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ON THE EXPECTED VALUE OF VECTOR
LATTICE — VALUED RANDOM VARIABLES

RASTISLAV POTOCKY

The aim of this paper is to present a definition of the expected value of a random
variable with values in an Archimedean vector lattice E. The motivation for the
study of such variables are possible applications in numerous fields of probability
and applied statistics such as stochastic processes, decision theory, estimation and
so on. The second reason is that in a number of spaces the convergence in vector
lattices (the so-called order convergence) is stronger than the topological one (e. g.
Lr-spaces, 1 <p< ). The most interesting results concerning the expected value
of such random variables have been obtained by Cristescu [1], Kantorovich,
Vulich, Pinsker [2]. However, their results are restricted to the so-called regular
spaces only. I shall show that the expected value can be defined in more general
spaces, too. In addition a convergence theorem (of Beppo-Levi’s type) will be
proved. My terminology follows [3], [4], [5]. See also [6].

Definition 1. Let (Z, S, P) be a probability space, E a o-complete vector
lattice with the o-property. A countably valued random variable f: Z— E;

f=> xi xs, x€E, E€S, UE=Z; EnE =0, i#] is said to have the ex-
1
pected value Ef if 3, |x|P(E)<®. The expected value is defined as follows
1

Ef=3 xP(E). It is clear that this definition is justified.
1

Definition 2. Let (Z, S, P) be a probability space. A sequence (f,) of functions
from Z to E converges to a function f almost uniformly if for every €>0 there
exists a set A €S such that P(A)< € and (f,) converges relatively uniformly on
Z— A; i. e. there exists a sequence (a,) of real numbers converging to 0 and an
element re E such that |f,(z) — f(z)| <a,r for each ze Z— A.

Definition 3. A non-negative function f: Z— E is called a random variable if
there exists a non-decreasing sequence (f,) of non-negative countably valued
random variables such that (f,) converges to f almost uniformly.

The random variable f: Z— E is said to have the expected value Ef if all f, have
the expected value E f, and the sequence (Ef.) converges relatively uniformly (ru
in short). We define the expected value of f by Ef = ru-lim Ef,. The family of such
random variables will be denoted by %.
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The correctness of this definition follows from lemma 1.

Lemma 1. Let (f.) be a decreasing sequence of countably valued random
variables with expected values Ef, such that f,|0 almost univormly. Then Ef, |0
relatively uniformly.

Proof. Since there are only countably many values that the functions f, take on
and since E has the o-property we can regard all f, as random variables in
a principal ideal of E (i. e. ideal generated by a single element, say u, ue E*) IL,.
For the same reason we can suppose Ef, € I, for each n.

Since E is a o-complete vector lattice, I, equipped with the order-unit norm (i. e.
the norm induced by u) is a Banach space. It will be denoted by (L, || |.). In such
a space the norm-convergence and the relatively uniform convergence are equiva-
lent (see [5], p. 102).

As £, |0 almost uniformly in I,, we have ||f,]|. |0 almost everywhere. From this
we obtain E||f,||.]0 and consequently ||Ef.|.]0, i. e. Ef,|0 with respect to the
norm of I,. It means that Ef, |0 relatively uniformly in I,.

The next procedure is well known. Let (f.) and (g,) be nondecreasing sequences
such that f,1f and g,1f almost uniformly with their expected values ru-converging.
Consider the random variable f; for a fixed i. Since f;<f we have fi—(firng.)=

ﬁ—%(ﬁ+g,.—|fi—g,.|) for each n. From this it follows that the sequence

fi—(fing,) almost uniformly converges to 0 as n— and consequently, by
lemma 1 that Ef, = ru-lim E(fiAg,)<ru-lim Eg, for each i.

Definition 4. A function f: Z— E is called a random variable if there exist
random variables f, and f, from definition 3 such that f(z) = fi(z) — f.(z) for each z.
The random variable f is said to have the expected value Ef if f, and f, are in %.
The expected value is defined by setting Ef = Ef, — Ef,.

This definition is justified. It is clear from the above mentioned construction that
for each random variable f there exists a sequence (f,) of countably valued random
variables such that (f,) converges to f almost uniformly. For more details about
vector lattice-valued random variables see [6].

In the rest of the paper I am going to investigate sequences of random variables
which have the expected values.

Lemma 2. If (f,) is a non-decreasing sequence of random variables from %
almost uniformly converging to a random variable f such that ru-lim Ef, exists,
then fe % and Ef = ru-lim Ef,.

