Wang Peiguang
Forced oscillations of a class of nonlinear delay hyperbolic equations

Mathematica Slovaca, Vol. 49 (1999), No. 4, 495–501

Persistent URL: http://dml.cz/dmlcz/132057
FORCED OSCILLATIONS OF A CLASS
OF NONLINEAR DELAY HYPERBOLIC EQUATIONS

WANG PEIGUANG

(Communicated by Michal Fečkan)

ABSTRACT. In this paper, we discuss a class of nonlinear hyperbolic equations with deviating arguments, and obtain sufficient conditions for the oscillation of such equations subject to two kinds of boundary value problems.

1. Introduction

Owing to delay partial differential equations arise frequently in many fields of natural science, the oscillation theory of such equations is of growing interest. For the oscillation of hyperbolic equations, we have a few results. For example, we can refer to the contributions by D. Gorgiou & K. Kreith [1], D. Mishev [2], Yoshida [3], B. S. Lalli, Y. H. Yu & B. T. Cui [4], [5], [6], Y. K. Li [7] and the references cited therein. But the corresponding theory is as yet not well developed. In this paper, we consider the forced oscillation of nonlinear partial differential equations of the form

\[\frac{\partial^2}{\partial t^2} u(x, t) = a(t) \Delta u(x, t) + \sum_{i=1}^{m} a_i(t) \Delta u(x, \rho_i(t)) \]

\[- \sum_{j=1}^{n} p_j(x, t) f_j(u(x, \sigma_j(t))) + F(x, t) \] \hspace{1cm} (E)

\[(x, t) \in \Omega \times [0, +\infty) = G \]

where \(\Omega \) is a bounded domain in \(\mathbb{R}^n \) with piecewise smooth boundary \(\partial \Omega \). \(\mathbb{R}_+ = [0, +\infty) \), \(\Delta u \) is the Laplacian in \(\mathbb{R}^n \).

Suppose that the following conditions (H) hold.

AMS Subject Classification (1991): Primary 34K20, 35K50.
Key words: hyperbolic partial differential equation, boundary value problem, delay differential inequality, oscillation.
(H₁) \(a, a_i \in C(\mathbb{R}_+, \mathbb{R}_+) \), \(i = 1, 2, \ldots, m \).

(H₂) \(\sigma_j, \rho_i \in C(\mathbb{R}_+, \mathbb{R}_+) \) are nondecreasing in \(t \) respectively; \(\sigma_j \leq t, \rho_i \leq t \) and
\[
\lim_{t \to +\infty} \rho_i(t) = \lim_{t \to +\infty} \sigma_j(t) = +\infty; \quad i = 1, 2, \ldots, m; \quad j = 1, 2, \ldots, n.
\]

(H₃) \(p_j \in C(\bar{\Omega} \times \mathbb{R}_+, \mathbb{R}_+) \); \(F \in C(\bar{\Omega} \times \mathbb{R}_+, \mathbb{R}_+) \); \(j = 1, 2, \ldots, n \).

(H₄) \(f_i \in C(\mathbb{R}, \mathbb{R}) \) and \(f_i(u) \) is convex in \(\mathbb{R}_+ \); \(uf_i(u) > 0, \ u \neq 0, \ i = 1, 2, \ldots, m \).

We consider two kinds of boundary value conditions:

(B₁) \(u = \varphi(x, t) \) on \((x, t) \in \partial \Omega \times \mathbb{R}_+ \).

(B₂) \(\frac{\partial u}{\partial n} + \mu(x, t)u = 0 \) on \((x, t) \in \partial \Omega \times \mathbb{R}_+ \).

In which \(n \) is the unit exterior normal vector to \(\partial \Omega \), \(\mu \) is a nonnegative continuous function on \(\partial \Omega \times \mathbb{R}_+ \).

The objective of this paper is to study the oscillatory properties of solutions of equation (E) subject to boundary conditions (B₁) and (B₂) respectively. The results generalize and improve the some results in [4], [5] and [6].

A solution \(u(x, t) \) of equation (E) satisfying certain boundary conditions is called oscillatory in the domain \(G \) if for each positive number \(\tau \) there exists a point \((x_0, t_0) \in G, \ t_0 \geq \tau \) such that \(u(x_0, t_0) = 0 \).

