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ON FUNCTIONAL INTEGRABILITY OF SOLUTIONS 
OF DIFFERENTIAL 

EQUATIONS WITH DEVIATING ARGUMENT 

VINCENT SOLTfiS—ANNA HRUBINOVA 

In papers [2] and [3] there are investigated asymptotic properties of functionally 
integrable solutions of some forms of differential equations. In this paper some 
results of the above papers are generalized for a more general differential equation. 

Consider the differential equation of n-th order of the form 

(G„-ix(t))' +/(/, x(g(t))) = h(t), (1) 
where n^2 and G„_i is a differential operator defined by 

Gn.lX(t) = a„-,(0(a„-2«)(. • MO*'(«))' • -.)')', 
where the functions 

a,: [to, oo)-*K, h: [to, °o)->R, 
/ : [to, <»)xR-+R, g: [t0,co)-+R+ 

are continuous functions and 

at(t)>0, i = l n —1, 0'W-^O, lim^(r) = oo. 

We introduce the notation: 

G0x(t) = x(t), Gix(t) = ai(t)(Gi-,x(t))'. l^i^n-1, (2) 

j (f \-r ds2 r d*» f5mi <jsm , . 
m- l l '5 ;""J, a2(s2)J, fl3(53)"l am(sm) W 

from m = 2, 3, ..., n — 1 
Jo(f, s) = l. 

We restrict our attention to non-trivial solutions of (1) which exist on the interval 
['o, oo). 

A solution x(t) is called oscillatory, if it has an infinite sequence of zeros tending 
to infinity. Otherwise, we call x(t) a non-oscillatory solution. 
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Definition. A solution x(t) of (1) belongs to the class L(m, W()), if 

0<\ smW(\x(s)\)ds<oo9 m-realnumber, 
J to 

where W: R-+R, W(\u\)^0 is a given continuous non-decreasing function. 
If in the above definition we put m = 0 and W(u) = up, p>0, then we obtain the 

well-known class L(0, | | P ) = LP(0, oo), i.e. 

0<fíu(s)\ 
JO 

p ds<oo. 

Lemma 1. Let at(t) >0 on [t0, o°). Then there exist positive constants a, such that 

Ji(t, s) = aJi+i(f, s) for i = 1, 2, ..., n — 3, t>s^t0. 

rroof . See in paper [1], Lemma 1. 

Lemma 2. Let Jm-i(t, t0)^K-tm~\ K>0, ax(t)>Q>0. If the function u(t) 
satisfies the following conditions 

\Gmu(t)\^M for tSto and m £ l , (4) 

ueL(m-\, W()), (5) 
then lim u(t) = 0. 

Proof. From definition and condition (5) it follows that lim inf \u(t)\ = 0 . We 
t—»oo 

shall prove that also lim sup \u(t)\ = 0 . Suppose that lim sup \u(t)\>e>0. Then 
t—»<» t—»°° 

there exists a sequence {tn}n=i, {a„}~=i such that f„—•<», a„—>°° for n—>oo? a„ <tn, 
P P 

\u(tn)\>e, \u(an)\=- and for every te(an, tn)\u(t)\>-. Let ai^t0>\. In each 

interval (a„, tn) there exists a number §„ such that 

u,^)ss»(U)-u(a.) f 

M a„ 
hence 

ic^r'"'̂ ' (6) 

From relation (4), using Lemma 1 and the assumption about Jm-\(t, t0) we obtain 

\<h{t)u'(t)\£Kir-\ 
whence 

\u'(t)\^K2r-1. 

350 



With regard to the stated, from relation (6) we obtain 

2 § ^ C - < C . (7) 

Since |w(f)|>- for every te(an,tn), then from (5) and (7) we get 

o o > 

2 

fs'-'WflnCs)!) ds^i fV-'WCKs)!) ds^ 
Jo n = l Ja„ 

^w(|)i^^=~. 
\2) k^i m 

This contradiction proves that the case of lim sup \u(i)\>e>0 is impossible. 
t—*co 

Therefore lim u(t) = 0. 
t-*co 

Remark 1. If ai(t) = a2(t) = ... = an-i(f) = 1, then we obtain Lemma 1 from [2]. 
Let us start with the assumptions: 

\f(t, u)\^a(t)\W(u)\, wW(u)>0 for u^O (Ai) 
\f(t,u)\^b(t)W(\u\) (A2) 
\f(t,u)\^b(t)[W(\u\WP, p>\ (A3) 

where the functions a, b: R+-+R+, W: i?->.R, W(|w|)^0 are continuous and 
W(u) is a non-decreasing function. 

