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ON AN ALGEBRAIC STRUCTURE OF A GROUP
OF PHASES

SVATOSLAV STANEK

New subgroups of the group of the phases of all differential equations (q):
y"=¢q(t)y oscillatory on R=(— o, ») are found and investigated.

1. Throughout this paper the differential equation:

(q) - y"=q(t)y, q€Cx,

will be inderstood to be oscillatory on R. Hence any nontrivial solution of this
equation has infinitely many zeros on the right and on the left of each point ¢,
toeR. '

Following O. Bortivka [1] we introduce the basic definitions and properties. We
say that the function a is a first phase of (q) if it is continuous on R and there exist
independent solutions #, v of (q) such that for all z, teR where v(t)#0:

tga(t)=-zz—3. Any first phase a of (q) has three properties as follows:
1) aeCxy;
2) a’(t)#0 for teR; @))]

3) ‘Lisnma(t)=(v-sgna’)-oo (v= il_).

On the other hand, every function a with all the foregoing three properties is the

first phase of (q) — oscillatory on R — where q(¢):= —{a,t} — a'*(t), teR;
_a(8) _ 3 (a"())*

(@0 =3z ~ 3 (@@)

If we define an algebraic operation of composition of functions on the set of all
functions a possessing the properties stated in (1), then the set is a group called the
group of phases which we denote by . The elements of & are exactly all the first
phases of all equations (q) that are oscillatory on R.

Let teR and y be a nontrivial solution of (q) vanishing at ¢: y(t)=0. Let us

denote by @(¢) the first zero point of y lying to the right of ¢. By assumption the
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equation (q) is oscillatory on R and thus the function ¢ is defined on R. The
function @ is called the basic central dispersion (hereafter more briefly dispersion)
of (q).

If a, @ are a first phase and the dispersion of (q), respectively, then there applies
the Abelian relation: ao@(t)=a(t)+mx-sgna’, teR.

In the group & there exist two important subgroups, namely, the fundamental
subgroup ¢ and the elementary subgroup $. The elements of the fundamental
subgroup € are exactly all the first phases of the equation y”"= —y. It is well know
that any element in the decomposition &/, € of the group & into the right classes
generated by the fundamental subgroup ¢ contains exactly all the first phases of
one and only one equation (q). The subgroup $ is formed by the elementary
phases, that is, by those phases a for which a(t+x)=a(t)+ 7 -sgna’. It follows
from [1], page 147, that any element of the decomposition (3/,$ contains exactly
all the first phases of those equations (q) having the same dispersion. There holds
the inclusion &> $H > ¢ between &, 9 and C. :

A further subgroup of & is the subgroup &, conjugate to € with respect to the -
element a, a € G: G, =a~'Ca. Thereby if a is the first phase of (q), the elements
(8, are exactly all the solutions on R of

(qq) —{X, t} + X"*(t)- q.X(t)=q ().

In what follows we present some further subgroups of & in particular such whose
elements belong to “‘the union of some elements of the decomposition &/,&”". In
other words there are involved subgroups of ¢ having the following property: If a
is an element of such a subgroup and «a is the first phase of (q), then all the first
phases of (q) belong to this subgroup. Such subgroups must always contain the
fundamental subgroup €. . '

Before proceeding with the main part of this paper we will explain the use of our
notation. f~' denotes the inverse to f (if there exists one). For a positive integer n

the n-th iteration of the function f, fofo...of, will be marked by f!"!. For a negativ

integer n, f"! means f”'of 'o...of ', This notation will not be used only in case of

dispersions, where the established notation ¢, is used in place of ¢@"'. Z and N
denote the sets of all non-zero integers and of positive integers, respectively.

2. We shall be concerned with the subsets ©, S, of &, where reR, r>0: ¢ e S
iff there exist m € N, n € N such that a(t + mr)=a(t)+nm-sgna’ and a € S, iff
there exist m eN, n €N such that a(t+mr)=a(t)+nr-sgna’ (t eR).

