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ORIENTATIONS OF GRAPHS MINIMIZING 
THE RADIUS OR THE DIAMETER 

LUBOMlR SOLTfiS 

The aim of this paper is to determine the exact value of a radius [a diameter] of 
orientations minimizing a radius [a diameter] in the case of complete bipartite 
graphs and to find a result in the case of product of graphs. 

1. Introduction 

All graphs considered in this paper are finite, undirected, without loops and 
multiple edges. A graph is a digraph iff every its edge is directed. 

Let G be a graph or a digraph. Then the symbol V(G) [-B(G)] denotes the set of 
all vertices [edges, respectively]. The symbol r(G) [d(G)] denotes the radius 
[diameter] of G. If G is a graph, then by G'[G"] we mean an arbitrary orientation 
of graph G which has the smallest diameter [radius] of all its orientations. 

If S is a set, then \S\ denotes the number of elements of the set S. Throughout 
the paper the letters n, k denote natural numbers. By d(v, w) we mean the 
distance from the vertex v to the vertex w. 

2. COMPLETE BIPARTITE GRAPHS 

Let V={vu ..., vn}, W={wu ..., wk} be the sets^nd | V| = n^k = |W|.< De­
note by K(n, k) the graph with properties V(K(n, k)) = Vu W and E(K(n, k)) = 
{vw\ve V, we W}. Let &(n, k) be an arbitrary orientation of K(n, k). The 
matrix A„tk is said to be Boolean iff for all i^n, j^k we have a/76{0, 1}. The 
Boolean matrix with property ati = 1 iff vtWj e E(lC(n, k)) will be eaflled the matrix 
of R(n, k). We denote d(\n,k) = d(&(n, k)). 

Boesch and Tindell [1] showed that d(K'(n,n)) = 3 for n^2. Plesnik 
proved that if n^k^l, then d(K'(n, k))^4. We shall determinetherexact value 
of d(K'(n, k)) and r(K"(n, k)) for all n, k. 

Lemma 1. For n^k^2 we have 

3 = r(K"(n, k))^d(K'(n, k))^4. 
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Proof. Let v e V (for instance) be a central vertex of K"(n, k). Then there 
exists the vertex weW.with the property vweE(K(n, k)) and we obtain 
d(w, v)^3. On the other hand we can divide the set W into two parts Wu W2, 
which are not empty. Now we denote U= V—{v}. Let Kx be the orientation of 
K(n, k) and E(K^ = {vwu w^u, uw2, w2v\ue U, wxe Wx, w2e W2} (see 
figure 1.). Then r(K,) = 3. 

The left inequality is obvious, the right one was proved by P lesn ik [2]. 

°Š: 
1>< 

Җ 

Wo 

Fig 1 

Definition 1. Let An > f ebe a Boolean matrix. For all i^n we denote by a, the 
k-dimensional Boolean vector (an, ai2, ..., alk), i. e. the ith row of the matrix A. 
Now let 

|a.| = a.i + a . 2 + . . . + 0.fc 

be the length of the vector a,-. For an integer ; ^ 0 we denote the set of all 
k-dimensional Boolean vectors by M(k) and we put M(j, k) = {ceM(k); \c\=j}. 
By the expresion b^c, where b, ceM(k) we mean that b . ^ c , for all i^k. 

Evidently the vectors b, c are incomparable iff there exist i^k, j^k such that 
bi = 0, Ct = \, bj = \, Cj = 0. 

Lemma 2. Let n ^ 2 and Ank be the Boolean matrix of a digraph K(n, k). Then 
d(A) = 3 iff every two rows and every two columns of the matrix A are 
incomparable. 

Proof. Let d(A) = 3. then d(vl, Vj) = 2 in &(n, k) for every two vertices 
Vi,VjEV. Hence there exists a vertex wpeW such that aip = \, ajp = 0. If we 
interchange / and /, we obtain that there exists a vertex wseW such that ais = 0, 
ajs = 1. We showed that every two rows are incomparable. By interchanging V and 
W we can prove the same for the columns. 

Let every two rows or columns be incomparable. Then d(vt, v}) = d(wp, wr) = 2 
for every v^VjE V, wp=4wreW and there exists m^k such that aim = 1. Now 
d(wm, wr) equals 2 or 0, hence d(vt, wr)^3. Similarly we can prove that 
d(wr, Vi)^3 and using Lemma 1 we get d(A) = 3. 

