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ABSTRACT. It is shown that the right (left) first return systems of paths are
right (left) continuous and the extreme first return path derivatives of functions in
B, (Borel measurable functions, Lebesgue measurable functions) are elements of
B, ., (Borel measurable, Lebesgue measurable). It is also shown that even though
the return path systems are the thinnest possible in a bilateral sense, the extreme
first return path derivatives of continuous functions have some similarities with
their Dini derivatives. We also provide an example illustrating that the extreme
first return derivatives are not identical with their corresponding Dini derivatives.

1. Introduction

In [6] the concept of a path system is introduced and it is shown that many
theorems about the differentiability of functions could be obtained from con-
ditions on the thickness of paths and how they intersect each other. In [1] we
introduce the concept of a continuous system of paths and show that this concept
is another factor in the differentiability structure of functions. This concept was
generalized by Milan Matejdes for the study of extreme path derivatives
(see [11], [12], [13)).

Motivated by the Poincare first return map of differentiable dynamics,
R. J. O’'Malley [14] introduced a new type of path system which he calls
first return systems. He shows that, though these are extremely thin paths, the
systems possess an interesting intersection property that makes their differenti-
ation theory as rich as those of much thicker path systems. For example, every
first return path differentiable function is in DB} and every first return path
derivative is in DB, . First return systems have been extensively investigated
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in a series of papers by U. B. Darji, M. J. Evans, P. D. Humke and
R.J. O’'Malley (see [7], [8], [9] and some of their references).

In this paper the extreme first return path derivatives of Baire class « func-
tions are investigated. We show that these are elements of B, . It is also shown
that, even though the first return path systems are the thinnest possible in a
bilateral sense, the extreme first return path derivatives of continuous functions
have some similarities with the Dini derivatives. Some early thoughts and ques-

tions that resulted in this paper were announced in the summer symposia in
Real Analysis (see [2], [3]).

2. Notation and definitions

We take our definitions from [6] and [7].

DEFINITION 2.1. A trajectory is a sequence P _,
lowing properties.

(i) P,=0,P =1,
(i) P,#P,, n#m,
(iii) 0< P, <1 forall n,
(iv) {P,: n=0,1,...} is dense in [0,1].
Our notation for a trajectory will be {P,}. For a given k > 1, II, will

represent the partition of the interval [0,1] generated by the initial segment
{Py, P, ..., P, }. The ith interval of that partition will be denoted as II, ;.

n = 0,1,..., with the fol-

DEFINITION 2.2. Let z belong to [0, 1]. A path leading to = isaset R, C [0,1]
such that € R, and z is a point of accumulation of R . A system of paths R
is a collection {Rm : z €0, 1]}, where each R is a path at x.

DEFINITION 2.3. Let {P,} be a fixed trajectory. For a given interval (a,b) C
[0,1], r(a,b) will be the first element of the trajectory in (a,b).

For 0 < y < 1, the right first return path to y, R;‘, is defined recursively via
yf =y, y5 =1 and y,j_H = r(y,y7) for k > 2. For 0 < y < 1, the left first
return path to y, R; , is defined similarly. For 0 < y < 1, we set Ry = R; UR;,
and R, =R{, R, = Ry .

The path systems Rt = {R} : z €[0,1)}, R~ = {R; : = € (0,1]} and
R={R,: z€(0,1)} U{R{, Ry} are called the right first return system, the
left first return system and the first return system of paths generated by {P, },
respectively.
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DEFINITION 2.4. Let F: [0,1] = R and let R be any path system. If the

y—rx y —x
yERm\{J;}

cxists and is finite, then we say F is R-differentiable at z. If F' is R-differen-
tiable at every point z, then we say that F is path differentiable and f is the
path derivative of F' and is denoted by Fj, = f.

If the system of paths is a first return system, then f is called the first return
path derivative of F'.

The eztreme path derivatives F', and F', are defined in the usual way.

Note that when path derivatives exist, they have finite values while the ex-
treme path derivatives could accept infinite values.

DEFINITION 2.5. A path system R is said to have the external intersection
condition, denoted by E.I.C. (intersection condition denoted by I.C., internal
intersection condition denoted by I.I.C.) if there is a positive function J(x)
on [0,1] such that R, N R, N (y,2y —z) # 0 and R, N R, N (2z —y,z) # 0
(R,NR, N[z,y] #0, R,NR, N (z,y) # 0, respectively), whenever 0 < y —x <

min{d(z),d(y)}.
DEFINITION 2.6. Let § be a positive function and let X be a set of real

numbers. By a ¢ -decomposition of X we shall mean a sequence of sets {X },
which is a relabeling of the countable collection

)’m,j:{meX: 5($)>%}ﬂ[#,%l],
m=1,23,... and j=0,41,42 43,....

