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ABSTRACT. A limit theorem is formulated and proved for uniform convergent
sequences of Kurzweil-Henstock integrable functions from a compact interval to
a Riesz space.

The paper is a continuation of the article [5]. In the article there were pre-
sented the definitions and some elementary properties of the Kurzweil integral.
This paper contains a limit theorem.

We recall that a function f: I — X (I = (a,b) CR, X being a boundedly
o -complete, o -distributive linear lattice, i.e. for every bounded double sequence
(aij)i,j such that a;; N O (j = 00, i=1,2,...)itis A Vayu =0),is

@€EN 1@
called integrable (in the Kurzweil sense) if there exist £ € X and a bounded
double sequence (a;);,; such that a;; \, 0 (j — 00, i =1,2,...) and for every
¢: N — N there exists o: I — (0,00) such that for every D € A(0)

|z — S(f, D)| < \/ai¢(i) .

Here A(0) consists of all decompositions D of I such that D = {(J1,t1), (J2,t2),
ooy (Jnytn)}, where J; C (t; —o(t;), ti+o(t:)), and S(f, D) = ¥ f(t:)m(J;),
i1 -

where m(J;) is the measure of the interval J;, is the integral sum.

If z,,z € X, then =, — z (with respect to the ordering) if and only if there
exist a, € X, a, \\0 and |z, — z| £ a, for all n.
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It is possible to prove that a sequence (z,), C X converges to z € X if and
only if (z,)n is bounded and

(e o] o0
= A V==V
n=1 n=1

We say that f, — f uniformly (f,, f: I — X) if and only if there exist
a, € X, a, \, 0 such that

<3
'~

ZT;.

i=n i=n

lfn(t) = fF(B) S an
for every t € I and every n.

LEMMA 1. If f,: I — X is integrable for n = 1,2,..., fo — f uniformly
and f is bounded, then lim [ f, dm exists.
n—oo

Proof. It is sufficient to show that the sequence ( S fn dm)n is bounded

and
AV [fams A [1;am.

n=1i=n n=1j=n

The function f is bounded, then there exists h € X, h > 0 such that |f(¢)| < h
forall teI.

If f, — f uniformly, then there exists a sequence (a,), C X, a, — 0
(n —o0) and for any t € I

[fn(t) = F(O)] S an
for all n. Hence
—h—a éfn(t) Sh+a; and - 2a, éfi(t)_fj(t) < 2a,

for any t € I and 4,5 2 n. It is evident that if for f: I — X, f(t) = a for all
t €I, then [ fdm=am(I). By Theorems 5 and 6 in [5] for any n we have

(—h —ay)m(I) < / fn dm < (b + ag)m(I)
and
—2a,m(I) £ /(fi — fj)dm = /fi dm — /fj dm £ 2a,m(I)
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for i,j 2 n.
Then the sequence ( [ fa dm)n is bounded and

o0 o0
V/fi dm = /\ /fj dm + 2a,m(I)
i=n Jj=n

for all n and hence

/\\//f,—dmg\//\f,-dm.
n=1i=n

i= n=1j=n

THEOREM 2. Let f,: I — X be integrable for n = 1,2,..., f, — f uni-
formly and f be bounded. Then f is integrable and f fdm = lim f fndm.
n—o0

Proof. By Lemma 1 lim f fndm = c exists and hence there exists a
n—oo

sequence (¢n)n C X, ¢p \,0 (n — o0) and
}/fn dm—c|§cn.

for any n.

" The function f, is integrable and then there exists a bounded double se-
quence (@nij)i; C X such that ani; \\ 0 (j — o0, 4,m = 1,2,...) and for
every ¢: N — N there exists 0, : I — (0,00) such that for every D € A(o,,)

[ [ o =5 (s D] <V nitssns-

When f, — f uniformly, then there exists a sequence (b,)n, C X, b, \, 0 and
|fn(t) — f(t)] S by for any t € I and all n.

Let ¢ € N¥. Put k = minp(j + 1) and take D € A(ox), D = {(J1,t1),
j

(Jast2)y- -y (Jrstr) }
Then

1S/, D) =l 1, D) = 8(fa, D) + [$(fe: D) = [ ficam|+ | [ 1 dom |
< Z [f(t:) — fr(t)lm(Ji) + vakicp(i+k+1) + cx
i=1 i
< b Zm(Jz—) + Vakup(i+k+1) +ck
=1 i

= bkm(I) + ¢k + \/ Qkip(i+k+1) = di + \/ Akip(i+k+1) »
i i
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where dj = bjm(I)+Cj for j =1,2,..., dj N\ O (] — OO), di = dminnp(j+l)
i
= Vd¢(i+1). Put blij = dj for i,7 = 1,2,... and bn+1ij = Qpij for
€
n,t,j=12,....
Now

IS(f, D) — c| < \/ dyi1y + V ipgi+k+1)

= V brip(i+1) + V bkt 1ip(itk+1)
i i

)
é Z V bnicp(i-f—n) .

n=1 i

There exists h € X, h > 0 such that |f(t)] £ h for any ¢t € I, since f is
bounded. Then
IS(f,D)—c| S h-m(I)+|c|=a,

when a € X, a >0 and

|S(f,-D) —Cl é al (vanicp(i+n))-

n=1 1

By Lemma 2 in [7] there exists a bounded double sequence (a;j)i; C X,
a;j \\O (j—o00,i=1,2,...) and

[o SIS oo
al (2:1 V bni¢(i+n)> = V Qip(i) -

Therefore there exists c € X, ¢ = lim f fn dm and the sequence (a;;)i; C X,
n—oo

aij \\ 0 (j — oo, i = 1,2,...) and for every ¢ € NN there exists
o: 1 —(0,00) (0 = Omine(j+1)) such that
J

IS(f, D) — c| £ \/ aip)

i=1

for any D € A(0). Hence f is integrable and

fdm = lim /fndm.

n—00
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