2. Oscillation criteria for problem (E), (B₁)

We consider the following problem
\[
\Delta u + \alpha u = 0 \quad \text{in} \quad \Omega \times \mathbb{R}_+,
\]
\[
u = 0 \quad \text{on} \quad \partial \Omega \times \mathbb{R}_+,
\]
where \(\alpha \) is a constant. It is well known ([7]) that the smallest eigenvalue \(\alpha_0 \) is positive and the corresponding eigenfunction \(\Phi(x) \) is also positive.

Lemma 2.1. ([4]) Suppose that \(y \in C^2([t_0, +\infty), \mathbb{R}) \), and
\[
y(t) > 0, \quad y'(t) > 0 \quad \text{and} \quad y''(t) \leq 0, \quad t \geq t_0 > 0.
\] (2.1)

Then for any \(\lambda_0 \in (0, 1) \), there exists a number \(t_1 > t_0 \) such that
\[
y(t) \geq \lambda_0 t y'(t) \quad \text{for} \quad t \geq t_1.
\] (2.2)

We define the function \(p_j(t) \) by \(p_j(t) = \min_{x \in \Omega} \{p_j(x, t)\} \), \(j = 1, 2, \ldots, n \).
For a solution $u(x, t)$ of equation (E) satisfying boundary condition (B$_1$), we define

$$U(t) = \frac{\int_{\Omega} u(x, t)\Phi(x) \, dx}{\int_{\Omega} \Phi(x) \, dx}. \quad (2.3)$$

Lemma 2.2. Suppose that conditions (H) hold, and

- (A$_1$) There exists a positive constant ε such that

$$f_i(u) \geq \varepsilon u. \quad (2.4)$$

- (A$_2$) There exists an oscillatory function $H \in C^2(\mathbb{R}, \mathbb{R})$ with $\lim_{t \to +\infty} H(t) = 0$, and

$$H''(t) = \left(\int_{\Omega} \Phi(x) \, dx \right)^{-1} \left\{ \int_{\Omega} F(x, t)\Phi(x) \, dx
- \int_{\partial\Omega} \left[a(t)\varphi(x, t) + \sum_{i=1}^{m} a_i(t)\varphi(x, \rho_i(t)) \right] \frac{\partial\Phi}{\partial n} \, d\omega \right\}. \quad (2.5)$$

If $u(x, t)$ is a positive solution of problem (E), (B$_1$) on $\Omega \times [t_0, +\infty)$, then the delay differential inequality

$$y''(t) + \lambda_0 \left\{ \alpha_0 \left[a(t)y(t) + \sum_{i=1}^{m} a_i(t)y(\rho_i(t)) \right] + \varepsilon \sum_{j=1}^{n} p_j(t)y(\sigma_j(t)) \right\} \leq 0 \quad (2.6)$$

have eventually positive solutions

$$y(t) = U(t) - H(t). \quad (2.7)$$

Proof. Suppose that $u(x, t)$ is a positive solution of problem (E), (B$_1$) on $\Omega \times [t_0, +\infty)$. In view of (H$_2$) there is a number $t_1 \geq t_0$ such that

$$u(x, \rho_i(t)) > 0, \quad u(x, \sigma_j(t)) > 0.$$

Multiplying both sides of (E) by the $\Phi(x)$ and integrating with respect to x over the domain Ω, we have

$$\frac{d^2}{dt^2} \left[\int_{\Omega} u(x, t)\Phi(x) \, dx \right]$$

$$= a(t) \int_{\Omega} \Delta u(x, t)\Phi(x) \, dx + \sum_{i=1}^{m} a_i(t) \int_{\Omega} \Delta u(x, \rho_i(t))\Phi(x) \, dx$$

$$- \sum_{j=1}^{n} \int_{\Omega} p_j(x, t)f_j(u(x, \sigma_j(t)))\Phi(x) \, dx + \int_{\Omega} F(x, t)\Phi(x) \, dx, \quad t \geq t_1. \quad (2.8)$$
Using Green’s theorem, we have

\[
\int_{\Omega} \Delta u(x, t) \Phi(x) \, dx = - \int_{\partial \Omega} \varphi(x, t) \frac{\partial \Phi}{\partial n} \, d\omega - \alpha_0 \int_{\Omega} u(x, t) \Phi(x) \, dx,
\]

\[t \geq t_1, \tag{2.9}\]

\[
\int_{\Omega} \Delta u(x, \rho_i(t)) \Phi(x) \, dx = - \int_{\partial \Omega} \varphi(x, \rho_i(t)) \frac{\partial \Phi}{\partial n} \, d\omega - \alpha_0 \int_{\Omega} u(x, \rho_i(t)) \Phi(x) \, dx,
\]

\[t \geq t_1. \tag{2.10}\]