The key features of such a decomposition of a set X are:

(1) L_J1 X,=X;

(ii) if z and y belong to the same set X, , then |z —y| < min{d(z).d(y)},
(iii) if z € X, then there are points y in X, with [z—y| < min{d(z),d(y)}.

We take the following definition from [1].

DEFINITION 2.7. Let R = {R,: z € [0,1]} be a system of paths with cach
R, compact. We endow R with the Hausdorff metric d,; to form a metric space.
If the function P: xz +— R, is a continuous function, we say R is a continuous
system of paths. The left continuous and right continuous systems of paths are
defined similarly.
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3. Results

We first show that the intersection conditions are not sufficient to guarantee
the measurability of the extreme path derivatives of a Borel measurable function.
We then show that the right (left) first return system of paths are right (left)
continuous. We use this fact to obtain some results about the Borel measurability

of extreme first return path derivatives. We conclude with some monotonicity
results.

THEOREM 3.1. There exists a function F' € DB, and a bilateral system of

paths R = {Rl : z €[0,1]} satisfying both the E.I.C. and the 1.I.C. for which
F'y is nonmeasurable.

Proof. Let P C [0,1] be a Cantor like set of positive measure. If [0, 1]\ P =
U (c,,d,), define

n=1

L i L f €(c,,d
F('L‘) — (z—cn)(dn—2) sin [(m—cn)(dﬂ—w)] or I (Crl’ n) ’
0 for x € P.

Clearly F' € DB, . Choose A C P nonmeasurable. Define the system of paths
R={R,: z€[0,1]} as follows:

{t: t>z, FR)<t—z}u{t:t<sz, F(t)>t—z}uU{z} V(xr € P\A),
R,=¢ {t: t>a, F)<3t-2)}u{t: t<a, F(t)> 1t -2)}u{z} V(€4

R v(re[0,1]\P).
Then R satisfies both of EI.C. and LI.C., but

= |1 V(eP\A4),
F’*”‘{% Y(z € 4).

It follows that F’R is not measurable. 0

THEOREM 3.2. Let {P } be any trajectory, and take R and R~ to be the
right and left first return path system generated by {P,}. Then Rt is a right
continuous system of paths and R~ 1is a left continuous system of paths.

Proof. We first note that for every & € [0,1], R, the path leading to .,
is a closed subset of [0,1]. Fix 0 < z < 1, and let € be an arbitrary positive
number. We consider two cases.

(i) z €0, U\ {P,}32

n=1"?
(ii) =z = P, for some k=1,2,....
Suppose §,, is the length of the longest subinterval of partition II, . Obviously,
lim 4, = 0. In case (i), choose k, large enough so that ¢, < 5. Let II,

k— oo 0l
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[c,d] be the subinterval of I, containing z, and set § = L min{|d—z|,|e—=|}.
Now if |y —z| < §, then y and z are both contained in the interval (c,d). From
[14] we know that R N [0,¢] = Ry N[0,c] and R} N[d,1] = R} N [d,1]. Thus
the points of R, and R which are not identical Ile in the 1nte1val [¢,d], which
has a length less than £/2. In this case, then dy(R,, R,) <

In case (ii), let z = P, . Since R and R} are monotone 311bsequ<‘IICOS of
{P,} converging to z, there exists a positive integer N, such that |z, —z| < §
and |z —r| < § for all k > N,. Let k, be a positive integer so that IT,
contains the points z7,xy,...,2y ,Zx,, 2 as end points and §, < 5. Supposc
d;, is the length of the srnallest subinterval of II;,, and § = mm{é,\ N
r <y <y+4, then y and z both lie in the same subinterval of II,,, ndmelv
0, = [=d. Since y € [z,d), we have R} n[d,1] = R} N[d, 1], so that the
points of R} and R} which are not identical lie in the interval [z,d] of length
less than €/2, implying that d,”(R;',R;j) < g/2. Similarly for 2 —d <y <,
we have dy (R, R}) < £/2. We conclude that the path systems RT and R~
are right and left continuous, respectively. O

First return systems of paths satisfy the internal intersection condition (see
[14]). We now give an example of a bilateral continuous system of paths which
does not satisfy any of the intersection conditions, so that it cannot be a first
return system with respect to any trajectory in [0, 1].