Lemma 3. Let |fc| = | c | for two Boolean vectors b, csM(k). Then they are 
incomparable iff b4c. 

Proof is obvious. 
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For k^2 we denote by Bkk a Boolean matrix such that for the integer 
r = (j— /)(mod k), r ^ O we have 

f>ř/ = l iff r^[k/2]-l 

(see figure 2 for k = l). 

Lemma 4. For 2 ^ k 

1 1 1 0 0 0 0 
0 1 1 1 0 0 0 
0 0 1 1 1 0 0 

B77= 0 0 0 1 1 1 0 
0 0 0 0 1 1 1 
1 0 0 0 0 1 1 
1 1 0 0 0 0 1 

Fig 2 

^"^iikn) w e h a v e rf(K'(n>fc)) = 3-
Proof. We construct the matrix Bk n by adding n — k rows from the set 

M([k/2], k) — {bu ..., b3} to the matrix Bkk. One can verify that d(Bkk) = 3 (by 
lemmas 3, 2). Then also d(Bfcn) = 3. Hence there exists an orientation D of 
K(n, k) such that d(D) = 3 and from Lemma 1 d(K(n, k)) = 3 follows. 

For 0^2j<n we define the mapping /(;, n) from M(j, n) into M(/ + 1, n) by 
induction. For y = 0 and O n e M ( 0 , n) we put On/(0, n) = (\, 0, ..., 0 ) e M ( l , n). 
Let x = ( x i , ..., xn)eM(/ + 1 , n), where n>2(j+l), hence n — 2>2j and 
/(/, n—2) is defined. We put 

/ = /(*) = mm {z\z^n, xz = 0, xiz+1)imodn)=l}. (1) 

We denote 

x = (xu ...,Xi-i9xt+29 .-.9xn) if / < « (2) 
and 

x = (x2, ..-, *n-i) if i = n. (3) 

Let r = xf(j, n - 2 ) = (ri, ..., rn_2). 
Let us define 

tfO'+l, w) = (ri, -.., A-.-i, *., *.+i, r., ..., rn_2) if i<n, 

xf(j+\, n) = (xu ri, ..., rn_2, xn) if / = n. 

Lemma 5. For 0^2j<n f(j, n) is an injection and for every vector a e M(j, n) 
we have a^af(j, n). 

Proof. We denote /(/, n) by F. It is easy to verify that a^aF. If / = 0, then F i s 
an injection. We suppose that*there exist the vectors x¥=yeM(j, n) such that 
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xF = yF and k^m where k = i(x) and m = i(y). And we can suppose that x^xF 
for all vectors x. Now we introduce the main ideas of the proof. It can be shown 
that 

1. k<m (indirectly and by the induction hyphotesis) 
2. yk = 0 (from 0 = xk = (xF)k = (yF)k &yk) 
3. yk = yk+1=... = ym = 0 (from part 2 and from (1) for x = y) 
4. (yF)k+1 = 0 = (xF)k+1=l. 

d 

H 

/ A j \ 

T T Y T T 

Fig. з 

To prove 4 we construct the sequence JC, JC, x, ..., On_2 ;, where the next vector is 
obtained from the preceding one by (2) or (3), i. e. by deleting the two 
components. Then yk+1 is not the first component of On_2> because yk must be 
deleted later than yk+1 (it follows from 3). Hence (yF)k+1 = yk+1 = 0. From the 
definition we have (xF)k+1 = xk+1 = 1, which is a contradiction. 

For any Boolean matrix Amn or vector if m = 1 we denote B = ~1 A iff b„ = 1 — a,7 

for all admissible /., ; . 

Lemma 6. The Boolean vectors a, ft are incomparable iff "la, lb are incom­
parable. 

Proof is obvious. 

Definition 2. Let 0 ^ 2 / < /c, A„fc be a Boolean matrix, ; be the minimal length of 
the rows of the matrix Ank. We will define the mappings H, h. 