Noticing the definition of \(p_j(t) \), using (H4) and Jensen’s inequality, we have

\[
\int_{\Omega} p_j(x, t) f_j(u(x, \sigma_j(t))) \Phi(x) \, dx \geq p_j(t) \int_{\Omega} f_j(u(x, \sigma_j(t))) \Phi(x) \, dx \tag{2.11}
\]

Combing (2.8)–(2.11), yields

\[
U''(t) \leq - \alpha_0 \left[a(t) U(t) + \sum_{i=1}^{m} a_i(t) U(\rho_i(t)) \right] - \sum_{j=1}^{n} p_j(t) f_j(U(\sigma_j(t))) + \left(\int_{\Omega} \Phi(x) \, dx \right)^{-1} \left\{ \int_{\Omega} F(x, t) \Phi(x) \, dx - \int_{\partial \Omega} \left[a(t) \varphi(x, t) + \sum_{i=1}^{m} a_i(t) \varphi(x, \rho_i(t)) \right] \frac{\partial \Phi}{\partial n} \, d\omega \right\}. \]

Let

\[
y(t) = U(t) - H(t). \tag{2.12}\]

Using the condition (A1) and (A2), we get

\[
y''(t) + \alpha_0 \left[a(t) U(t) + \sum_{i=1}^{m} a_i(t) U(\rho_i(t)) \right] + \varepsilon \sum_{j=1}^{n} p_j(t) U(\sigma_j(t)) \leq 0, \quad t \geq t_1, \tag{2.13}\]

498
from (2.13), we have \(y''(t) < 0 \) for \(t \geq t_1 \), and we can prove that there exists a \(t_2 \geq t_1 \), such that \(y(t) > 0 \). In fact, if \(y(t) \leq 0 \) then \(U(t) \leq H(t) \), which is impossible in view of the fact that \(U(t) > 0 \) and \(H(t) \) is oscillatory.

From \(y(t) > 0 \) and \(y''(t) < 0 \), we have \(y'(t) > 0, \ t \geq t_2 \).

Furthermore, since \(y(t) \) is an increasing function and \(\lim_{t \to +\infty} H(t) = 0 \), it follows that there is a number \(t_3 \geq t_2 \) and \(\lambda_0 \in (0, 1) \) such that

\[
U(t) \geq \lambda_0 y(t), \quad U(\rho_i(t)) \geq \lambda_0 y(\rho_i(t)), \quad U(\sigma_j(t)) \geq \lambda_0 y(\sigma_j(t)), \quad t \geq t_1. \tag{2.14}
\]

Then from (2.14) it follows that the function \(U(t) \) defined by (2.3) is a positive solution of the delay inequality (2.6).

Theorem 2.1. Suppose that conditions (H), (A_1) and (A_2) hold. If the delay inequality (2.6) have no eventually positive solutions, then every solution of the problem (E), (B_1) is oscillatory on \(\Omega \times \mathbb{R}_+ \).

Proof. Suppose that there is a nonoscillatory solution \(u(x, t) \) of the problem, we may assume that \(u(x, t) > 0 \), \((x, t) \in \Omega \times [t_0, +\infty) \), by Lemma 2.2, we get

\(y(t) = U(t) - H(t) \)

is a eventually positive solution, which is a contradiction.

If \(u(x, t) < 0 \) then set \(\overline{u}(x, t) = -u(x, t) \), using the condition (H_4), it is easy to check that \(\overline{u}(x, t) \) is a positive solution of the problem (E), (B_1), defining

\[
\overline{U}(t) = \frac{\int \overline{u}(x, t)\Phi(x) \, dx}{\int \Phi(x) \, dx} \tag{2.15}
\]

then by Lemma 2.2

\(\overline{y}(t) = \overline{U}(t) - H(t) \) \tag{2.16}

is a eventually positive solution, which is also a contradiction. This completes the proof of the Theorem 2.1.

Remark 1. Theorem 2.1 generalize and improve Theorem 2.2 in [4], Theorem 3.1 in [5] and Lemma 2.1 in [6].

