Beloslav Riečan; Marta Vrábelová
On the Kurzweil integral for functions with values in ordered spaces. II.

Mathematica Slovaca, Vol. 43 (1993), No. 4, 471--475

Persistent URL: http://dml.cz/dmlcz/131956

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1993

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these *Terms of use.*

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project *DML-CZ: The Czech Digital Mathematics
Library* http://project.dml.cz
ON THE KURZWEIL INTEGRAL FOR FUNCTIONS WITH VALUES IN ORDERED SPACES II

B. RIEČAN*) — M. VRÁBELOVÁ**) *(Communicated by Miloslav Duchaň)

ABSTRACT. A limit theorem is formulated and proved for uniform convergent sequences of Kurzweil-Henstock integrable functions from a compact interval to a Riesz space.

The paper is a continuation of the article [5]. In the article there were presented the definitions and some elementary properties of the Kurzweil integral. This paper contains a limit theorem.

We recall that a function $f: I \rightarrow X$ ($I = (a, b) \subset \mathbb{R}$, X being a boundedly σ-complete, σ-distributive linear lattice, i.e. for every bounded double sequence $(a_{ij})_{i,j}$ such that $a_{ij} \downarrow 0$ ($j \rightarrow \infty$, $i = 1, 2, \ldots$) it is $\bigwedge_{\varphi \in \mathbb{N}} \bigvee_{i} a_{i\varphi(i)} = 0$), is called integrable (in the Kurzweil sense) if there exist $x \in X$ and a bounded double sequence $(a_{ij})_{i,j}$ such that $a_{ij} \downarrow 0$ ($j \rightarrow \infty$, $i = 1, 2, \ldots$) and for every $\varphi: \mathbb{N} \rightarrow \mathbb{N}$ there exists $\sigma: I \rightarrow (0, \infty)$ such that for every $D \in A(\sigma)$

$$|x - S(f, D)| < \bigvee_{i} a_{i\varphi(i)}.$$

Here $A(\sigma)$ consists of all decompositions D of I such that $D = \{(J_1, t_1), (J_2, t_2), \ldots, (J_n, t_n)\}$, where $J_i \subset (t_i - \sigma(t_i), t_i + \sigma(t_i))$, and $S(f, D) = \sum_{i=1}^{n} f(t_i)m(J_i)$, where $m(J_i)$ is the measure of the interval J_i, is the integral sum.

If $x_n, x \in X$, then $x_n \rightarrow x$ (with respect to the ordering) if and only if there exist $a_n \in X$, $a_n \downarrow 0$ and $|x_n - x| \leq a_n$ for all n.

AMS Subject Classification (1991): Primary 28B15.
Key words: Riesz space, Kurzweil-Henstock integral, Limit theorem.
It is possible to prove that a sequence \((x_n)_n \subset X\) converges to \(x \in X\) if and only if \((x_n)_n\) is bounded and

\[
x = \bigwedge_{n=1}^{\infty} \bigvee_{i=n}^{\infty} x_i = \bigvee_{n=1}^{\infty} \bigwedge_{i=n}^{\infty} x_i.
\]

We say that \(f_n \to f\) uniformly \((f_n, f : I \to X)\) if and only if there exist \(a_n \in X, a_n \searrow 0\) such that

\[
|f_n(t) - f(t)| \leq a_n
\]

for every \(t \in I\) and every \(n\).

Lemma 1. If \(f_n : I \to X\) is integrable for \(n = 1, 2, \ldots\), \(f_n \to f\) uniformly and \(f\) is bounded, then \(\lim_{n \to \infty} \int f_n \, dm\) exists.

Proof. It is sufficient to show that the sequence \((\int f_n \, dm)_n\) is bounded and

\[
\bigwedge_{n=1}^{\infty} \bigvee_{i=n}^{\infty} \int f_i \, dm \leq \bigvee_{n=1}^{\infty} \bigwedge_{j=n}^{\infty} \int f_j \, dm.
\]

The function \(f\) is bounded, then there exists \(h \in X, h > 0\) such that \(|f(t)| \leq h\) for all \(t \in I\).

If \(f_n \to f\) uniformly, then there exists a sequence \((a_n)_n \subset X, a_n \to 0\) \((n \to \infty)\) and for any \(t \in I\)

\[
|f_n(t) - f(t)| \leq a_n
\]

for all \(n\). Hence

\[-h - a_1 \leq f_n(t) \leq h + a_1 \quad \text{and} \quad -2a_n \leq f_i(t) - f_j(t) \leq 2a_n\]

for any \(t \in I\) and \(i, j \geq n\). It is evident that if for \(f : I \to X, f(t) = a\) for all \(t \in I\), then \(\int f \, dm = am(I)\). By Theorems 5 and 6 in [5] for any \(n\) we have

\[
(-h - a_1)m(I) \leq \int f_n \, dm \leq (h + a_1)m(I)
\]

and

\[-2a_nm(I) \leq \int (f_i - f_j) \, dm = \int f_i \, dm - \int f_j \, dm \leq 2a_nm(I)\]
for $i,j \geq n$.

