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ON FUNCTIONAL INTEGRABILITY OF SOLUTIONS
OF DIFFERENTIAL
EQUATIONS WITH DEVIATING ARGUMENT

VINCENT SOLTES—ANNA HRUBINOVA

In papers [2] and [3] there are investigated asymptotic properties of functiong?ly
integrable solutions of some forms of differential equations. In this paper some
results of the above papers are generalized for a more general differential equation.

Consider the differential equation of n-th order of the form

(Ga-1x(0))" + f(t, x(g(1))) = h (1), 6))

where n=2 and G,-, is a differential operator defined by
G,._1X(t) = a,._l(t)(a,._z(t)(...(a;(t)x’(t))’.. .)')',
where the functions

a;: [to, ©)> R, h: [to, ©)> R,
f: [to, ®) X R—>R, g: [to, ®)—> R,

are continuous functions and

a(®)>0, i=1,..,n—-1, g'()=0, lim g(t)=rco.

We introduce the notation:

Gox()=x(1), Gix()=a()(Gax (D). 1SiSn—1, @
¢ ds, 2 ds, m=1 ds,
],,._l(t, s) =J: m ’[ _113(S3).” i _—a...(s,..) (3)

from m=2,3,..,n—-1
]o(t, S)=1.

We restrict our attention to non-trivial solutions of (1) which exist on the interval
[to, w).

A solution x(t) is called oscillatory, if it has an infinite sequence of zeros tending
to infinity. Otherwise, we call x(t) a non-oscillatory solution.
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Definition. A solution x(t) of (1) belongs to the class L(m, W(+)), if
0<j s"W(|x(s)]) ds <, m-real number,

where W: R— R, W(|u|)=0 is a given continuous non-decreasing function.
If in the above definition we put m =0 and W(u) = u”, p >0, then we obtain the
well-known class L(0, |-|?)=L,(0, ), i.e.

0<J [u(s)|P ds < oo.
0

Lemma 1. Let a;(t) >0 on [to, ®). Then there exist positive constants a; such that
Ji(t, )= adiaa(t,s) for i=1,2,..,n-3, t>sZt.
c;roof. See in paper [1], Lemma 1.
Lemma 2. Let J._i(t, t)=K-t""', K>0, a:(t)>0>0. If the function u(t)
satisfies the following conditions
|Gnu()]=M for t=t, and mz=1, 4)

ueL(m—-1, W(+)), (5)
then ,ILT u(t)=0.

Proof. From definition and condition (5) it follows that lim inf |u(t)|=0. We

shall prove that also lim sup |u(t)| =0. Suppose that lim sup |u(t)|>€e>0. Then
there exists a sequence {t.}n-1, { &, }n=1 such that t, > », o, > ® forn—> o, o, <t,,
|u(t)| > e, |u(a,)| =§ and for every t e (a,, t,.)lu(t)|>§. Let ai=t>1. In each

interval (a., t.) there exists a number €. such that

u/(gn)zwl ,

th— Qn
hence

ey =@l ©)

From relation (4), using Lemma 1 and the assumption about J..-1(t, t)) we obtain

lai(t)u’ (1) = Kut™",
whence
[u' ()| = Kat™ "
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With regard to the stated, from relation (6) we obtain

_ﬁ__s m__ m
2K2_t,. an. @)

Since ]u(t)|>§ for every te(a,,t,), then from (5) and (7) we get

oo>fsm—'W(|u(s)|) dség j s W(lu(s)|) ds =

=W (f) > = Gn_ o,
n=1

2 m

This contradiction proves that the case of lim sup |u(f)|>¢>0 is impossible.
t—®

Therefore !im u(t)=0.

Remark 1. If ai(t) = a2(t) = ... = a.-1(t) = 1, then we obtain Lemma 1 from [2].
Let us start with the assumptions:
If(t, w)| Za(@®)|W(u)|, u-W(u)>0 for u+0 (A1)
f(t, W) = b(OW(|ul) (A2)
If(e, W =b@[W(u]”, p>1 (As)

where the functions a, b: R,—» R,, W: R—> R, W(|u|)=0 are continuous and
W(u) is a non-decreasing function.

