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ON THE IDENTITY OF MINIMAL AND MAXIMAL
REALIZATIONS RELATED
TO FOURIER SERIES OPERATORS

JOUKO TERVO

ABSTRACT. The identity of the maximal and minimal realizations of the linear
Fourier series operators

(L(z,D)¢)(2) = (2m) ™" Y L(z, s 0D

lezn

in the appropriate subspaces of periodic distributions are studied. Specifically,
criteria for the equality of the realizations from B, into BJ , are established.

Here B; ¢ is the subspace of D} for whose elements u one has (ujk(l))iczn € I,
( D, denotes the space of all periodic distributions). In the case when p = 2 and
k = 1, one observes that B;k is the space of all periodic Ly(W)-functions

(where W := {z € R" | z; € ]—=,7[}). The equality of the realizations from
B7, into L, (W) N D} is also examined, where p € ]1,2] and p’ € R so that
1/p+1/p' =1.

1. Introduction

Denote by L(z,D) the linear Fourier series operator defined in the space
C of all smooth periodic functions @: R™ — C by the requirement

(L(z, D)p)(z) = (1) 3 Lz, l)pr . (1.1)

lezn
Here ¢; is the Fourier coefficient of ¢ . L(-,-) is a mapping R™ x Z™ — C so

that L(-,1) € C for any | € Z™ and that with the constants C, > 0 and
Lo € R the estimate

sup | (Dg L) (2, 1)] < Caky, (1) := Ca(l + 1)/ (1.2)
zeW
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holds (in (1.2) W denotes the cube {z € R" | x, € |—m,7[}).
This contribution deals with the equality of the minimal and mazimal real-
izations, say L7, , and L'ff,k’h, from By« into B;,”h . The spaces B;,k (where

p.k ,
p € [1,00[ and k liesin the class K of certain weight functions) are appropriate

scales of the space D! of all periodic distributions. The equality of the realiza-
tions Ly, , and L'f’p,,k from BJ into Ly(W)( D5 (p' € R; 1/p+1/p' =1)
are also studied, when p € ]1,2] and k € K..

The best known example of the operators, which can be defined by (1.1),
are linear partial differential operators with C2° -coefficients (cf. [4], [3], [1], [6]
and [7]). It follows from the well-known regularity results of solutions (cf. [4],
pp. 90-119) that smooth periodic elliptic operators are essentially maximal in
Hf = Bj, , s € R, that is the equality Ly, v, = L',ﬁk“k, holds. Some
criteria for the essential maximality in HY := Ly(W)[) D} can also be found
in [8], pp. 28-38.

Suppose that in (1.2) for any a € Nf, po = p+06|la| with p € R and § <1
and that for any |a| < [Ny +n+ €]+ n+ 3 one has

sup |(Dy L)(z,1)] < Cok(1)/h(1). (1.3)
zeW

Here N, is a constant depending only on h € K. We show that these as-
sumptions are sufficient to guarantee the equality L7y |, = L'ﬁkk_hh (cf.
Theorem 3.5). Specially, this equality implies that for any smooth periodic

partial differential operator L(z,D) = Z as(z)D?, m € N the equality
lo|<m

Ly k1 k= L’f,kk,,._,,k holds. Hence any first order partial differential opera-

tor with Cj -coefficients is essentially maximal in Lo (W) [ D’ (cf. Corollaries

3.6-3.8). In the case when po = p+élal; p € R, § <1, the estimate

sup (D7 L)(z,1)] < Cak()k1(1) (1.4)
zeW

holds for |a| < [n 4 €] + n+ 3 and when p € |1,2], we establish the identity
Lk = L'f,p,,k (cf. Theorem 4.2).

2. Notations and definitions of realizations

2.1. Denote by W the open cube {z € R™ | —m<z,<7m for j=1
,n} - By C> we denote the space of all smooth (with respect to W) periodic
functions »: R _, C.
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In C2° we set a standard Frechet space topology defined by the semi-norms
4o(p) := sup |(D? ¢)(z)|, o € Ng. The dual of C is denoted by D’ and
z€EW

its elements are periodic distributions. In D!, one uses the weak dual topology.
For u € D! and ! € Z™ we define u; € C by
up = u(e™ 1)), (2.1)
Then one has for u € D}, and ¢ € C

u(p) = (27)~" Z up—1, (2.2)
1

where

o1:= (e )y = /(p(x) e” D) gz, (2.3)
w
For ¢ and ¢ € C° we denote

o(h) = / o(@)(z)dz,

w
and so specifically one gets ¢(¢) = (27)™" Zgou,b_z.
1

Denote by K, the totality of all positive functions k: Z"™ — R such that for
any k € K, there exist constants
c>0, C>0, m,M €N such that

ck_m(l) < k(1).< Ckpm(1) for all 1€ 2",

where ky(1) := (14]1|?)*/2, s € R. Choose p € [1,00[. A subspace By of Dy
18 defined as follows:

A distribution u € D}, belongs to BT, if and only if

1/p
lullp i = ((mr)—" > |u1k(t)|") < co. (2.4)

lezn

One sees that the mapping u — [|u||, & is a norm in By ;. The linear space

B}, equipped with the || - ||,k -norm is a Banach space.
Define S, := { p € C | p(z) = (27)™" Z <p,ei("’) with some n, € N »,
{<n,

that is, S, is the space of all trigonometric polynomials. One sees that S, is
a dense subspace of By and so By, is (essentially) a completion of Sy with

1/p
resp~~t to the norm |||y % := ((ZW)_" Z |991k(1)|”> )

lezn
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2.2. Let L be a linear operator S, — C° such that the formal transpose
L': Sy — C exists, in other words, there ezists a linear operator L': S, — C°
so that

(Le)(@) = p(L'yp)  for all ¢,¢ € Sn. (2.5)

Define linear dense operators L,k and L'f’k,h ; pE[l,00[, k,h € K, by the
requirements

D(L =S,
(Zp.k.n) } (2.6)
Lp ke = Lo for o € Sz
and
D(L,ﬁk,h) ={ue B:‘k | there exists f € B:‘h such that
u(L'p) = f(p) for all p € Sz } (27)

L= f.

Let p' € ]1,00] so that 1/p+1/p' =1 and let kY € K, so that kV(l) =
k(=1). Since the inequality

|‘P(¢‘)l < ”‘P“p,knlr/’”p’,l/k" for @,peCl (2.8)

holds, one gets by (2.5) that L,z is a closable operator Bl — By, L'ﬁk h

is a closed operator B;’yk — B;;,h and that L, s C L’f’k’h. Let L;’k‘h be the
smallest closed extension of L, k,n . Then one has L;‘kah C L'ﬁk,h . The operator

L7 n 1s called the minimal realizatior and the operator L’fk n 1s called the
mazimal realization of L from B, to BJ,.

~

P,q
and L’f,q,k from B, to Ly(W) D5, where p € [1,00[, ¢ € [1,00[ and
ke Ky.

2.3. Let L(-,-) be a function from R"™ x Z™ to C such that L(-,!) € CX
for any ! € Z™ and that with some constants Cy > 0 and p, € R one has

Similarly, we are able to define minimal and maximal realizations, say L

sup |[(Dy L)(z,1)| < Cukp (1) for all le Z™. (2.9)
€W

Then the Fourier series operator L(z,D) defined by

(L(z,D)p)(x) = (2m) ™" Y L(z, i d™?),  peCy (2.10)
l

maps Cg° continuously into C3° (cf. [9]). Hence, specifically, the inclusion
C2 CD(Ly k) [\ DL )
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holds. In the case when po = p + 6|a| with some ¢ € R and § < 1 we know
that the continuous formal transpose L'(z,D): C* — Cg° of L(z,D) exists
(cf. [9]). When L'(z,D): Cg° — C° exists, then L'(z,D) is always continuous.
This follows from the Closed Graph Theorem.

Suppose that L'(z,D): C3° — C° exists. Then we are able to define the
continuous eztension L: D! — D! of L(z,D) by

(Lu)(p) = u(L'(z,D)y) for e Cy. (2.11)
Denote by A, the space of mappings L(-,-): R*xXZ"™ — C such that L(-,]) €

C for any | € Z™ and that for each L(-,-) € A thereexists u € R and § < 1
such that

su&/](D‘: L)(z,1)] £ Cakpysa(l) for le Z™. (2.12)
€
The space of operators {L(z,D) | L(z,D) is defined by (2.10), where L(-,) €
Ar} is denoted by A.. Then for any L(z,D) € A, the formal transpose
L'(z,D): C¥ — C exists.