If j^[k/2] [ 1 > k - [ k / 2 ] , respectively], then A H = A[A/i = A, respectively]. 
Otherwise for all i^n we have 

(AH). = aj(j, k) [(A/z), = aj(j, k)] if |a,| = y, 

(AH^a, [(A/i), = a,] if k | > / \ 
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Lemma 7. Let 2^n^k and \nk be a Boolean matrix. If every two rows of A 
are incomparable, then every two rows of each of the matrices AH, Ah, ~1A are 
incomparable. 

Proof. In the case of "1A it follows from Lemma 6. Here we prove it in the case 
of AH. For Ah it is similar. Let a, b be two rows of A. Now we distinguish 3 cases. 
1. If |a | = |6| = ; , then the proof follows from Lemma 5. 
2. If \a\>j, \b\ =j, then there exist at least two numbers p4r such that ap = l, 
bp = br = 0, ar = l and one number t such that at = 0 and bt = l. We have aH= a 
and we can make fcHif we change one component of b from 0 to 1. The rest is easy. 
3. If | a | > 1 and |ft |>1 , then aH=a, bH=b and the proof follows. 

Theorem 1. Let n ̂  k. 

(a) If k=l, then d(K'(n, k)) = r(K(n, k)) = oo. 

(b) If k^2 and « > ( r ^ 2 l ) ' t h e n d ( K ' ( n ' fc)) = 4-

(c) If k^2 and " ^ ( r f c / 2 i ) > t h e n d(K'(n, k)) = 3. 

Proof. The part (a) is obvious, 
(b): We prove it indirectly. Let d(K'(n, k))<4. From Lemma 1 we have 
d(K'(n, k)) = 3. Let Ank be the matrix of the digraph K'(n, k). Next we put 
B„fc = (1(Ahk)) Hk. The reader can verify that every row of B has length [ k/2] and 
by lemmas 2,7 every two rows of B are incomparable. Then 

n^\M([k/2], k)\ = L . . - , ) , which is a contradiction. 

(c): It follows from Lemma 4. 

3. The product of Graphs 

Definition 3. Let G, H be graphs. A graph P is said to be the product of G, H 
and we denote P = G • Hiff V(P) = V(G) x V(H) and (a, u)(b, v) e E(P) if and 
only if (a, b)e E(G) and u = ve V(H) or (u, v)e E(H) and a = b e V(G). 

Lemma 8. Let G, H be graphs. Then we have r(G • H) = r(G)+ r(H) and 
d(GUH) = d(G) + d(H). 

The proof is evident. 

Now by d(a, b, G) we denote the d i s t an t from a vertex a to the vertex b in 
a graph G. By a central vertex of a graph G we mean a vertex ceV(G) if we have 
d(c, v, G)^r(G) for all ve V(G). 

293 



Definition 4. Let G, H b e graphs with at least two vertices, c(d) be an arbitrary 
central vertex of G(H). Then by the symbol G A H we denote an arbitrary 
orientation of the graph G D H with following property. 

Let a, be V(G), x,ye V(H) and 

d(a, c, G)<d(b, c, G), d(x, d, H)<d(y, d, H). 

Then (c, x)(c, y), (g, y)((g, x), (b,d)(a,d), (a, h)(b, h)eE(G A H) for 
geV(G), g±c and heV(H), h4-d (see figure 3.). 

Theorem 2. Let graphs G, H contain at least two vertices and r(G)^r(H). 
Then we have 
(a) If r(G) = 1, then r(G A H)^r(G)+ r(H) + 1 
(b) If r ( G ) > l , then r(G A If) = r ( G ) + r ( H ) = r ( ( G D H ) " ) . 

Proof. If r(G) = co or r(H) = oo, then the theorem is true. Let us suppose that 
r(G)<oo, r(H)<oo. From lemma 8 we have r(G D H) = r(G) + r(H), hence 
r(G A H)^r((G D H)")^r(G)+ r(H). We can verify that for geV(G), g=4c 
we have 
d((g, h), (g, d), G A H)^d(h, d, H)^r(H). And similarly in other cases. 

Let (g, h)e V(G A H). Now we distinguish 3 cases. 
1. If g=7-c, then we have 

d((g, h), (g, d), G A H) ^ d(h, d, H) ^ r(H) 
d((g,d),(c, d), GA H)^d(g, c, G)^r(G). 