Theorem 1. Let (A:) hold and moreover assume that
J—2(t, )= Kt"%, ai(t)>0>0 8)
heL(0,]-]), b(1)=Mg'()g"*(0), %)

for sufficiently large t, where M is a positive constant.
Then every solution x € L(n—2, W(-)) of (1) satisfies

lim x(¢) =0

—®

Proof. Let x(t) be a solution of (1) belonging to the class L(n —2, W(+)). In
‘view of Lemma 2 we shall prove that the function G,-:1x(t) is bounded. Integrating
(1) from ¢t to t we obtain

Goo1x())= Goosx(t)+ [ h(s) ds - [ 65, (@ as, (10)

whence, taking into account the assumptions of the theorem,
| Ga-1x(8)| = | Gamrx(10)| +I [h(s)| ds+f b(s)W(|x(g(s))]) ds=
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S 1Gux(@]+ [ 116)] as +M[ 9'6)g" () Wilx(o()]) ds =
<A +Mfgm s"?W(|x(s)|) ds = B.
g(t0)

Applying Lemma 2 we have !im x(8)=0.

Remark 2. If n=2, we obtain theorem 4 from [3]. If a(t)=1 for i=1 -
n—1, we obtain theorem 2 from [2] for m =0.

Theorem 2. Let (As), (8), (9) hold and let moreover

bp(t) L |17p—1 ' >
g’(t)g"'z(t)EL(O’ll ), g'()>0, g(t)>0 for t=t,.

Then every solution x € L(n—2, W(-)) of (1) satisfies lim x(t)=0.

Proof. Let x(¢) be an arbitrary solution of (1) belonging to the class L(n —
2, W(+)). From (As) and Holder’s inequality we have

[ 116 xta as= [ b6 WAxtas) DI ds=

" Jo [gx—s)gg%iw'[g'(s)g"‘2<s>W(lx(g(s))l)“v ds=

[ roaa) " e ([ oear ey wixanh ) =

o Lg'(s)g"*(s) .

([ o] )™ ([ smwaxon as)

From (10) we have

|Gu-ix(O] 51 Greix(t)] + [ Ih(s)] ds + f 15> x(a(s)))] ds,

lIA

Whence, utilizing the last inequality and the assumption of the theorem, we have
|Gamix ()| = B,
where B, is constant. In view of Lemma 2 it follows that lim x(t) =0.

Remark 3. If n =2, we obtain theorem 3 from [3]. If ai(t)=1 for i=1, ..,
n —1, we obtain theorem 3 from [2].

Theorem 3. Let (As) be and moreover assume that

b*(1)

—_—— . j1/p—1 ,
g’(t)g"'(t)eL(O’Il ) for meR, g'()>0, g()>0
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for t=t,. If = oo, then every oscillatory solution x(t) of (1) does not

[ :h(s) ds

belong to the class L(m, W(-)).

Proof. Let x(¢) be the arbitrary oscillatory solution of (1). Then the function
G.-1x(t) is also oscillatory. Let {t.}»-1 be a non-decreasing sequence of consecu-
tive zeros of G,-1x(t). Integrating (1) between t, and .., we have

["nsy as= [ 16, xta(s) as,

whence

f"(‘) ds= f:f(s, x(g(s))) ds.

Taking into account the assumptions of the theorem and Holder’s inequality, we

have
[rors=([ e o ([}, s o)

whence it follows that x ¢ L(m, W(+)).
Remark 4. If m=n—-2,a;(t)=1fori=1, ..., n—1, we obtain theorem 4 from

[21. |
Theorem 4. Let (A.), (9) hold and uf(t, u)>0 for u#0. Let moreover
a(D=yg'(t)g™()>0 (12)
for sufficiently large t, where y>0, m € R and

I ds =0 for i=1,..,n-1. (13)
o ai(s)

Then every non-oscillatory solution x(t) of (1) belongs to the class L(m, W(+)).
Proof. Let x(t) be a non-oscillatory solution of (1) and let x(t) >0 eventually

(the case when x(t) <O can be treated similarly). Let T =1, be sufficiently large so
that x(g(t))>0 for t=T. Integrating equation (1) from T to ¢t=T we obtain

Ge1x(t) = Gao1x(T) + L £(s, x(9(s))) ds = j h(s) ds (14)
T
Since (9) holds, the right-hand side of (14) is finite as t— . If
f f(s, x(g(s))) ds=, then G,_ix(t)>—> for t—®
T

and because (13) holds we easily obtain the contradiction with the assumption
x(6)>0.
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Let
[ 16, xta (o) ds<eo.