ExamprLe 3.1. There exists a bilateral continuous system of paths R = {R_ :
v €[0,1)} that does not satisfy any of the intersection conditions.
Let {h,}02, be a scquence of positive rational numbers with lim b, 6 = 0.

n—00

Let A= {()} u {hn, % .- For each z € [0,1], choose R, = (A+z)N [O, 1].
It is casy to sce that the system of paths R = {R, : = € [0,1]} is bilateral and
continuous. We show that R does not satisfy any of the interscction conditions.
Suppose, to the contrary, that IR satisfies one of the intersection conditions, and
¢ is the function associated with R for that intersection condition. Let {F] } :
be a d-decomposition of [0,1]. Since the unit interval is not countable them
exists j, 1 < j < oo, and T,y both in F such that T -y, is irrational. We
show that I, NR, == 0.1f thero isa z€ R NR,then z =z, +h, =y, +k;

for some h; and kj elements of A. This 1mpl1es that T;—y; = kj IJ, S0 that
—y; isa rational number. We conclude that R does not satisfy any of the

intersection conditions.

Remark 3.1. A first return derivative is a function in DB, (scc [14]). One
may ask if the same is true for R-derivatives when R is a bilateral continuous
system of paths. In this regard it is easy to sce that for a continuous function,
any R-derivative tailored with a bilateral system of paths has the Darboux
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property. From [1; Theorem 5], we know that for a continuous function, its path
derivative is in B, when the system of paths is also continuous. Thus, the path
derivative of any continuous function tailored with a bilateral and continuous
system of paths is in DB, . However, this is not true in gencral. In fact, onc
can easily construct a bilateral continuous system of paths R, and a function in
Baire class two which is R-differentiable and the R-derivative is not an element
of B, .In {1] we provide an example of a function in B, and a continuous system
of paths whose path derivative is not Borel measurable. We also show that the
extreme path derivatives of a Borel measurable functions are measurable when
the system of paths is continuous (see [1; Theorem 16]). As we saw in the proof
of Theorem 2, the first return systems of paths are continuous at all points
except the points of the trajectory. We have also shown that the right (left)
first return systems are right (left) continuous. One might ask if a result similar
to [1; Theorem 5, Theorem 16] is possible. In fact, by mimicking the proofs of
these theorems, we could obtain some weaker results. In what follows, we use a
different technique to show that the extreme first return derivatives of a function
are better behaved than the corresponding extreme path derivatives whenever
the path system is continuous.

THEOREM 3.3. Let {P,} be any trajectory with R the first return path system
generated by {P,}.
(i) If Fe B, then Fle B, ,,, Fpy €B,,, and Fly_ € B,_,.
(ii) If F is a Borel measurable function, then F'y, F1c+ and F’R_ are also
Borel measurable functions.
(iii) If F' is a Lebesgue measurable function, then F'y, F'y, and F'y_ are
also Lebesgue measurable functions.

Proof. Let RT and R~ be the right and left first return systems generated
by {P,}. For each natural number n, let Ef = {z: P, € Rt}. We first
show that cach E;'En is a closed set. To see thls, let {.rm}m>J - E,f with
lim z,, = z,.If for some m > 1, ,, < z,, then R}, N[P,,1]= R} N[P,,1]

m—00 n’
which 1mphes that z, € EJr Otherwise, for each m > 1, we have that =, > 7.

From the right continuity of Rt and the fact that for each m>1, P, € R} ,
it follows that z, € E;;ﬂ .

Suppose 7 € R and F',,(z) > r. Then for every natural number m,
F'hi(z) > 7 — 1/m, so that there exists a sequence {y,, };>; € RT such
that y,, . # z, kliglo Y = 2 and (F(y,, 1) = F(2)) /Wy — 2) > 17— 1/m.
It follows that z € E;m’k Nn{z: (F(z)- F(ym,k))/(x — Y ) > T — 1/m}
for k = 1,2,3,.... On the other hand, if there is a sequence of real numbers
{n,,}ms>y for which z € Ef ,and z# P, and (F(P, )-F(2))/(P, —z)>

m
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r — 1/m, then from the fact that R} is a sequence converging to z from the

right and {P, mim>1 IS @ subscquence of R}, one sees that h_r)n P, =zand
m—>00
l}’IlILicl’éf(F( P, )=F()/(P ., — 2) >, implying Flo(z) >r. Thus,
{z: Fli(z) > r} = ﬂ U {E;ﬂ ﬂAm'n}, (1)
m>1n>m

where A, ={z:z# P, and (F(z)-F(P,))/(z—P,)>r—1/m}.