3. Oscillation criteria for problem (E), (B_2)

With a solution \(u(x, t) \) of problem (E), (B_2), we define

\[
V(t) = \frac{1}{|\Omega|} \int_{\Omega} u(x, t) \, dx, \quad t \geq 0, \quad |\Omega| = \int_{\Omega} dx.
\]

499
LEMMA 3.1. Suppose that conditions (H), \((A_1)\) hold, and
\((A_3)\) there exists an oscillatory function \(H \in C^2(\mathbb{R}, \mathbb{R})\) with \(\lim_{t \to +\infty} H(t) = 0\), and
\[
H''(t) = \frac{1}{|\Omega|} \int_{\Omega} F(x,t) \, dx
\]
(3.1) holds.
If \(u(x,t)\) is a positive solution of problem (E), \((B_2)\) on \(\Omega \times [t_0, +\infty)\), then the delay differential inequality
\[
y''(t) + \lambda \varepsilon \sum_{j=1}^{n} p_j(t) y(\sigma_j(t)) \leq 0
\]
(3.2) has eventually positive solutions
\[
y(t) = V(t) - H(t).
\]
(3.3)

Proof. Suppose that \(u(x,t)\) is a positive solution of problem (E), \((B_2)\) on \(\Omega \times [t_0, +\infty)\). In view of \((H_2)\) there is a number \(t_1 \geq t_0\) such that
\[
u(x, \rho_i(t)) > 0, \quad u(x, \sigma_j(t)) > 0.
\]
Integrating (E) with respect to \(x\) over the domain \(\Omega\), we have
\[
\frac{d^2}{dt^2} \left[\int_{\Omega} u(x,t) \, dx \right] = a(t) \int_{\Omega} \Delta u(x,t) \, dx + \sum_{i=1}^{m} a_i(t) \int_{\Omega} \Delta u(x, \rho_i(t)) \, dx
\]
(3.4)
\[
- \sum_{j=1}^{n} \int_{\Omega} p_j(x,t) f_j(u(x, \sigma_j(t))) \, dx + \int_{\Omega} F(x,t) \, dx, \quad t \geq t_1.
\]
Using the Green’s theorem and \((B_2)\), we have
\[
\int_{\Omega} \Delta u(x,t) \, dx = - \int_{\partial \Omega} \frac{\partial u}{\partial n} \, d\omega = - \int_{\partial \Omega} \mu(x,t)u(x,t) \, d\omega \leq 0,
\]
(3.5)
\[
\int_{\Omega} \Delta u(x, \rho_i(t)) \, dx = - \int_{\partial \Omega} \frac{\partial u(x, \rho_i(t))}{\partial n} \, d\omega = - \int_{\partial \Omega} \mu(x, \rho_i(t))u(x, \rho_i(t)) \, d\omega \leq 0.
\]
(3.6)
Noticing the definitions of \(p_j(t)\) and \((H_4)\), using Jensen’s inequality, we have
\[
\int_{\Omega} p_j(x,t) f_j(u(x, \sigma_j(t))) \, dx \geq p_j(t)|\Omega| f_j\left(\frac{1}{|\Omega|} \int_{\Omega} u(x, \sigma_j(t)) \, dx \right).
\]
(3.7)
FORCED OSCILLATIONS OF A CLASS OF NONLINEAR DELAY HYPERBOLIC EQUATIONS

Combining (3.4) – (3.7), we have
\[
\frac{d^2}{dt^2} \left[\int_{\Omega} u(x, t) \, dx \right] \leq -p_j(t)|\Omega| f_j \left(\frac{1}{|\Omega|} \int_{\Omega} u(x, \sigma_j(t)) \, dx \right) + \int_{\Omega} F(x, t) \, dx.
\]

(3.8)

Let
\[
y(t) = V(t) - H(t).
\]

(3.9)

Using conditions (A_1) and (A_3), we have
\[
y''(t) + \lambda \varepsilon \sum_{j=1}^{n} p_j(t) V(\sigma_j(t)) \leq 0, \quad t \geq t_1,
\]

(3.10)

the remainder of the proof is similar to that of Lemma 2.2, we omit it. \(\square\)

Using Lemma 3.1, we have:

THEOREM 3.1. Suppose that conditions (H), (A_1) and (A_3) hold. If the delay inequality (3.2) has no eventually positive solutions, then every solution of the problem (E), (B_2) is oscillatory on \(\Omega \times \mathbb{R}_+\).

Remark 2. Theorem 3.1 generalizes and improves Theorem 2.1 in [4], and Theorem 2.1 in [5].

REFERENCES

Received December 1, 1997
Revised April 7, 1998

Department of Mathematics
Hebei University
Baoding, Hebei 071002
P. R. CHINA
E-mail: pgwang@mail.hbu.edu.cn