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VOLTERRA KERNEL OPERATORS 
ON BANACH FUNCTION SPACES 

R O M A N D R N O V Š E K 

(Communicated by Michal Zajac) 

ABSTRACT. Let L be a Banach function space on a measurable space (X, /JL) . 
A kernel operator K on L with a kernel k is called a Volterra kernel operator if 
it is an operator of finite double norm and if there exists a measurable function 
p: X —> R such tha t k(x,y) == 0 for almost all (x ,y ) G X X X with p(x) < p(y). 
It is shown tha t every Volterra kernel operator is quasinilpotent provided L and 
its associate space V have order continuous norms. 

Let /i be a positive a -finite measure on a cr-algebra E of subsets of a set 
X. Let LQ = LQ(X,fi) be the vector space of all equivalence classes of real 
p-measurable functions on X. A Banach space L C LQ is a Banach function 
space if the norm p on L has the additional property that \l f E L, g E LQ, 
and |p| < | / | , then g E L and p(#) < p ( / ) . Here f < g with f,g E LQ means 
/ ( ^ ) <. <10z) for almost all x € X . If / G LQ and / ^ L, then we set p ( / ) = oo. 
Observe that p ( | / | ) = p(f) for all f E L. The norm p is a-order continuous if 
p ( / n ) | 0 for any decreasing sequence fn I 0 in L , and it is order continuous if 
p ( / r ) 1 0 for any downwards directed system fT j 0 in L. Since L is Dedekind 
a-complete, these two notions coincide [5; Theorem 103.9], The carrier of L is 
assumed to be the set X , i.e., if every function of L vanishes on a set E E E , 
then fi(E) = 0 . 

Let L ; be the associate space of all g E LQ such that 

ф(f) = Jf(x)g(x)dф) 
X 

A M S S u b j e c t C l a s s i f i c a t i o n (1991): Pr imary 46E30, 47B38. 
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defines a bounded linear functional (j) on L. The space Lf is also a Banach 
function space with the associate norm p' defined by 

p'(g) = sup i J \f(x)g(x)\ dp(x) : p(f) , < 1 

X 

and it may be considered as a closed subspace of the dual Banach lattice L*. 
For basic theory concerning Banach function spaces, we refer to the books of 
Z a a n e n [3] and [5]. 

A linear operator K on L is called a kernel operator if there exists a 
/xx/z-measurable function k(x,y) on X x X such that 

/ 
x 

\k(x,y)f(y)\ dp,(y) < oo a.e. for all / E L , and 

(Kf)(x) = / k(x,y)f(y) dp(y) a.e. for every / € L . 

x 

A kernel operator K with a kernel k is called an operator of finite double 
norm (or a Hille-Tamarkin operator) if 

(i) for almost every x G X the function kx 6 L0 defined by kx(y) =. k(x,y) 
is an element of JL7, i.e., p'(kx) < oo for almost every x G X , 

(ii) the function t e L0 defined by t(x) = p'(^c) *s a n element of Z,, i.e., 

| _ Y | = p ( t ) < o o . 

Note that t(x) is a /i-measurable function on X by the result of L u x e m b u r g 
(see [5; Corollary 99.3]). If L and L1 have order continuous norms, then operators 
of finite double norm are compact (see [2; Theorem 2.3]). 

Throughout the paper, the operator norm is denoted by || • ||. 

PROPOSITION. Let K be a kernel operator on L of finite double norm. Then 
K is bounded and \\K\\ < \\K\\ . 