2. If g = c and h = d, then we have d((g, h), (c, d), G A H) = 0. 
3. If g = c and hl=d, then the conditions j V ( G ) | > l and r(G)<oo imply that 
there exists g0e V(G) such that g, g0 are neighbours. Hence we have 

d((g, h), (g0, h), GA H)^d(c, g0, G) = l 
d((g0, h), (go, d), GA H)^d(h, d, H)^r(H) 
d((g0, d), (g, d),GAH)^d(g0, g, G) = l. 

We have shown that we have 

d(a,(c, d), G A H ) ^ r(H) + max {2, r(G)} for all aeV(GAH). (4) 

Now we distinguish 3 cases. 
1. If h = d, then 

d((c, d), (c, h), G A H) ^ d(d, h, H) ^ r(H) 
d((c, h),(g, h),GAH)^d(c, </, G)^r(G). 

2. If h = d and g = c, then d((c, d), (g, h), G A H) = 0. 
3. If h = d and g=£c then there exists a neighbour h0 of d and 

d((c, d), (c, h0), G A H) ^ d(d, h0,H) = l 
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d((c, ho), (g, h0), GAH)^d(c, g, G)^r(G) 
d((g, h0), (g, h), G A H)^d(h0, d, H) = 1. 

We have proved that 

d((c, d),b, G A H)^r(G) + max {2, r(H)} for all beV(GAH). (5) 

Hence r (G A H ) ^ m a x { r (H)+ max {2, r(G)}, r ( G ) + max {2, r(H)}}. The 
proof follows. 

Theorem 3. Let graphs G, H contain at least two vertices and r(G)^r(H). 
Then we have 
(a) If r ( G ) = l , then d(G A H ) ^ 2 r ( G ) + 2 r ( H ) + 1 
(b) If r ( G ) > l , then d(G A H)^2r(G) + 2r(H). 

Proof. 
(a): First we shall suppose that r(H) = l . From the inequality d(G A H)^ 
2r(G A H) and from the theorem 2 we get d(G A H ) ^ r ( H ) + r(G) + 2. Let us 
suppose that there exist vertices a = (g,h), b = (x, y)eV(G A H) such that 
d(a, b, G AH)=r(H)+r(G) + 2. Then the inequalities (4), (5) change into 
equalities. From the proof of the theorem 2 we get the next assertion. From the 
equality in (4) we have g — c and h£ d and from the equality in (5) we have x^hc 
and y=d. Hence a = (c, h), b = (x, d) and there is 

d((c, h), (x, h),GAH)^d(c, x, G)^r (G) = 1 
d((x, h), (x,d),GAH)^d(h,d,H)^r(H) = 1. 

Hereby we get d(a, b, G A H ) ^ 2 and this is a contradiction. 
Now let r ( H ) ^ 2 , a, be V(G A H). From (4) and (5) we have 

d(a, (c, d), GAH)^r(H)+r(G)+l 
d((c, d), b, GAH)^r(G) + r(H), hence 
d(a, b, GAH)^2r(G) + 2r(H) + l. 

(b): It follows from the theorem 2 and the inequality d(G A H ) ^ 2 r ( G A H). 

Corollary. Let G, H be graphs and K r ( G ) ^ r ( H ) , d(G) = 2r(G), d(H) = 
2r(H), then we have d((G • H) ' ) = 2r(G) + 2r(H). 

Proof. This follows from theorem 3 and lemma 8. 
R e m a r k . Theorems 2, 3 and corollary are also true if G, H are multigraphs, 

i. e. they can contain multiple edges. 
If G, H are bipartite graphs with at least two vertices, then the inequality 

d((G D H ) ' ) ^ l + 2 max {d(G), d(H)} can be proved. 
Cubes are a special case of the product of bipartite graphs. P lesn ik [2] showed 

that if Qn is the graph of the M-dimensional cube, then d(Q'n)^2n — 1 for n^2. 
Now we know that n^d(Q')^n + l for n ^ 4 . 
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ОРИЕНТАЦИИ ГРАФОВ, МИНИМАЛИЗУЮЩИЕ РАДИУС ИЛИ ДИАМЕТР 

ЕиЪоппг §оНё§ 

Резюме 

В статье для всякого полного двухдольного графа найдена ориентация, которая минимализует 
его диаметр. Мы исследовали также ориентации продуктов двух графов. 
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