Proof. Denote ru-lim Ef, by c. For each n let (ff) be a non-decreasing
sequence of countably valued random variables converging almost uniformly to f,.

k
We have | Ef<— Ef,| <akr, for some r,€ E and a“—0.

Since E has the o-property, there is an u € E such that r, < K(n) u for each n,
where K(n) is a function from N to N, N the set of natural numbers. Denoting
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akK(n) by bk we have |Ef<— Ef,|<bku. As the set of real numbers has the
diagonal property there exists a sequence bk converging to 0. Hence we have
| Ef<"™ — Ef,| < b¥*™u. From this we obtain

lc— Ef®| < dv+ b ™y, i.e. ru-lim Ef<®=c.

One can show by repeating step by step the preceding argument that there exists
a sequence (f%™) of countably valued random variables almost uniformly converg-

ing to f. Put h, =sup ff?v f"™, The non-decreasing sequence (h,) of countably
isn

valued random variables almost uniformly converges to f and (Eh,) ru-converges
to c. It means that fe % and Ef=ru-lim Ef,.

Theorem 1. If (f,) is a non-decreasing sequence of random variables with
expected values Ef, almost uniformly converging to a random variable f and
such that ru-lim Ef, exists, then the function f has the expected value Ef and
Ef = ru-lim Ef,.

Proof. Consider functions k, defined as follows: ki(z)=fi(z), k.(z)=
fa(2) = fa-1(2), n=2, 3, ..., k, are non-negative random variables with expected

values. Moreover f,(z)+, k.(z) =lim f,(z) = f(z) for each z. Since ru-lim Ef,
2

exists it follows that the series X Ek, ru-converges.

By definition 4 there are functions g,, h, in % such that k,=g,—h,, n=2,3, ...
Fix a real sequence (a,) such that a,]0. Then for each n there exists a set A, €S
such that P(AS)<a,2™" and |h%—h,|<dkr for each ze A, since E has the
o-property. Also there exists a k(n) such that dx™ <27" Given & >0, there exists

a natural number n, such that a,<27'c. Put A= CJ A¢. We have P(A)<

n=ng
L

> P(A9<e. It means that h, — h%™ |0 almost uniformly. Consider the non-dec-

no
reasing sequence (2 (h.-—h!‘“’)) of random variables in %. Denoting its limit
1

(with respect to the order) by s we shall prove that this sequence converges to s
almost uniformly. Given € >0, there exists (by the preceding part of the proof) the

above mentioned set A€ such that |> (h—h?)| <> 27"r. It means that the
no no

values of the function s belong to E and moreover

5= (hi—hf®)|[<> 27"rfor
1 n+1
each z € A€. Omitting, if necessary, the set of probability zero, we have proved that
> (h— hf®) e % by lemma 2.
1

We have (gi—hi™)v0lg,—h%™ almost uniformly and E(g,—hk"™)—
E((g=— hx)v0) goes to 0 relatively uniformly (since Eg* ru-converges to Eg,).
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In other words g, — hx™ e %. Moreover the equality £ g, =X k, + X h, implies the

almost uniform convergence of (2 g,.).
1

Since we have Y, Eg,=> Ek,+ Y, Eh,, the consideration of functions g, —

n=2 n=2 n=2

hx™ and h, — h%™ instead of g, and h,, respectively, shows that the series >, Eg,

n=2

ru-converges.
It follows from lemma 2 that = g, belongs to % and consequently that the series
X k,=2g,—ZXZh, has the expected value. Moreover we have

EX k=EY g.—ES h.=ru-lim S Eg,— ru-lim S, Eh, =
2 2 2 2 2
= ru-lim 2": Ek; =i Ek,.
2 2
Ef=E (f1+2 k,.>=Efl+E S k,=Ef,+ ru-lim 3, Ek, =
2 2 2

= ru-lim (Efl +3 Ek.-) = ru-lim Ef,.
2
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MATEMATUYECKOE OXWIOAHUE Uil CIYYAUHBIX BEJIMYUAH
CO 3HAYEHUSIMU B BEKTOPHO! PEIIETKE

Rastislav Potocky
Pe3iome

B pa60're onpeaensieTcss MaTeMaTHYECKOE OXHIAaHHE s Cle‘{aﬁHle BEJIMYAH CO 3HAYCHHUAMH
B BeKTOpHOﬁ PeLIETKE H NOKA3bIBACTCA OfHA NpEAC/IbHAsA Teopema.

405



		webmaster@dml.cz
	2012-08-01T03:19:43+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