Theorem 1. Let (A2) hold and moreover assume that 

Jn.2(t,to)^Ktn-2, ai(t)>g>0 (8) 

heL(0,\\), b(t)^Mg'(t)gn-2(t), (9) 

for sufficiently large t, where M is a positive constant 
Then every solution xeL(n-2, W()) of (1) satisfies 

limx(t) = 0 
, - , oo 

Proof. Let x(t) be a solution of (1) belonging to the class L(n — 2, W()). In 
view of Lemma 2 we shall prove that the function G„_iJt(f) is bounded. Integrating 
(1) from to to t we obtain 

Gn-ix(t) = Gn-ijc(f0) + f h(s) ds - [ f(s, x(g(s))) ds, (10) 
J to J to 

whence, taking into account the assumptions of the theorem, 

|Gn_iJc(r)|g|Gn-iJc(r0)|+ P \h(s)\ ds+[ b(s)W(\x(g(s))\) ds^ 
Jto Jto 

351 



^\G„^x(to)\+ f |A(s)| ds + Mf' g'(s)g-2(s)W(\x(g(s))\) cb=S 
Jto Jto 

S A + M f " s-2W(|x(s)|)dsgB. 
Jg (to) 

Applying Lemma 2 we have lim x(t) = 0. 
f—»oo 

R e m a r k 2. If tz=2, we obtain theorem 4 from [3]. If a,(f) = l for / = !> •••> 
ri — 1, we obtain theorem 2 from [2] for m = 0. 

Theorem 2. Lef (A3), (8), (9) hold and let moreover 

fl,(Og("-2(oeL(0,l'|1/,,"1)' 5 ' ( , ) > 0 ' 0 ( O > O for ' - ' ° -
Then every solution xeL(n-2, W()) of (1) satisfies lim x(f) = 0. 

f—»oo 

Proof. Let x(f) be an arbitrary solution of (1) belonging to the class L(n — 
2, W()). From (A3) and Holder's inequality we have 

f | /(s , x(g(s)))| d s ^ P b(s)[W(\x(g(s))\)Y/p ds = 
Jto Jto 

s (£ y ^ y ' ' ' " ' - - p • ( i "•<S>9""!<S» w0'(o<^ *)" -
0*' T bp(s) V'p-1 \p-vp / ffl(') v i / p 

From (10) we have 

|G. - , j t (0 l^ |G. - .* ( .b) | + f |A(*)| ds+f \f(s, x(g(s)))\ ds, 
Jto Jt0 

Whence, utilizing the last inequality and the assumption of the theorem, we have 

| G „ - I J C ( 0 I - S B I , 

where Bi is constant. In view of Lemma 2 it follows that lim x(t) = 0. 
t—»oo 

R e m a r k 3. If n=2, we obtain theorem 3 from [3], If a,(t)=\ for i = l, ..., 
n — 1, we obtain theorem 3 from [2]. 

Theorem 3. Let (A3) be and moreover assume that 

b"(t) 
в'(t)gm0) 
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for řŽ t0. If\í h(s)ds = 00, then every oscillatory solution x(t) of (1) does not 

belong to the class L(m, W()). 
Proof. Let x(t) be the arbitrary oscillatory solution of (1). Then the function 

Gr,-ijc(r) is also oscillatory. Let {*„}"--1 be a non-decreasing sequence of consecu
tive zeros of G„-iJc(f). Integrating (1) between tn and tn+i we have 

whence 

Г ł lft(s) d5= Г*lf(s, x(д(s))) ds, 
Jtn Jtn 

Гh(s)ds=Гf(s,x(g(s)))ds. 
Jtí Jti 

Taking into account the assumptions of the theorem and Holder's inequality, we 
have 

whence it follows that x^L(m, W()). 
Remark 4. If m = n — 2, at(t) = 1 for / = 1, ..., n — 1, we obtain theorem 4 from 

[2]. 

Theorem 4. Let (Ai), (9) hold and uf(t, u)>0 for uj=0. Let moreover 

a(t)^yg-(t)gm(t)>0 (12) 

for sufficiently large t, where y>0 , meR and 

—— = oo for i = l, ..., n-1. (13) 
ro Oi(S) 

Then every non-oscillatory solution x(t) of (1) belongs to the class L(m, W()). 
Proof. Let jc(f) be a non-oscillatory solution of (1) and let jc(f)>0 eventually 

(the case when JC(*)<0 can be treated similarly). Let TSf0 be sufficiently large so 
that jc(0(f))>O for t^T. Integrating equation (1) from T to t^T we obtain 

Gn-lX(t) - Gn-lX(T) + [V(s ; jc(<?(s))) ds = f h(s) ds (14) 

Since (9) holds, the right-hand side of (14) is finite as t—•oo. if 

J f(s, x(g(s)))ds = co, then Gw-iJc(0^-°° for f->oo 

and because (13) holds we easily obtain the contradiction with the assumption 
J C ( 0 > 0 . 
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Let 

JTf(s,x(g(s)))ds<cc. 