Lemma 1. € is a subgroup of the group &, 9 c S, and Ca =& for-every
ae®.
Proof: Let a €S, a,€©. Then a(t+ mrx)=a(t)+nn-sgna’, a,(t +mx) =
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= a,(t)+n,w-sgnai, where m, m,, n, n, are from N. The following relations
aoa(t+mm,w) = a,(a(t) + nmm-sgna’) = aa(t) + nny-sgna'-sgnai =
= apa(t)+nnm-sgn(aea) and a™'(t+nx) = a '(t) + ma-sgna™" yield
a,0a €S, a7 € S. The statement Y = S is immediate.

Let e € €. Then e(t +7)=¢e(t)+m sgne’, eca(t+ma)=e(a(t)+nx-sgna')=
= goa(t) + nm-sgna’-sgne’ = goa(t) + nm-sgn(eoa)’. Therefore eo.a €S for
every a €S and we have Ca cG.

Remark 1. The elements of & play an important role in searching for equations
of the type (Q+1): y"=(q(¢t)+A)y, where A eR and q is a periodic function with
the period 7, g € Cx, with the property that there exists such a sequence (finite or
infinite) {4.}, A, € R, A;# A, for i # j, where the equations (q +A,) have all solutions
periodic or halfperiodic with period 7 (see [2]).

Lemma 2. a €© iff a(t)=n-y (;t) for teR, where meN, neN and y€ 9.
Proof:Let @ € ©. Then there exist m e N, n e N: a(t + mx)=a(t)+nx-sgna’.

1
Put y(¢): = ;a(’mt), teR. Then sgny’ = sgna’, y(t+x) = %a (mt+mn) =

S|

[a(mt) + nx-sgna'] = %a (mt)+mx-sgny' = y(t) + w-sgny’';thusye .

Letnowye9,meN,neNandputa(t): = n-y (%) ,teR.Thensgna’'=sgny’,
a(t+mn) = n-y (mi+n> =n-y (—é’—) + nx-sgna’ = a(t) + na-sgna’; thus
aec. :

Remark 2. For @ € © there exist m eN, n eN: a(t + mrx) = a(t)+nx-sgna".
The integers m, n are not uniquely associated with a, which becomes readily
apparent from the fact that for every k, keN, there is a(t+kmn) =
=a(t)+knn-sgna’'. However, among all the positive integers m with a(t+mx)=

=a(t)+nx-sgna’ we can always find the smallest positive integer that we again
denote by m. To this number m there belongs exactly one positive integer n.

Lemma 3. Let a and @ be a first phase and the dispersion of (q), respectively.
Then a €S, a(t+mmr) = a(t)+nr-sgna’, meN, neN if and only if @.(t) =
= t+mm.

Proof: Let @ and ¢ be a first phase and the dispersion of (q), respectively. Let
a€eC, a(t+mn) = a(t) + nw-sgna’, meN, neN. Then from the Abelian
relation a.@.(t) = a(t) + nm-sgna’ it follows that @,.(t) = ¢+ mx. Let there now
exist positive integers m, n: @,(t) = t+mmr. Then a.@,(t) = a(t+mmr) =
= a(t)+nn-sgna’ and therefore a € S.

Lemma 4. Let a, ¢(B, ¢) be a first phase and the dispersion of (q) ((p)),
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respectively. Then a =g.f3, where 0 €S, o(t+mn) = o(t)+nm-sgng’, meN,
n eN, if and only if @, = @,..

Proof. Let therefore a, (B, ¢) be a first phase and the dispersion of (q) ((p)),
respectively, and let a = .3, where p €S, o(t + mn) = o(t)+na-sgnp’, meN,
neN. Then ao@,.(t) = 0fc@n(t) = 0(B(t) + mm-sgnf’') = oop(t) +
+nm-sgnf’'-sgno’'=a(t)+nr-sgna’ =ao.@.(¢) and from this @, =¢@,. Let us
now suppose that @, =@,. Then ao@,(t) = a(t)+nm-sgna’, fo@..(t)=p(t)+
+ ms-sgnP’, hence Bo@,of~'(t) = t+mm-sgnf’. Let us put o: = aoff™". Then
o(t+mm-sgnf’') = aof ' fo@.of ' (t) =@ (t) = aof'(t)+nmx-sgna’' =
= o(t)+nx-sgna’. Thus we proved: o(t+mnr) = o(t)+nm-sgna’ sgnf’'=
= o(t)+nm-sgnp’'. Consequently o €S and o(t+mm) = o(t)+nm-sgno’.

