) + (27r)-n £ / ^ ( ^ O m ) ( / + r . ) ( (D^L ) ( . , / ) ) , e i ( ^ ) d^ 

| 7 | = l o z^Zn 

= ( L o O m ) ( x , / ) + Itm(x,/), 

as required. 

From (3.3) one sees easily that 1rm(-,-) is a function R n x Z n —-> C , 
Rm(',l) G C£° for any / G Zn and that 

s u p | ( D « I t m ) ( x , / ) | < C ; / k V , ( 0 -
xew 

A more careful study of the rest operator Iim(x,D) yields 

L e m m a 3.2. Suppose that for any a G N n there exists a function ka G Kn 

so that 

s u p | ( D £ L ) ( x , / ) | < C a M O / ° r ' € Z n ( 3 5 ) 
xevy 

and that Itm(-,-) is defined by (3.3). Then one has 

s u p | ( D ^ m ) ( x , / ) | < C ; ( k a k _ 1 ) ( / ) for / G Z n , (3.6) 

where 
ka := max {ka+/?+7} (3.7) 

|/?|<n+2 
|7| = 1 
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