Using (A1), (12) successively we obtain

o> [ 1G5, x(g(s)) ds 2 [ ayWixtaesy) as=

;yf ; s"W(x(s)) ds, hence xeL(m, W(-)).

This completes the proof of the theorem.
Remark 5. If ai(t)=1 for i=1, ..., n—1, we obtain theorem 1 from [2].

Theorem 5. Let (A:), (9) be satistied and moreover assume that

* ds
i=2, .. n— 1
L s for i=2..m-1 (15)

b(t)=Mg'(t)g™ (1),

js’"af(s)ds=oo for meR. (16)

Then for arbitrary two solutions x;(t) and x,(t) of (1) such that

[VW(|x()])x3(t) = xi () VW([x2() )] Z k>0 17)

for t=1t>0 we have

'X1EL(m, W())$ XzéL(m, W())

Proof. Let there exist two solutions x:(¢) and x,(¢) of equation (1) for which
(17) is true and x;€ L(m, W(+)) for i=1, 2.
From (1) we obtain

|G (1)) = | Gor: (t0)| +ML:::s"'W(|x,~(s)|) ds +f Ih(s)| ds,

thereby
|Ga-1xi())| =B forevery t=t,.

In view of assumption (15), we have
|ai(t)xi(t)|=B: for tZt1>0,
where B, is a positive constant.

354



We estimate now

I(t)= J' [VW(x:()]) xi(s) = xi(s) ¥V W(Ix()DP- ai(s)s™ ds =

< Bi[ s"W(lx(s)) ds + B j s"W(|xa(s)]) ds +

0 10

* ZBff VWIRED s VWaRG)D 5™ ds

whence, utilizing Holder’s inequality (p =2, 4 =2) we have

I(t)=<B? [\/j s"W(lx(s)]) ds+\/[; S"‘W(Ixz(s)l)ds]z.
Since x; e L(m, W(-)), we have

I(H=C (18)

where C is a real constant.
Since (17) holds, we have

I(H)= kzj s™ai(s) ds,

whence in view of (16), lim I(t) = », which contradicts (18). This completes the
proof of the theorem.
Remark 6. If n=2, h(t) =0, we obtain theorem 1 from [3].

Theorem 6. Let the assumptions of theorem 5 be satisfied. Then any solution
x(t) of (1) such that

W(lx(OD)x"*()>k, (19)
does not belong to the class L(m, W(+)).

Proof. Let x(t) be a solution of (1) for which (19) holds and let x(¢) belong to

the class L(m, W(-)). Likewise as in theorem S we prove that there exists
a constant B, such that

. |a:(t)x'(1)| = B..
We estimate

Lo=| W(lx(9))x()sai(s) ds < B3 s"W(lx()) ds=C  (20)

but in view of (19)

L()Zk- I " s™ai(s) ds.
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In view of (16) lim I;(t) = o, which contradicts (20). The proof of Theorem 6 is

complete.
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O ®YHKIMOHAJIbHOW UHTETPUPYEMOCTU PEIIEHHI
IN®SEPEHIIUAJIBHBIX YPABHEHUU C 3AITA30BIBAHUEM

Vincent Soltés—Anna Hrubinovi
Pe3omMme
B craThe RAalOTCS JOCTATOYHbIE YCIOBHS, MPH KOTOPBIX HEKOJEGIMIOWMECS MM KONeGmomuecs
pellleHnst HenmHeiHOro nuddepeHUUaT-HOro ypaBHEHUs n-TOro mopsaka c 3anasnbiBauem (1)

NpHHAANEXaT WK He puHamexart knaccy L(m, W(+)), nalotcs Takke yclnoBHs CTPEMIEHHS K HYJIIO
npu t— o pemennii (1), npuHagnexarommx knaccy L(n -2, W(-)).
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