P r o o f . For any function / € L and for almost all x G X we have 

\(Kf)(x)\ < f |fc(x, y) f(y)\ dp(y) < p'(kx)p(f) = t(x)p(f), 

x 

so that p(Kf) < \\K\\p(f), and finally \\K\\ < \\K\\. • 

Let us now introduce Volterra kernels on ( I x I , / i X / i ) . Let K be a kernel 
operator on L of finite double norm with a kernel k. If there exists a measurable 
function p: X —> R such that k(x,y) == 0 for almost all (x,y) 6 X x X with 
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p(%) < p(y), then the kernel k is called a Volterra kernel. Clearly, we may (and 
we do) assume that the function p maps X into the interval [0,1] composing 
p by, for example, the function q(x) = 1/2 + (l/V) arctgrr if necessary. The 
corresponding Volterra kernel operator is therefore defined by the equation 

(Kf)(x) = j k(x,y)f(y)My), 
Dx 

where Dx = [y E X : p(x) > p(y)} • The well-known result states that any 
Volterra kernel operator K on L2[0,1] (with p(x) = x , 0 < x < l ) i s quasinilpo-
tent, i.e., the spectral radius r(K) is equal to 0 (see H a 1 m o s [1; Problem 147]). 
We now extend this result. 

THEOREM. Let L be a Banach function space on a measurable space (X, S,/x) 
such that the norms of L and V are order continuous. Let K be a Volterra 
kernel operator on L with a kernel k. Then K is quasinilpotent. 

As in the book of H a l m o s [1; Solution 147] it is convenient to begin the 
proof of Theorem with the following lemma, which may be of some independent 
interest. 

LEMMA. Under the assumptions of Theorem, let e be a positive number. Then 
there exist Volterra kernel operators A and B on L, and there exists m € N 
such that: 

(1) K = A + B; 
(2) H-4II < e ; 
(3) every product of A 's and B 's in which more than m factors are equal 

to B is equal to 0. 

P r o o f . Put E(S) = {(x,y) eX xX : p(x)~p(y) <S} when S € (0,oo). 
The function kn = fc*XE(i/n) is the kernel of the Volterra kernel operator Kn on 
L. Here %A denotes the characteristic function of a set A. For almost all x G X 
the decreasing sequence { P J J L e N ' w h e r e (K)x(y) = K(x^) f o r V € X > 
is a sequence in V and it converges to 0. By tn(x) = pf{(kn)x) we define the 
decreasing sequence {£n}neN of functions of L converging to 0, since the norm 
pf is order continuous. It follows that \lKnl\ = p(tn) also converges to 0 as 
n —> oo, because p is order continuous. Finally, the inequality ||-ftTn|| < 1-K^I 
implies that the sequence | | i^ n | | converges to 0 as well. Now, fix m & N such 
that ||-RTm|| < s. Setting A = Km and B = K — Km, the conditions (1) and 
(2) are clearly satisfied. By some simple considerations, one can show that if C 
is a kernel operator on L whose kernel vanishes on E(S), S £ [0,1], then the 
kernels of AC and BC vanish on E(S) and E(S + 1/m) respectively. It follows 
that the kernel of a product of A's and B 's vanishes as soon as more than m 
factors are equal to B. This proves (3) and finishes the proof. • 

461 



ROMAN DRNOVSEK 

The assertion of Theorem now follows from Lemma. Although the proof is 
the same as in [1; Solution 147], we give it here for the sake of completeness. 

P r o o f of T h e o r e m . From Kn = {A + B)n it follows that for any 
n > m 

i*i<Ë(?)єП~w 
ѓ = 0 

Using an obvious estimate (™) < n m for 0 < i < m, we obtain 

/ m \ 1 l n 

\\Kn\\l'n < e • nm/n • ^ V ^ B ^ ] , 
i=o 

so that 

r(K) = lim | | K n | | 1 / n < £ . 
n—*oo 

This implies the desired conclusion that r(K) = 0. D 

Remarks . 
1. The assertion of Theorem also holds if it is assumed only that some power 

of K is a Volterra kernel operator. 

2. The following example shows that Theorem does not hold if the norm of L 
is not order continuous. Let S be an operator on l°° defined by 5(x 1 , x2 , x 3 , . . . ) 
= ( x 2 , x 3 , x 4 , . . . ) . It is easy to see that S is a Volterra kernel operator with 
I S I = r(S) = 1. For a "continuous" example see also [4; p. 503]. 
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