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ORIENTATIONS OF GRAPHS MINIMIZING
THE RADIUS OR THE DIAMETER

LUBOMIR SOLTES

The aim of this paper is to determine the exact value of a radius [a diameter] of
orientations minimizing a radius [a diameter] in the case of complete bipartite
graphs and to find a result in the case of product of graphs.

1. Introduction

All graphs considered in this paper are finite, undirected, without loops and
multiple edges. A graph is a digraph iff every its edge is directed.

Let G be a graph or a digraph. Then the symbol V(G) [E(G)] denotes the set of
all vertices [edges, respectively]. The symbol r(G)[d(G)] denotes the radius
[diameter] of G. If G is a graph, then by G’'[ G"] we mean an arbitrary orientation
of graph G which has the smallest diameter [radius] of all its orientations.

If S is a set, then | S| denotes the number of elements of the set S. Throughout
the paper the letters n, k denote natural numbers. By d(v, w) we mean the
distance from the vertex v to the vertex w.

2. COMPLETE BIPARTITE GRAPHS

Let V={v,, ..., U}, W={w,, ..., w} be the sets-and |V|=n=k=|W|. De-
note by K(n, k) the graph with properties V(K(n, k))= VuW and E(K(n, k))=
{vw|ve V, we W}. Let K(n, k) be an arbitrary orientation of K(n, k). The
matrix A, , is said to be Boolean iff for all i<n, j<k we have a; € {0, 1}. The
Boolean matrix with property a; = 1 iff v,w; € E(K(n, k)) will be ealled the matrix
of K(n, k). We denote d(A,, )=d(K(n, k)).

Boesch and Tindell [1] showed that d(K'(n, n))=3 for n=2. Plesnik
proved that if n=k=2, then d(K'(n, k))=4. We shall determine the exact value
of d(K'(n, k)) and r(K"(n, k)) for all n, k.

Lemma 1. For n=k=2 we have
3=r(K"(n, k))<d(K'(n, k))<4.
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Proof. Let ve V (for instance) be a central vertex of K"(n, k). Then there
exists the vertex we W.with the property vwe E(K'(n, k)) and we obtain
d(w, v)=3. On the other hand we can divide the set W into two parts W;, W,,
which are not empty. Now we denote U= V—{wv}. Let K, be the orientation of
K(n, k) and E(K;)={vw, wiu, uws, wv|lueU, w,eW,, w,eW,} (see
figure 1.). Then r(K;)=3.

The left inequality is obvious, the right one was proved by Plesnik [2].

! O<9—‘ Wy

U ~
W,

Fig 1

Definition 1. Let A, , be a Boolean matrix. For all i<n we denote by a; the
k-dimensional Boolean vector (a;, ai,, ..., ax), i. €. the ith row of the matrix A.
Now let

|a,|=a,1+a,2+...+a,k

be the length of the vector a;. For an integer j=0 we denote the set of all
k-dimensional Boolean vectors by M(k) and we put M(j, k) ={ce M(k); |c|=j}.
By the expresion b<c, where b, ce M(k) we mean that b, <¢ for all i<k.

Evidently the vectors b, ¢ are incomparable iff there exist i <k, j<k such that
bi=0, ¢;=1, bj=1, ¢=0.

Lemma 2. Let n=2 and A,, be the Boolean matrix of a digraph K(n, k). Then
d(A)=3 iff every two rows and every two columns of the matrix A are
incomparable.

Proof. Let d(A)=3. then d(v, v;)=2 in K(n, k) for every two vertices
vi, vj€ V. Hence there exists a vertex w, € W such that a,=1, q,=0. If we
interchange i and j, we obtain that there exists a vertex w, € W such that a;, =0,
ai; = 1. We showed that every two rows are incomparable. By interchanging V and
W we can prove the same for the columns.

