Bohdan Zelinka The graph of labellings of a given graph

Mathematica Slovaca, Vol. 38 (1988), No. 4, 297--300

Persistent URL: http://dml.cz/dmlcz/132103

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1988

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

THE GRAPH OF LABELLINGS OF A GIVEN GRAPH

BOHDAN ZELINKA

At the Czechoslovak conference on Graph Theory and Combinatorics in the Raček Valley in May 1986, P. Tomasta [1] has proposed four problems concerning a certain graph $\Pi(H)$ assigned to a finite undirected graph H. Here we shall not solve these problems, but we shall treat simpler questions concerning $\Pi(H)$.

Let a finite undirected graph H be given, let V(H) be its vertex set, let n = |V(H)|. A labelling of H is a bijection $\lambda: V(H) \to \{1, ..., n\}$. We shall consider ordered pairs (H, λ) , where λ is a labelling of H. To the given graph H there exist n! such pairs.

Let λ_1 , λ_2 be two labellings of H. The pairs (H, λ_1) , (H, λ_2) are called isomorphic if they have the property that for any two numbers i, j from the set $\{1, ..., n\}$ the vertices $\lambda_1^{-1}(i)$, $\lambda_1^{-1}(j)$ are adjacent in H if and only if the vertices $\lambda_2^{-1}(i)$, $\lambda_2^{-1}(j)$ are adjacent in H.

These concepts may be interpreted in the following way. We consider the set $\{1, ..., n\}$ as a vertex set. To every pair (H, λ) we assign a graph isomorphic to H and having the vertex set $\{1, ..., n\}$; two vertices i, j from this set will be adjacent if and only if the vertices $\lambda^{-1}(i)$, $\lambda^{-1}(j)$ are adjacent in H. To the isomorphic pairs (H, λ_1) , (H, λ_2) the same graph corresponds; to non-isomorphic ones two distinct (but obviously isomorphic) graphs correspond. This isomorphism is an equivalence relation on the set of all pairs (H, λ) . Any class of this equivalence will be called a labelled graph H. Such a class will be considered as a certain graph isomorphic to H with the vertex set $\{1, ..., n\}$.

Let $\Lambda(H)$ be the set of all labelled graphs H. Let $\Pi(H)$ be the graph whose vertex set is $\Lambda(H)$ and in which two verties H_1 , H_2 are adjacent if and only if $|E(H_1) - E(H_2)| = |E(H_2) - E(H_1)| = 1$. (The symbol E(G) for any graph G denotes the edge set of G.)

There are four problems by P. Tomasta concerning $\Pi(H)$. The first two concern the neighbourhoods of vertices. The third asks about the characterization of graphs $\Pi(H)$ with a Hamiltonian circuit and the fourth asks an analogous question concerning a Hamiltonian path. These problems seem to be very difficult; note that the number of vertices of $\Pi(H)$ is usually much greater than that of H. We shall treat much simpler problems: the existence of edges in $\Pi(H)$ and its connestedness. Neither of these problems will be solved completely.

A graph will be called discrete if it has no edges.

Theorem 1. Let H be a regular graph. Then $\Pi(H)$ is discrete.

Proof. Let r be the regularity degree of H. If r = 0, then H is discrete; therefore (H, λ_1) , (H, λ_2) are isomorphic for any λ_1, λ_2 and $\Pi(H)$ consists of one vertex. Now let $r \ge 1$. If H is complete, then $\Pi(H)$ consists again of one vertex and thus it is discrete; otherwise it has at least two vertices. Suppose that H is not complete and two vertices H_1 , H_2 of $\Pi(H)$ are adjacent in $\Pi(H)$. Let $E(H_1) - E(H_2) = \{e_1\}, E(H_2) - E(H_1) = \{e_2\}$. Let u, v be the end vertices of e_1 . By deleting e_1 from H_1 we obtain a graph H_0 in which only the vertices u, v have the degree r - 1 and all the others have the degree r. The graph H_2 is to be obtained by adding e_2 to H_0 . If e_2 is adjacent to a vertex w distinct from u and v, then w has the degree r + 1 in H_2 , which is not possible, because H_2 is regular of degree r. Thus e_2 can join only u and v and thus $e_2 = e_1$, which is a contradiction. \Box

Theorem 2. Let *H* be a graph, let $\delta(H)$ (or $\Delta(H)$) be its minimum (or maximum respectively) degree. Let there exist an integer *r* such that $\delta(H) < r < \Delta(H)$ and no vertex of *H* has the degree *r*. Then $\Pi(H)$ is disconnected.

Proof. Let Λ_1 (or Λ_2) be the subset of $\Lambda(H)$ consisting of labelled graphs with the property that the degree of the vertex 1 is less (or greater respectively) than r. Evidently $\Lambda_1 \neq \emptyset$, $\Lambda_2 \neq \emptyset$, $\lambda_1 \cup \Lambda_2 = \Lambda(H)$, $\Lambda_1 \cap \Lambda_2 = \emptyset$. Let $H_1 \in \Lambda_1$, $H_2 \in \Lambda_2$. The difference between the degrees of the vertex 1 in H_2 and in H_2 is at least 2 and thus also $|E(H_2) - E(H_1)| \ge 2$ and H_1 , H_2 are not adjacent in $\Pi(H)$. As H_1 , H_2 were chosen arbitrarily, no vertex of Λ_1 is adjacent to a vertex of Λ_2 and $\Pi(H)$ is disconnected. \Box

Theorem 3. Let H be a disconnected graph in which all connected components have the same number of edges and are not all isomorphic. Then $\Pi(H)$ is disconnected.