"Definition 1. Let ¢ and ¢ be the dispersions of (q) and (p), respectively. We say
that (p), (q) are in the relation ~ and write (p)~(q), iff there exist positive
integers m, n: @, = Q.

Lemma 5. The binary relation ~ is an equivalence on the set 2 of all equations
(q) oscillatory on R. The decomposition of the set 2 defined by the equivalence ~
will be denoted by 9.

Proof: It is evident that the relation ~ is reflexive and symmetric. We will
prove its transitivity, too. Let ¢, ¢ and ¢ be the dispersions of (q), (q,) and (q.),
respectively and let (q) ~(q.), (q:) ~(q.). Then there exist positive integers n, n,,
n,, n, for which @, = @.,, @, = @.,. Then, naturally, @,:, = @.,;, = @n,, and conse-
quently (q)~(q.).

Theorem 1. The sets &/,© and 2 are isomorphic. Each element of the
decomposition &/,& contains all the first phases of exactly those equations (q)
that belong to the same decomposition 9.

Proof: Let a and f3 be first phases of (q) and (p), respectively, which lie in the
same element of the decomposition &/,&. Then by Lemma 4 (q)~(p) and the
equations (p), (q) belong to the same element of the decomposition 2. Let (p), (q)
be equations for which (p) ~(q) and let a(f) be a first phase of (q) ((p)). Then by
Lemma 4 a =0.f, 0 € S, which signifies that a and B belong to the same element
of the decomposition &/,&

Let us look now at the subsets ©,, reR, r>0 and at their relation to .

Lemma 6. Let reR, r>0. Then ©, is a subgroup of the group of phases .
Besides, y € S, if and only if a(t): = gy (:Lr t> , teR is an element of <.

Proof: Let re R, r >0. By analogy with the proof of Lemma 1 we can verify
that S, is a subgroup of & (this time we write r in place of 7). Let now y e &,,

y(t+mr) = y(t)+nr-sgny’, meN, neN and a(t): = J;I'Y (ét) teR.
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Then a(t+mn) = ];t-y (;:-t+mr> = %[y(it)-knr-sgny'] = ];t-y (ﬁt) +

+nm-sgna’'=a(t)+nn -sgﬁa', hence o € ©. Conversely, suppose that a €@,

a(t+mn) = a(t)+nrx-sgna’,meN,neN. Put y(¢): = é a( ) teR. Then

r .1 r 1 r
y(t+mr)—na (rt+mn) = 2 [a (rt) + nxm- sgna] p ) +
+ nr-sgna’ = y(t)+nr-sgny’, therefore ye©,.

Lemma 7. Let reR, r>0. Then G, =6 iffi is a rational number.

Proof: Let r=]7(n, keN, leN and y€S,. Then there exist meN, neN:
y(t+mr) = y(t)+nr-sgny’. From this we obtain y(t+mkn) = y(t+mir) =
= y(t). + nlm-sgny’, hence ye®©. This proves S, c©. Let a €. Then:
a(t+mn) = a()+nn-sgna’, meN, neN. Therefore a(t+milr) =
= a(t+mkn) = a(t)+nkx-sgna’ = a(t)+nlr-sgna’, hence a € S,and thus
also © = ®,. Consequently S=G,.

Let now G, =&, where reR, r>0. It follows from Lemma 1 that € <& and
thus also €<=&,. To each ¢, e€€ there exist m=m(e)eN, n=n(e)eN:
e(t+mr)=¢€(t)+nr-sgne’. Let g,€ € be such that (¢t +c)=¢6(t), teR, ¢>0
if and only if c=km, keN. Such & always exists and to it also mg€N,
no€N: go(t +mor)=¢go(t)+ nor-sgnes, so that we get £6(t + mor) =e€i(t). Then,

. . s .
naturally, there exists s e N with mer =sx, r = xt. This proves our lemma.
(1)

Corollary 1. Let reR, r>0. Then €&, if and only if r=17<n, keN, leN.