In a similar way we may show that

{:L' : F’R_ (z) > 7'} = n U {E;ﬂ N Am,n}’ (2)
m>1n>m
where Ep = {z : € R} and A, = {z: z # P, and (F(z) -

FP))/(z-P)>r— l/m}
Our conclusion now follows from equalitics (1), (2), and the fact that F/y(z) =
sup{ F'p (z), Flp_ (2)}. a

Remark 3.2. For any ordinal number a > 1 and any trajectory P = {P_}, <.,
let E C [0,1]\ P be a set which is not of additive class a. Suppose R is
the first return path generated by {P,} and F(z) = xj. It is easy to scc
— 0 z¢ FE,
that F'p(z) = {
40 x€F,
Similarly, we can construct functions whose extreme first return derivatives are
not Borel or Lebesgue measurable functions. In fact, this also illustrates that
we cannot expect to have a result similar to Hajek’s Theorem (sce [10]) for
cxtreme first return derivatives.

so that F’R is not a function in Baire class «.

THEOREM 3.4. Let {P,} be a trajectory and R be the path system generated
by {P,}. If F: R = R is continuous, then

(i) sup{F,(2): = €[a,b)} =sup{”“’t:—f<“: t,s € {P,}N[a,b), }
(ii) sup{F'h-(z): z € (a,b]} = sup{F(tl:sF(s : t,s € {P,}N(a,b], }
(iii) sup{F'r(z): z € (a,b)} = sup{% : t,se {P,}N(a,b), }
) ;
) '}

inf{F",, (z) : me[a,b)}:inf{w. t,s€{P,}N[ab), t#s

(iv n
(v
(vi) inf{F(z): z € (a,b)} = inf{w : t,se{P,}N(a,b), t+# .s}.

. fe)sults analogous to (i), (ii), (iii), (iv), (v) and (vi) hold for F'yy, F'h- and
Fi(x).

inf{F'y_(z): z € (a,b]} = 1nf{Ms—): t,s e {P,}N(a,b], t#:

t—s

Proof. Since the verifications of parts (i) through (vi) arc very similar,
we will prove only the first part. Our method of proof is much like that of
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[4; Theorem 1.2]. Suppose that for some z, € [a,b), Fly,(ry) > M. Then
there exists y € R N [zy,b) such that Lw=Fzo)  Ar. Let {P! }eo_, C

Yy—2Zo

RE N {P,} N[zy,0) such that lim P! =z,. Since F is continuous, we have
: 11(1/) P(P ) I(y)— (lll) [ h N
17}51(1)0 —F o ]\ thus we can choose t,s € {P } N[a,b)

such that t # s and M > M. It follows that the right hand side of (i)

is bigger than or equal to tho left side of (i). Now, suppose —% = M for
some t > s, both of which arc contained in {P } N [a,b), and define G by

G(z) = F(z) — Mx for all = € [a,b]. Then G(t) = G(s). The function G is
continuous on [s,t], and therefore it attains a minimum m on [s,¢] at some
point z, € [s,t]. If G(t) = m, then also G(s) = m. Thus, we may suppose
7, € [s,t), and conclude that F'7(z,) > M. This gives left hand side of (i)
bigger than or equal to the right hand side of (i), so that the cquality in (i)

follows. 0

THEOREM 3.5. Let F': R = R be a continuous function. If F’IH is finite and
continuous at x, then it is differentiable there.

Proof. Let € > 0 be given, and take J to be the corresponding positive
number due to continuity of F',, . Suppose I, = (z, — 6,2, + d). Using the
above theorem, we have

sup{%f(s): s,te{P,}nI, t;és}
mf{t)—p(s). s, te{P NI, t;és}<2£.