Proof. Let D_1 , D_2 be two non-isomorphic connected components of H. Let A_1 (or A_2) be the subset of A(H) consisting of all labelled graphs such that the vertex 1 is contained in a connected component of H_1 isomorphic to D_1 (or D_2 respectively). Let $H_1 \in A_1$, $H_2 \in A_2$. Let $E(H_1) - E(H_2) = \{e_1\}$, $E(H_2) - E(H_1) = \{e_2\}$. Then e_2 joins two vertices of the connected component of H_1 which contains e_1 ; otherwise there would exist in H_2 connected components with different numbers of edges. If e_1 does not belong to the connected component of H_1 containing 1, then 1 in H_2 belongs again to a connected component isomorphic to D_1 , which is a contradiction. If e_1 belongs to the connected component of H_2 connected components of H_2 isomorphic to D_1 (or to D_2) is less (or greater respectively) than that of H_1 . Thus H_1 is not isomorphic to H_2 , which is again a contradiction. \Box

Theorem 4. Let H be a disconnected graph consisting of 2-edge-connected

components. Let there exist an integer r such that no connected component of H has r edges, but there exist those with less and those with more than r edges. Then $\Pi(H)$ is disconnected.

Proof. Let Λ , (or Λ_2) be the subset of $\Pi(H)$ consisting of labelled graphs H such that the vertex 1 is in a connected component with less (or more respectively) edges than r. We have $\Lambda_1 \neq \emptyset$, $\Lambda_2 \neq \emptyset$, $\Lambda_1 \cup \Lambda_2 = \Lambda(H)$, $\Lambda_1 \cap \Lambda_2 = \emptyset$. Let $H_1 \in \Lambda_1, H_2 \in \Lambda_2$ and suppose that H_1, H_2 are adjacent in $\Pi(H)$. Let $E(H_1) - E(H_2) = \{e_1\}$, $E(H_2) - E(H_1) = \{e_2\}$. As each connected component of H is 2-edge-connected, in the graph obtained from H_1 by deleting e_1 the vertex sets of the connected components are the same as in H_1 . After adding e_2 to it the number of edges of the connected component containing 1 can increase at most by one, hence it cannot become greater than r, which is a contradiction. Hence no vertex of Λ_1 is adjacent to a vertex of Λ_2 and $\Pi(H)$ is disconnected.

Theorem 5. Let H be a 2-edge-connected bipartite graph with the bipartition classes A, B, let $|A| \neq |B|$. Then $\Pi(H)$ is disconnected.

Proof. Let Λ_1 (or Λ_2) be the subset of $\Lambda(H)$ consisting of labelled graphs H such that the vertex 1 is in the set corresponding to Λ (or to B respectively). As H is 2-edge-connected, its bipartition classes remain the same after deleting an arbitrary edge. If $H_1 \in \Lambda_1$, then by deleting an edge e_1 and adding an edge e_2 we obtain again a graph from Λ_1 and thus analogously to the proof of Theorem 4 we may prove that $\Pi(H)$ is disconnected. \Box

Theorem 6. Let H be a graph, let \overline{H} be its complement. Then $\Pi(H) \cong \Pi(\overline{H})$. Proof. Let H_1 , H_2 be two graphs from $\Lambda(H)$. The graph H_2 is obtained from H_1 by deleting an edge e_1 and adding an edge e_2 if and only if \overline{H}_2 is obtained from \overline{H}_1 by deleting e_2 and adding e_1 . This imples the assertion. \Box

We have shown there exist wide classes of graphs H such that $\Pi(H)$ is discrete and wide classes of graphs H such that $\Pi(H)$ is disconnected. We may ask about two problems.

Problem 1. Characterize the graphs H for which $\Pi(H)$ is discrete, i. e. graphs H with the property that by deleting an arbitrary edge e_1 and adding a new edge $e_2 \neq e_1$ always a graph non-isomorphic to H is obtained.

Problem 2. Characterize the graphs H for which $\Pi(H)$ is disconnected.

REFERENCE

 TOMASTA, P.: Problems 15—18. Czechoslovak Conference on Graph Theory and Combinatorics, Raček Valley, May 1986.

Received August 4, 1986

Katedra tváření a plastů Vysoké školy strojní a textilní Studentská 1292 461 17 Liberec 1

ГРАФ ПОМЕЧЕНИЙ ЗАДАННОГО ГРАФА

Bohdan Zelinka

Резюме

Пусть *H* есть конечный неориентированный граф с *n* вершинами. П. Томаста ввел граф $\Pi(H)$, вершинами которого являются все графы на множестве вершин $\{1, ..., n\}$, изоморфные графу *H*, и в котором две вершины H_1 , H_2 смежны тогда и только тогда, когда $|E(H_1) - E(H_2)| = |E(H_2) - E(H_1)| = 1$. Показаны некоторые классы графов *H*, для которых $\Pi(H)$ является несвязным или дискретным.