Proof: If €c&,, then we readily get from the second part of the proof of

Lemma 7r =I—( n,k eN, [l eN. If, conversely, r =I—€ x,keN,l EN, then we get from

l l
Lemma 7 © =&, and from this, according to Lemma 1, we come to €=, .
Remark 3. It follows from Lemma 7 that instead of © we can consider ©,,
where r is a rational multiple of 7, because just in this case © =S, . Further, from
Lemma 7 and Corollary 1 it follows that &, is formed “by the union of some
elements of the decomposition of &/,&” iff S =6,.

3. Now we shall be concerned with the subsets 2, of &, where ¢ € ® defined as
follows: a €U, iff there exist m € Z, n € Z such that 9'l,q = a.d".

First we will prove that for each ¢ € ® the set U, is a subgroup of & which is in
particular evident for & =id, when %, = . As the main result we shall prove that if
the order #, # € ® is equal to ©, ord# = o (that is 3!« 9! for alln €N, meN,
n#m), and %, has the property: €. =9, for every a e%,, then Ao =C.
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Lemma 8. Let ¢ € ®. Then 3, is a subgroup of the group & of phases.

Proof:Let a €Uy, a, € Ay. Then "o = ao?™), ™o, = a,00"™, where m, n,
m,, n, are from Z. From the relations 3" oaoa, = ao®"™oat; = aot;o™™,
' ha™ = a .03 we obtain: aca; €Wy, a €W,

Remark 4: Let a € %,;, 3 €®. Then "o = ao?'™, m € Z, n € Z. At the same
time #""ba = o3 eac?' ! = ao?'™". Thus without any loss of generality
we can suppose m €N. Let k e N. Then 3"*™a = ao?*" from which it becomes
apparent that m (eN) and thus also n (€ Z) are not uniquely associated with a.
From now on we shall suppose m to be the smallest positive integer with
#™sa = a-9'". In this way the positive integer m is uniquely associated with every
a € Ay. Now we will investigate when exactly one and only one n (€ Z) corresponds
to the above mentioned m. If 3" = ao?'" and #"oa = a-#'™, then ¢ =g,
therefore 9" )(t) =t(t e R) and n# n, exactly in the case of ¥ being of a finite
order, ord® <« (exist meN, neN, m#n: #"'=9"). Herefrom we can con-
clude: With every a € 2, we can uniquely associate an ordered pair (m, n), m €N,
neZ, 3"a = a0 exactly if ord ¥ = o,

Theorem 2. Let ¢ € &, ord® = «. Then there is Ca c U, for every a € A, if and
only if Ay =C.

Proof: Let 3 €®, ord# = . Let Ay =&. If @ €U,, then we get from Lemma 1
Cac,. )

Let now %, have the property by which Ca =, for every a €,, thus in
particulary € < ,. Therefore there exists to every e€ € m =m(e) (eN) and
n=n(e) (eZ): e =¢.0"). By Remark 4 we can uniquely associate the
numbers m, n with every € € € which will still be presupposed in the next part of
the proof. Since the function ¢ + a is an element of € for every a (€ R), there exist
numbers m =m(a) (eN), n=n(a) (€Z) uniquely associated with every a,
ae(0,1):

Nt +a)=9"(t)+a, teR.
The cardinality of N and Z is less than the cardinality of (0,1), hence there exist i,

(eN), ko (eZ) and a sequence {a,}, a, € (0,1), a;#a; for i#], lima, = a,:

(¢t +a,)=0"%Nt)+a,,teR, n=1,2,3, ... (2)
Letting n tend to o in (2), we conclude
(¢ + a,) = 3%(t) +a,, t€R.
Herefrom and according to (2) we get |

P +a,) = 9+ an) _
: a, —dao -

, teR, n=1,2,3,.... 3)
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In assigning to the limit in (3) (n — «) from ¢ € Cx we get 3'!'(t +a,)=1for t eR,
which gives 3t (t)=1 for ¢t € R. Thus there exist d (e R) satisfying

d%(t)=t+d, teR. (4)