Let every two rows or columns be incomparable. Then d(v;, v,) =d(w,, w,) =2
for every vi#v;e V, w,#w,e W and there exists m<k such that a,,=1. Now
d(Wm, w,) equals 2 or 0, hence d(v:;, w,)<3. Similarly we can prove that
d(w,, v;)<3 and using Lemma 1 we get d(A)=3.

Lemma 3. Let |b| =|c| for two Boolean vectors b, ¢ € M(k). Then they are
incomparable iff b+ c.
Proof is obvious.
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For k=2 we denote by Bu a Boolean matrix such that for the integer
r=(j—i)(mod k), r=0 we have

by=1 iff r<[k/2]-1
(see figure 2 for k=7).

1110 0 0 O
0111000
0011100
B,= 00 01 1 1 0
0 0001 11
1 0 0 0 0 11
110 0 0 01
Fig 2

Lemma 4. For 2sks_rzs( k 1) we have d(K'(n, k))=3.

[k/2

Proof. We construct the matrix B,, by adding n—k rows from the set
M([ k/2], k) —{b, ..., b3} to the matrix By,. One can verify that d(B,)=3 (by
lemmas 3, 2). Then also d(B..)=3. Hence there exists an orientation D of
K(n, k) such that d(D)=3 and from Lemma 1 d(K(n, k))=3 follows.

For 0<2j<n we define the mapping f(j, n) from M(j, n) into M(j+1, n) by
induction. For j=0 and O, e M(0, n) we put O,f(0, n)=(1,0, ..., 0)e M(1, n).
Let x=(x1,...,x,)eM(j+1,n), where n>2(j+1), hence n—2>2j and
f(j, n —2) is defined. We put

i=i(x)=min {z|z<n, x, =0, X4 1ymoam= 1}. (1)
We denote
X=(X1, ooy Xicty Xig2, -0 Xp) i I<n 2)
and
X=(X2 .0, Xn1) if i=n. 3)

Let r=xf(j, n—2)=(r, ..., r—2).
Let us define

#(]‘*—19 n)=(r1, coes Viety Xiy Xi1y Fiy ooy rn—2) lf i<n,
X(G+1, n)=(x1, iy ooy Facz, Xa) if i=n.

Lemma S. For 0<2j<n f(j, n) is an injection and for every vector a € M(j, n)
we have a <df(j, n). '

Proof. We denote f(j, n) by F. It is easy to verify that a<<aF. If j =0, then F is
an injection. We suppose that®there exist the vectors x#ye M(j, n) such that
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xF=yF and k<m where k=i(x) and m=i(y). And we can suppose that x <xF
for all vectors x. Now we introduce the main ideas of the proof. It can be shown
that

1. k<m (indirectly and by the induction hyphotesis)

2. y=0 (from 0=x, = (xF)x = (YF)r = )

3. Ye=Yrs1=...=Ym =0 (from part 2 and from (1) for x=y)
4. (yF)is1=0=(xF)s1=1.

Fig. 3

To prove 4 we construct the sequence x, &, X, ..., .-z, where the next vector is
obtained from the preceding one by (2) or (3), i.e. by deleting the two
components. Then y.: is not the first component of O,_,; because y, must be
deleted later than y«.: (it follows from 3). Hence (yF)is1=yi+1=0. From the
definition we have (xF).4;=xi+1 =1, which is a contradiction.

For any Boolean matrix A, or vector if m=1 we denote B="TTA iff b, =1 — a;
for all admissible i, j.

Lemma 6. The Boolean vectors a, b are incomparable iff 7a, 71b are incom-
parable.
Proof is obvious.

Definition 2. Let 0<2j<k, A, be a Boolean matrix, j be the minimal length of
the rows of the matrix A,,. We will define the mappings H, h.

If j<[k/2][j=k—[k/2], respectively], then AH=A[Ah=A, respectively].
Otherwise for all i<n we have

(AH); = af(j, k) [(Ah); = af(j, k)] if |a]=],
(AH) =g, [(Ah),=a] if [a]>].
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Lemma 7. Let 2<n<k and A, be a Boolean matrix. If every two rows of A
are incomparable, then every two rows of each of the matrices AH, Ah, “1A are
incomparable.