Then the sequence $\left(\int f_n \, dm \right)_n$ is bounded and

$$\bigvee_{i=n}^{\infty} \int f_i \, dm \leq \bigwedge_{j=n}^{\infty} \int f_j \, dm + 2a_n m(I)$$

for all n and hence

$$\bigwedge_{n=1}^{\infty} \bigvee_{i=n}^{\infty} f_i \, dm \leq \bigvee_{n=1}^{\infty} \bigwedge_{j=n}^{\infty} f_j \, dm.$$

Theorem 2. Let $f_n : I \to X$ be integrable for $n = 1, 2, \ldots$, $f_n \to f$ uniformly and f be bounded. Then f is integrable and $\int f \, dm = \lim_{n \to \infty} \int f_n \, dm$.

Proof. By Lemma 1 $\lim_{n \to \infty} \int f_n \, dm = c$ exists and hence there exists a sequence $(c_n)_n \subset X$, $c_n \searrow 0 \ (n \to \infty)$ and

$$\left| \int f_n \, dm - c \right| \leq c_n.$$

for any n.

The function f_n is integrable and then there exists a bounded double sequence $(a_{nij})_{i,j} \subset X$ such that $a_{nij} \searrow 0 \ (j \to \infty, \ i,n = 1,2,\ldots)$ and for every $\varphi : \mathbb{N} \to \mathbb{N}$ there exists $\sigma_n : I \to (0, \infty)$ such that for every $D \in A(\sigma_n)$

$$\left| \int f_n \, dm - S(f_n, D) \right| < \bigvee_i a_{nij}(i+n+1).$$

When $f_n \to f$ uniformly, then there exists a sequence $(b_n)_n \subset X$, $b_n \searrow 0$ and $|f_n(t) - f(t)| \leq b_n$ for any $t \in I$ and all n.

Let $\varphi \in \mathbb{N}^N$. Put $k = \min_j \varphi(j+1)$ and take $D \in A(\sigma_k)$, $D = \{(J_1, t_1), (J_2, t_2), \ldots, (J_r, t_r)\}$.

Then

$$|S(f, D) - c| \leq |S(f, D) - S(f_k, D)| + |S(f_k, D) - \int f_k \, dm| + |\int f_k \, dm - c|$$

$$< \sum_{i=1}^{r} |f(t_i) - f_k(t_i)| m(J_i) + \bigvee_i a_{k\chi \varphi(i+k+1)} + c_k$$

$$\leq b_k \sum_{i=1}^{r} m(J_i) + \bigvee_i a_{k\chi \varphi(i+k+1)} + c_k$$

$$= b_k m(I) + c_k + \bigvee_i a_{k\chi \varphi(i+k+1)} = d_k + \bigvee_i a_{k\chi \varphi(i+k+1)},$$

473
where \(d_j = b_j m(I) + c_j \) for \(j = 1, 2, \ldots \), \(d_j \downarrow 0 \ (j \to \infty) \), \(d_k = d_{\min \varphi(j+1)} \) \(= \bigvee_i d_{\varphi(i+1)} \). Put \(b_{1ij} = d_j \) for \(i, j = 1, 2, \ldots \) and \(b_{n+1ij} = a_{nij} \) for \(n, i, j = 1, 2, \ldots \).

Now

\[
|S(f, D) - c| < \bigvee_i d_{\varphi(i+1)} + \bigvee_i a_{k+i\varphi(i+k+1)}
\]

\[
= \bigvee_i b_{1i\varphi(i+1)} + \bigvee_i b_{k+i1\varphi(i+k+1)}
\]

\[
\leq \sum_{n=1}^{\infty} \bigvee_i b_{n+i\varphi(i+n)}.
\]

There exists \(h \in X, \ h > 0 \) such that \(|f(t)| \leq h \) for any \(t \in I \), since \(f \) is bounded. Then

\[
|S(f, D) - c| \leq h \cdot m(I) + |c| = a,
\]

when \(a \in X, \ a > 0 \) and

\[
|S(f, D) - c| \leq a \wedge \left(\sum_{n=1}^{\infty} \bigvee_i b_{n+i\varphi(i+n)} \right).
\]

By Lemma 2 in [7] there exists a bounded double sequence \((a_{ij})_{i,j} \subset X\), \(a_{ij} \downarrow 0 \ (j \to \infty, \ i = 1, 2, \ldots) \) and

\[
a \wedge \left(\sum_{n=1}^{\infty} \bigvee_{i=1}^{\infty} b_{n+i\varphi(i+n)} \right) \leq \bigvee_{i=1}^{\infty} a_{i\varphi(i)}.
\]

Therefore there exists \(c \in X, \ c = \lim_{n \to \infty} \int f_n \ dm \) and the sequence \((a_{ij})_{i,j} \subset X\), \(a_{ij} \downarrow 0 \ (j \to \infty, \ i = 1, 2, \ldots) \) and for every \(\varphi \in \mathbb{N}^\mathbb{N} \) there exists \(\sigma: I \to (0, \infty) \ (\sigma = \sigma_{\min \varphi(j+1)}) \) such that

\[
|S(f, D) - c| \leq \bigvee_{i=1}^{\infty} a_{i\varphi(i)}
\]

for any \(D \in A(\sigma) \). Hence \(f \) is integrable and

\[
\int f \ dm = \lim_{n \to \infty} \int f_n \ dm.
\]
ON THE KURZWEIL INTEGRAL ...

REFERENCES

Received January 2, 1992

*) Mathematical Institute
Slovak Academy of Sciences
Štefánikova 49
814 73 Bratislava
Slovakia

**) Department of Mathematics
Pedagogical Institute
Faculty of Sciences
Farská 3
949 74 Nitra
Slovakia