Hereby d # 0, which follows from the assumption ord ¢ = «. From (2) and (4) we
come to 3"!(¢t + a,) =t +a, + d =9"(t) + a,, hence #*!(¢) =t + d and again, with
respect to ord¢ = , we obtain i, = k,, so that (2) may be written as

l?li°'(t+an)=l9[‘°'(t)+a", teR, n=1,2,3,.... 6)

By derivation of (4) we get: &' ")(z)- #'s3% ?(¢)-...4'(¢t) = 1. Substituting
#(t) instead of ¢ into the last formula and applying (4) we get: ¢'(t+
+d) 3o N(¢)...0'0(t)=1, which gives #'(t+d)=9'(¢) for teR. Thus
there exist b (eR): 3(t+d)=3(t)+b. From 3(t +d)=3.0%(¢) =% (1) =
=9(t)+b it follows #'!(t)=¢t+b and by taking account of (4) we have b=d
and #(t +d)=19(t)+d. Consequently sgn' =1.

Let £ €€ such that ’'(¢ +h)=¢€'(t), h#0, only if h =kx for some k € Z. The
existence of such an € follows from the properties of the elements of the group €.
To such an ¢ there uniquely exists m (eN), n (€ Z): 3"'oe = £,8"! and therefore
there is also 3#'"loe = g.3'"), with respect to (4) it gives £(¢t) +md =¢&(t + nd).

Herefrom &'(t)=¢'(t+nd) and thus nd =kn, keZ. Consequently d =-§ 7,

) (f +;k n) =3(t) +n£ 7. From this #%"(¢t)=t+nd =t + kx and from definition

© it becomes immediately obvious that 9, = S. This completes the proof of the
Theorem. '

Remark 5. If ord# = » and €a = ¥, for every a € %,, then it follows from the
proof of Theorem 2: sgnid' =1, & (t +ll_c J'l,’) =93() +§c x, ()=t +,7€ nt, where
ioeN, keZ, leZ. "

Corollary 2. Let 3 € ®. Then W, =@ if and only if ord ¢ <,

Proof: Let ord® =i, i <. Then #')(¢t) =t and for every a € & #"a = a.d",
hence a €A, and A, = .

Let A, =@ and suppose ord# = . From the proof of Theorem 2 we have the
existence of i, (e N) and d (e R): 3"'(t) =t + d. We can always find an a in & such
that a’ is not a periodic function; let a, be one of them. Then there exist m, and n,:
Fmololoq, = @po}!™!, which is equivalent to the equality ao(f) + mod = ao(t + nod)
from which it follows that aé(t) = ai(t + nod). According to the assumption, as is
not a periodic furiction and therefore d = 0. Herefrom #'!(t) =¢ and & has a finite
order (Zi,). Thus, we have proved that ord? <o when %, =&.
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O AJITEBPAUYECKOM CTPYKTYPE TI'PYIIIIbI ®A3
CsatocnaB CTaHek
Pe3tome

B paGore BBeeHbI M MCCAERYIOTCA HOBble noarpynnbl rpymnsl & da3 auddepenunansubix
ypaBHenuit (q): y"=q(t)y, q € Cp, R=(—», ®), pemienust koTopbix kone6worcs B R. Ecin 0603-
Ha4uTL N MHOXECTBO HaTYpPaJIbHBIX YHCEN, Z MHOXECTBO LebIX ynuces U 3! n-10 nrepauuio GyHkunu
3, To

S={ae®:a(t+ma)=a(t)+nx-sgna’,meN, n eN}
Np={ae®: ¥ a=acd",meZ, neZl}, %€,

sBnsoTCs noarpynnamu rpynmnst . Mccnenyrores Toxe cesizu vexay S u ¥,. IToka3sano, yro ecin €
rpynna a3 auddepeHuuanbHoro ypasHenus y"= —y u ¢, ¢ € &, umeer GeckoHeUHbIH MOPSAOK, TO
N, =S Torga u Tonbko Toraa, ecnu Ca = N, nns scex a € W,.
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