Choose {s}}32, € {P,}NR} NI, such that kli)rgo s = x,. Forevery y € I,
y # %, choose {s,}72, C {P,} N R} NI such that klim s, =y and s, # s},

. . . . F(si)-F(s,
for large k. Since F is continuous, lim Z&)=Flsk) — FW)=Flzo) Thyg for
k—oo k% y—%o

every y € I, y # z,, we have
liminf{w: s,te{P, NI, s;ét}
F) - Fzy)

Y=gy

g]imsup{ﬂw: s,te{P}NI, s;ét},

implying the differentiability of F' at z,. O

Remark 3.3. At the points x, where FIR_,_(:EO) is infinite and continuous,
we may use continuity and infinite limit definition, that is llm FR+( r) =
Srro
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Fry(xy) = co. Thus for every M > 0 there exists § > 0 so that F'p, (z) > M
for x € (xy — 0,2, + 6). Using our Theorem 3.4 and [4; p. 63, Theorem 1.2] we
have:
inf{Fp:(z) : z € (z, — 6,2y +6)}
- inf{w t,s € {P}N(zy— 0,34+ 6), t# s}
inf{D, F(z): z € (zy—§,z,+0)}
inf{D_F(z): v € (zy—d,z,+6)} >M.

I

This implies that F' has an infinite derivative at z,, so Theorem 3.5 is also true
at points where F";, is continuous and has infinite value.

Remark 3.4. The conclusion that the extreme first return derivatives (extreme
right first return derivatives, extreme left first return derivatives) of a continuous
function belong to D, is the most we can say. Suppose C is the Banach space
of continuous real-valued functions on [0, 1], and let H be a residual set of
functions in C' which do not have a finite or infinite derivative at any point (see
[5; Corollary 2.3]). Then for each F' € H and each first return system of paths R
generated by a given trajectory {P,} on [0,1], we have F'y, € B, \ B,. To see
this, let F', € B, . Then it is continuous on a residual set Y. If —F—’RJr is finite at
some point of the residual set Y, then the above theorem implies that F' should
be differentiable at that point which is a contradiction. If F_'R,L(x) = oo for all
z € Y, then by Remark 3.3, F should have infinite derivative at each point of
Y, again a contradiction.

THEOREM 3.6. Let F and G be two real valued continuous functions defined
on [0,1], and R be the first return path system generated by a given trajectory
{P,}. If Fi(x) = G'z(x) for every x € [a,b], then F and G differ by a constant
on [a,b].

Proof. This follows immediately from Theorem 3.4. O

THEOREM 3.7. Let F be a real valued continuous function defined on [0, 1]
and R be the first return path_fysten_z_genemted by a given trajectory {P,}. If
one of the extreme derivatives F', , F'a_, F'py, F'y_ is nonnegative on [a,b],
then F must be nondecreasing on [a,b].

Proof. We will prove our result for the case of F;H . The other cases follow
in a similar manner. Let F’m (z) > 0 on [a,b]. Then, by Theorem 3.4, for every
s,t € {P_ }N[a,b], with s # t, we have that &g:f—“) > 0. Now suppose z and y
are two points in [a,b] with <y, and {s; }72,, {t,}32, are two subsequences
of {P, } such that for cach k, z < s, <t <y and lim s, =z, lim ¢, =y.

k—o0 k—o00
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Since isfg%gi‘—) > 0, we have F(t,) > F(s;), which implies F(y) > F(z).
a

Even though the return path systems are the thinnest possible in a bilateral
sense, the extreme return path derivatives of continuous functions have some
similarities with their corresponding Dini derivatives. We now show via an ex-
ample that these need not be identical. In fact, similar to the following example,
one can construct a continuous function with different corresponding extreme
first return and Dini derivatives at a countably infinite number of points.

EXAMPLE 3.2. There exists a continuous function F' defined on [0,1] and a
trajectory @ in [0, 1] such that D*F and F'y, are two different functions.

Proof. Let @ = {0,1,1/2,1/4,3/4,1/8,3/8,5/8,7/8,1/16,...}, so that
Q@ is a trajectory in [0,1]. Let E be the first return path system generated
by Q. For every z € Q n (0,1), suppose m, and m, are the least positive
integers such that 1/2™' < z and 1/2"2 < 1 — z, respectively. Let R, =
{z}U{z = 1/2"},5,n,» BE = {z}U{z+1/2"},,,, and R, = RYUR, . It
is easy to see that for each z € Q N (0,1), E, is eventually the same as R,
E, ={0}u{1/2"},5,,and E,| = {1}U{(2"—1)/2"}n>0. Let F' be a continuous

0 ze{0}u{1/2"},,,
T T € {3/2(”“)}7120

lincar between these points. Then F'y, (0) = F',, (0) = 0, while D*F(0) > 1.
a

function defined on [0, 1] so that F(z) = { and F is
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