We denote by K| the subset of K, such that for any k¥ € K there exist
con tants Cx > 0 and Ny > 0 with which

k(I + 2) < Cikn, (Dk(z)  for 1,z € 2™ (2.13)

The smallest integer, which is greater or equal to a € R is denoted by [a].
Choose h from K. We denote Cp.pn = Ch. '7;'16,,'210_("“)(1), where
l

Yn,e,h € R so that

e > ’772:,5,hk[2N,.+n+e](l) for 1€Z".
lal<[Na+n-+e]

Theorem 2.1. Suppose that k,h € K} and that R 1s a subset of A, such
that

Isg‘;:/l(D;’ R)(z,1)] < Cok(D)/h(1) for all
|a] < [Np +n+e] and R(-,-) € R. (2.14)

Then one kas

1/2
| R@,D)pllpn < Cuen| S0 CZ| “lielpn for al
la|<[Nn+n+te]

p€eC® R(,)ER and pe[l,of (2.15)
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Proof. A. We shall show that

SIRC -y < @orcaa] Y el ame)

lezn || <[Nn+n+e] (2.16)

and that

ST RC D) lh¥() € @0 Coen| 3 C'f,]l/zk"(l). (2.17)

zEZ" |o|<[Nh+n+e]

Then the Theorem 4.4 in [9] (cf. also the relation (4.17) in [9]) implies that
(choose k « 1/kY and k™~ & (k/h)V)

IIR'(x, D)‘P”p',l/kv
1/2

S (<A B S o] I Kl PY PRy
|a|<[Np+n+e] (218)

1/2
=Coen| X CH lllyay

ol <[ k]
for any p' € ]1, 00[.

From (2.18) one gets that for any p € ]1,00[ (cf. [9], Lemma 4.3)

r 1/2 .
IRz, D)ol 2 S Cuen| 3 cg] 2l - (2.19)
o <[Na+n-+e]

Since for any ¢ € C'° one has
lellp.e = llellie  with p—1,

we see that the inequality (2.15) holds also in the case when p = 1.
B. We show the estimates (2.16)—(2.17). In virtue of (2.13) one gets

RY(2) < Crkn, (z — DRY(1) (2.20)

and

1/RY(1) < Crkn, (2 = D(1/RY(2)). (2.21)
For any |a| < [Ny +n+e¢] and R(-,-) € R we obtain
(1 = 2)*(R(:, =D)i—:] = [(DF R) (-, =), | < (2m)"Ca(k¥(1)/R¥ (1)) (2.22)
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and so

Vel (R, =1))i—z| < (27r)"[ >

1/2
2] kY OB @y mpa(z D)
la| [Nn+n-te]

(2.23)
Here we used the inequality

12 2 7r2¢,€,hkisz.+n+e](l)’
|| <[Na+n+te]

which implies by (2.22) that

731,5,hk[2N;.+n+5](z - l)l(R(> —l))l'—llz

< Y =R D=2 ]

|| <[Nh+nte]
<eo™[ Y cEHEvamor,
la|<[Nh+n+e]
and so we get (2.23).
In virtue of (2.20), (2.21) and (2.23) we obtain that

D IRC =D)i=:1(1/k¥ (1)
l

< ’7;,15,h(27f)n [ Z

|a|<[Nh+n+e]

sazacora] Y ) kwo®)am@)
l

la|<[Nh+n+e]

1/
ez PICACISINERY

(2.24)
and then (2.16) holds.
Similarly, we get

Y ICRC,=D)i=:1RY(2)

(2.25)
< 7;,;;;(2”)" [ Z C:] l/ZCh Z kV(I)k_(,,_,,E)(z =1),

la|<[Na+n+e]

which implies (2.17). This completes the proof.
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2.4. Let © bein C§°(B(0,1)) so that [ O(z)dz = 1.
Define O, € C° := C(R") by "
Om(z) = m"O(mz), m e N.
Furthermore, define ©,, € S (here S denotes the Schwartz class) by
Om = (21 F~1(BY,),
where F': S — S is the Fourier transform. Define a Fourier series op rator
Om(D) by

(Om(D)p)(z) = (2m) ™" > Om(Dpre®?. (2:26)
lezZn

Let ©,,: D), — D’ be the continuous extension of O,,(D) (cf. (2.11); note that
©!,.(D) exists). Then one sees that for any u € D! one has

(Opu)= ((:)mu)(e_i("') ) = u(@'m(D)( e () )) = u(@m(l)e_i(l") ) = On(Duy.