Using (At), (12) successively we obtain 

oo > £ f(s, x(g(s))) ds^^ a(s)W(x(g(s))) ds^ 

^y( smW(x(s))ds, hence xeL(m, W()). 
Jg(T) 

This completes the proof of the theorem. 
Remark 5. If a,(0 = l for i = l, ..., n-1, we obtain theorem 1 from [2]. 

Theorem 5. Let (A2), (9) be satisfied and moreover assume that 

f ° ° -4^<oo for i = 2,...,n-l (15) 
J to at(s) 

b(t)^Mg'(t)gm(t), 

\ smai(s)ds = oo for meR. (16) 
J to 

Then for arbitrary two solutions Xi(t) and x2(t) of (1) such that 

|VW( |x i (0 | )x 2 (0 -Jc ; ( t )VW( |x 2 (0 | ) |^k>0 (17) 

for t^to>0 we have 

XleL(m, W())^> x2iL(m, W()). 

Proof. Let there exist two solutions xx(t) and JC2(0 of equation (1) for which 
(17) is true and xteL(m, W()) for i' = 1, 2. 

From (1) we obtain 
rg(t) rt 

\G„-lxi(t)\^\G„-lx,(t0)\ + M smW(\x,(s)\) ds+\ \h(s)\ ds, 
Jg(to) J to 

thereby 

\Gn-iXi(t)\^B for every t^t0. 

In view of assumption (15), we have 

|ai(0*.(0|-S-Bi for f ^ o > 0 , 

where B\ is a positive constant. 
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We estimate now 

I(t)= I' [VW(|x,(*)|) x2(s)-x[(s)y/w(\x2(s)\)]2a2(s)sm ds^ 
J to 

^B\f' smW(\Xl(s)\) ds + Bit s"W(\x2(s)\) ds + 

+ 2Bi ( VWRs)l)sm/2-V rVV(l^(s)|)sm/2 ds 
J to 

whence, utilizing Holder's inequality (p = 2, tf = 2) we have 

1(0-SB? U P s " W ( M s ) | ) d 5 + ^ £ smW(|x2(s)|)ds]2. 

Since jc,eL(ra, W()) , we have 

JW-SC (18) 

where C is a real constant. 
Since (17) holds, we have 

í(í)Sfe2fsma2(s)ds, 
J to 

whence in view of (16), lim l(t) = ̂ , which contradicts (18). This completes the 
t—*oo 

proof of the theorem. 
Remark 6. If n = 2, h(t) = 0, we obtain theorem 1 from [3]. 
Theorem 6. Lef the assumptions of theorem 5 be satisfied. Then any solution 

x(t) of (1) such that 

W(\x(t)\)xf2(t)>k, (19) 

does not belong to the class L(m, W()) . 
Proof. Let x(t) be a solution of (1) for which (19) holds and let x(t) belong to 

the class L(m,W()). Likewise as in theorem 5 we prove that there exists 
a constant Bi such that 

| f l,(r)x'(r)|SB,. 
We estimate 

1,(0= f W(|jc(s)|)x'2(s)sma2(s) dsSB?P smW(|x(s)|) ds^C (20) 
Jto Jto 

but in view of (19) 

h(t)^k[ sma\(s)ds. 
Jto 
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In view of (16) lim Ii(t) = °°, which contradicts (20). The proof of Theorem 6 is 
t—>°o 

complete. 
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О ФУНКЦИОНАЛЬНОЙ ИНТЕГРИРУЕМОСТИ РЕШЕНИИ 

ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ С ЗАПАЗДЫВАНИЕМ 

V^псеп^ §о1гё8—Аппа Н г и Ы п о у а 

Р е з ю м е 

В статье даются достаточные условия, при которых неколеблющиеся или колеблющиеся 
решения нелинейного дифференциального уравнения л-того порядка с запаздыванием (1) 
принадлежат или не принадлежат классу Ь(т, \^( ) ) , даются также условия стремления к нулю 
при г—>о° решений (1), принадлежающих классу Ь(п — 2, \У(-)). 
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