Proof. In the case of 1A it follows from Lemma 6. Here we prove it in the case

of AH. For Ah itis similar. Let a, b be two rows of A. Now we distinguish 3 cases.
1. If |a] =|b| =], then the proof follows from Lemma 5.
2. If |a|>j, |b| =}, then there exist at least two numbers p= r such that a,=1,
b,=b,=0, a,=1 and one number ¢ such that a,=0 and b,=1. We have aH=a
and we can make bH if we change one component of b from O to 1. The rest is easy.
3. If |a|>j and |b|>j, then aH=a, bBH=b and the proof follows.

Theorem 1. Let n=k.
(a) If k=1, then d(K'(n, k))=r(K (n, k))=oo.

(b) Tf k=2 and n>([ k’/(2]> , then d(K'(n, k))=4.

(©) If k>2 and ns([k’/‘zl) , then d(K'(n, k))=3.

Proof. The part (a) is obvious.
(b): We prove it indirectly. Let d(K'(n, k))<4. From Lemma 1l we have
d(K'(n, k))=3. Let A, be the matrix of the digraph K'(n, k). Next we put
B.« = (T1(Ah*)) H*. The reader can verify that every row of B has length [ k/2] and
by lemmas 2,7 every two rows of B are incomparable. Then

k
[k/2]

(c): It follows from Lemma 4.

n<|M([ k2], k)| =( ) , which is a contradiction.

3. The product of Graphs

Definition 3. Let G, H be graphs. A graph P is said to be the product of G, H
and we denote P= GO Hiff V(P)= V(G)x V(H) and (a, u)(b, v) € E(P) if and
only if (a, b) € E(G) and u=ve V(H) or (u, v)e E(H) and a=be V(G).

Lemma 8. Let G, H be graphs. Then we have r(G O H)=r(G)+ r(H) and
d(G O H)=d(G) + d(H).

The proof is evident.

Now by d(a, b, G) we denote the distanc. from a vertex a to the vertex b in
a graph G. By a central vertex of a graph G we mean a vertex c € V(G) if we have
d(c, v, G)<r(G) for all ve V(G).
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Definition 4. Let G, H be graphs with at least two vertices, ¢(d) be an arbitrary
central vertex of G(H). Then by the symbol G A H we denote an arbitrary
orientation of the graph G O H with following property.

Let a, b e V(G), x, ye V(H) and

d(a, ¢, G)<d(b, ¢, G), d(x, d, H)<d(y, d, H).

Then (c, x)(c, y), (9, y)({(g, x), (b, d)(a,d), (a, h)(b, h)e E(G A H) for
ge V(G), g#c and he V(H), h# d (see figure 3.).

Theorem 2. Let graphs G, H contain at least two vertices and r(G)< r(H).
Then we have

(@) If r(G)=1, then (GA H)<r(G)+r(H)+1
(b) If r(G)>1, then r(G A F)=r(G)+ r(H)=r((G O HY").

Proof. If r(G)= = or r(H)= o, then the theorem is true. Let us suppose that
r(G)<w, r(H)<eo. From lemma 8 we have r(G O H)=r(G)+ r(H), hence
r(G A H)=r((G O H)")=r(G)+ r(H). We can verify that for ge V(G), g=#c¢
we have
d((g, h), (g, d), G A H)<d(h, d, H)<r(H). And similarly in other cases.

Let (g, h)e V(G A H). Now we distinguish 3 cases.

1. If g# ¢, then we have

d((g, h), (g, d), G A H)<d(h, d, H)<r(H)
d((g, d), (¢, d), G & H)<d(y, ¢, G)<r(G).