(2.27)
Thus we obtain for p < oo
Lemma 2.2. Let u be in B, . Then one has
Omu € Cr and |©mu — ul|px — 0 with m — oo. (2.28)

Proof. One has (recall that F~1¢ = (21)""F¢V)
On(l) = (FOR)D) = [ m"O(my) e~ dy = (FO) (i/m).
R
Furthermore, we obtain for any ¢ € C° (cf. (2.2) and (2.27))
(Omu)(p) = (21 Y Om(Durp—r = [20)" Y On(ure ™) ().
1 ]

Thus O,,u — (27)~" Z(Fé))(l/m)ulei(" ) € . In addition, one gets
1

[(Omulilk(l) = [(FO)(I/m)uik(D)] < 1O |1, (w)luik(1)]
and

(Omu)ih(l) = (FO)(0)uik(l) (/é x)dz)ulk(l) urh(1).
w

Thus
1Omu—ul?,  (27)™ > [((Omu)i —u)k(l)] -0  with m — oc,
1

which finishes the proof.
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3. On the equality L7, , = L’f,k,h

3.1. For the first instance we shall deal with the composition

(Om o L)z,D):= Onp(D)o L(z,D).

Lemma 3.1. Let L(-,-) be a mapping R"® x Z" — C so that L(-,l) € C¥

for any 1 € Z™ and that (with Cq > 0 and po € R) the estimate
sup |(D§ L)(z,1)| £ Cokpu, (1) for 1eZ™
zeW
holds. Then one has
O,(D)o L(z,D) = L(z,D) 0 O,,(D) + Rn(z, D),
where
1
Ru(z,l)= ) / Y (070m)(1 +t2)(D] L)(-,1)): 57 dt
|v|l=1p =z€2Zn
Proof. For any ¢ € C we obtain

[(OmoL)(z,D)¢l(x) = (21)™" 3 Om(2)(L(z, D)), €9

z€EZ™

=(2m)™" Z G)m(z)[(27r)"" Z(L('vl))z—l#?l ei(2,7)

z€EZ" lezr

=) @0 Y Om(@)E(1))emr €T D),

lezr zZEZ"

(3.1)

(3.2)

(3.3)

where the order of summation is legitimate to change, since ©,, € S. In the

third step we used the relation

lezZ»

(L(z,D)p). =(27)"" / S Lz, i =5 da
w

=(2r)™" Z /L(z‘,l)wei(l_z’z) dz,

1€z

which is valid, since the sum Z L(z, ) €*75%) s by (3.1) uniformly con-

lezn
vergent in R"™.
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From (3.4) we see that

(Om o L)(@,0) = 2m)7" 3 Om(l+ 2)(L(-,1): €57
ZEZ"

(note that (©,,0L)(,) is a function R® x Z" — C so that (O,,0oL)(:,1) € C
for any 1 € Z" and that |D3(0, o L)(z,l)| < Cikyu (1)). Due to the Taylor

formula we obtain

(Om 0 L)(a,1) = (2™ 3" Om(D(L(, 1)) €50

z€Z"

HCORDIDY /(G’Om)(l+tz)]z7(L(.,z)),ei<m>dt
‘ez 1y

= L(z,)0m (1) + (2m)™™ 3 / > (870m)(1 +t2)((D] L)(-, 1)), €7 dt

I“/l:l 0 zEZ"
= (Lo On)(z,1) + Rm(z,1),

as required.
From (3.3) one sees casily that R,(-,-) is a function R" x Z"* — C,
R.n(-,1) € CX for any [ € Z" and that

sup |(DF R )(z,1)] < Cakyy (1).
€W

A more careful study of the rest operator R,,(z,D) yields

Lemma 3.2. Suppose that for any a € N} there ezists a function ka € Ky
so that

sup (D2 L)(z, )| < Caka(l)  for 1€ 2" (35)
€W

and that R,.(-,-) is defined by (3.3). Then one has

sup |(DS Ry )(z,1)| < C(kak-1)(1) for 1lez™, (3.6)
reW
where
ko = ko 3.7
|/3'1|2F)i2{ +8+7} (3.7)
7I=1
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