2. If g=c and h=d, then we have d((g, h), (¢, d), G A H)=0.
3. If g=c and h#d, then the conditions |V(G)|>1 and r(G)< imply that
there exists goe V(G) such that g, g, are neighbours. Hence we have

d((g, h), (g0, h), G A H)<d(c, go, G)=1
d((go, h)’ (g()a d)’ G TAN H)Sd(h7 d, H)$r(H)
d((go, d), (g, d), G & H)<d(go, g, G)=1.

We have shown that we have
d(a, (¢, d), G A Hy<r(H)+max {2, r(G)} forall ae V(G A H). (4)

Now we distinguish 3 cases.
1. If h=d, then

d((c, d), (¢, h), G A H)<d(d, h, H <r(H)
d((c, h), (g, h), G & H)<d(c, g, G)=<r(G).

2. If h=d and g=c, then d((c, d), (g, h), G A H)=0.
3. If h=d and g+ c then there exists a neighbour 4, of d and

d((C, d)a (C’ ho)’ G A H)sd(d, h(), H)=1
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d((c, ho), (9, ho), G A H)<d(c, g, G)<r(G)
d((g, ho), (9, h), G A H)<d(ho, d, H)=1.

We have proved that
d((c, d), b, G A H)<r(G)+max {2, r(H)} forall be V(GA H). (5)

Hence r(G A H)y<max {r(H)+max {2, r(G)}, r(G)+max {2, r(H)}}. The
proof follows.

Theorem 3. Let graphs G, H contain at least two vertices and r(G)<r(H).
Then we have
(a) If r(G)=1, then d(G A H)<2r(G)+2r(H)+1
(b) If r(G)>1, then d(G A H)<2r(G)+2r(H).

Proof.
(a): First we shall suppose that r(H)=1. From the inequality d(G A H)<
2r(G A H) and from the theorem 2 we get d(G A H)<r(H)+ r(G)+2. Let us
suppose that there exist vertices a=(g, h), b=(x, y)e V(G A H) such that
d(a, b, G A H)=r(H)+ r(G)+2. Then the inequalities (4), (5) change into
equalities. From the proof of the theorem 2 we get the next assertion. From the
equality in (4) we have g =c and h# d and from the equality in (5) we have x# ¢
and y=d. Hence a=(c, h), b=(x, d) and there is

d((c, h), (x, h), GA H)<d(c, x, G)<r(G)=1
d((x, h), (x,d), GA H)<d(h,d, H)<sr(H)=1.

Hereby we get d(a, b, G A H)<2 and this is a contradiction.
Now let r(H)=2, a, be V(G A H). From (4) and (5) we have

d(a,(c,d), GA H)sr(H)+r(G)+1
d((c, d), b, GA Hy<r(G)+ r(H), hence
d(a, b, GA H)<2r(G)+2r(H)+1.

(b): It follows from the theorem 2 and the inequality d(G A H)<2r(G A H).

Corollary. Let G, H be graphs and 1<r(G)<r(H), d(G)=2r(G), d(H)=
2r(H), then we have d((G O H)')=2r(G)+2r(H).

Proof. This follows from theorem 3 and lemma 8.

Remark. Theorems 2, 3 and corollary are also true if G, H are multigraphs,
i. e. they can contain multiple edges.

If G, H are bipartite graphs with at least two vertices, then the inequality
d((G O H)')<1+2 max {d(G), d(H)} can be proved.

Cubes are a special case of the product of bipartite graphs. Plesnik [2] showed
that if Q, is the graph of the n-dimensional cube, then d(Q,)<2n—1 for n=2.
Now we know that n<d(Q’')<n+1 for n=4.
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OPUEHTALUHWH I'PAGOB, MUHUMAJNIN3YIOIME PAIUYC WUIVN OUAMETP
Lubomir Soltés

Pesome

B cTaThe ans BCAKOro MOMHOTO ABYXROABLHOro rpacda HaiieHa OpMeHTaLHsl, KOTOpast MUHMUManu3yeT
ero aMameTp. MbI MccrenoBaaM TakXKe OPUEHTALMM MPOJYKTOB ABYX rpacdos.
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