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ALGEBRAS WITH PRINCIPAL TOLERANCESS

IVAN CHAJDA

An algebra 4 has principal congruences or A4 is congruence principal if every
compact element of Con A is a principal congruence, in other words, if for any
elements a,, b, of A, i =1, ..., n there exist elements a, b of 4 such that

&a,, b) v ... v Ka,, b,) = Ha, b)

in the congruence lattice Con A. A variety ¥~ is congruence principal if each
A€ has this property. Such varieties were characterized in [3], [7], [8].

Like numerous other concepts, this one can also be transferred for tolerances.
By a tolerance on an algebra A is meant a reflexive and symmetrical binary
relation on 4 having the substitution property with respect to all operations of
A. Clearly every congruence on 4 is a tolerance on 4 but not vice versa. As it
was proven in [5], the set of all tolerances on an algebra 4 forms an algebraic
lattice LT(A) with respect to set inclusion. Hence, for every two elements a, b of
A there exists the least tolerance T(a, b) containing the pair {a, b), the so called
principal tolerance. Such concepts were studied in [1], [4], [6]. Therefore, we can
introduce the following concept for tolerances:

Definition 1. An algebra A is tolerance principal if for each a, b€ A,
i=1,...,n there exist a, be A such that

T(a,, b)) v ... v T(a,, b,) = T(a, b)
in LT(A). A variety v is tolerance principal if each A€V has this property.

Lemma. (Lemma 2 in [2]). Let a, b, (i = 1, ..., n) be elements of an algebra A.
Then

{x, y>eV{T(a, b);i=1, ..., n}
if and only if there exists a 2n-ary algebraic function ¢ over A such that

X = q)(ala bl, 02, bZa vy Ay bn)
Yy = (P(b], a, b2’ ay, .- bm an)

Theorem 1. Let ¥~ be a variety of algebras. The followiing conditions are
equivalent:
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(1) 7 is tolerance principal,

(2) there exist an 8-ary polynomial p and 6-ary polynomials t, s such that
x=tp(x, y, z, 0, x, y, z, 0), p(¥, X, U, Z, X, y, 2, V), X, ', Z, V)
y=1upQ, x, 0,2, x, y, 2, 0), p(xX, ¥, 2, 0, X, }, 2, V), X, ¥’y =, D)
z=sp(x, y,z, v, x, p, 2,0), p(y, X, 0, 2, X, p, 2, V), X, ¥, 2, D)
v=s(p, x v,z x ) z0),pX ¥, 2,0, X, ), 2,0), X, }, Z, V).

Proof. (1) = (2): Let Fy(x, », z, v) be a free algebra of ¥~ with free

generators x, y, z, v. Then there exist elements a, b of Fy(x. v, =, v) such that

(*) T(a, b) = T(x, y) v T(z, v) in LT(Fy(x, v, z, v)).
Hence {a, b)e T(x, y) v T(Z, v), by the Lemma this gives a = ¢(x, y, z, 1),
b = o(y, x, v, ) for some 4-ary algebraic function ¢ over F,(a, y, z, v) i.e.
a=p(e,y, s, 0, x5y 2,0, b=pl, x, 0,2, x,), 2,0
for some 8-ary polynomial p over ¥ . Moreover, () also implies
x=1(a, b),y=1(b,a) and z = o(a, b), v = o(b, a)
for some binary algebraic functions 7, o, 1. e.there exist 6-ary polynomials ¢, s
with
(u, w) = t(u. w, x, y, z, v)
o(u, w)y = s(u, w, x, y, z, v),

whence (2) is evident.
(2) = (1): Let 7~ satisfy (2) and Ae ¥, x, y, z, veA. Then also a =
=p(x,y,z,0, x, ), 2,0), b =p x,v, z, X, y, 2, v) are elements of 4 and, by the

Lemma, also

{a, b>eT(x, v) v T(v, z).

However, (2) implies
x=Ua b, x,y,z,0), y=1tb,a,x,y,z0v)
z=s8(a, b, x,y,z,v), v=s(b,a, x,y. z,0),
thus {x, y> e T(a, b), {z, vy € T(a, b). We infer
T(a, b) = T(x, y) v T(v, 2).

By induction, we obtain (1).
Example 1. The variety of groupoids satisfying the following identities:

x.2).[(x.p).(c.v)]=x
0.0 (x.p).z.0]l=y
[(x.y).(z.v)].(x.2)=¢
[(x.y).(z.v)].(v.v)=v
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is tolerance principal. We can put

P(X), Xp5 X3, Xy Xs, Xgy X7, Xg) = X1 . X3
t(a, b, x, y,z,v) =a.[(x.y).(z.v)]
s(a, b, x, y, z, v) = [(x.y).(z.v)].a.

We can continue our investigations for varieties with a nullary operations.

Definition 2. An algebra A with a nullary operation c is c-tolerance principal if
for each a, ..., a, of A there exists an element ae A such that.
T(a,, ¢) v ... v T(a,, ¢) = 1(a, c¢) in LT(A).

A variety ¥~ with a nullary operation c is c-tolerance principal if each A€V has
this property.

Theorem 2. Let ¥~ be a variety with a nullary operation c. The following
conditions are equivalent:
(1) 7 is c-tolerance principal,
(2) there exist a 6-ary polynomial q and 4-ary polynomials u, w such that
c=gq(c, x, ¢, ¥, X, )
X = u(‘](x, ¢ ), ¢ X, y)’ ¢, X, )’)
c= u(x’ C](X, ¢y, ¢ X, y)9 X, y)
y=w(q(x, ¢, y, ¢, X, ), ¢, X, )
c=w(, q(x, ¢, y, ¢, X, ¥), X, y).
Proof. (1)=(2): Let Fy(x, y) be a free algebra in a variety ¥~ with a
nullary operation ¢. Then there exists an element a of F,(x, y) such that

T(a, ¢) = T(x, ¢) v T(y, ¢).
Hence {a, ¢)e T(x, ¢) v T(y, c¢), which gives

a=gq(x,c,y, ¢ x,9)
c=q(c, x, ¢, ¥, x,)

for some 6-ary polynomial g over ¥". The remaining part of the proof is
analogous to that of Theorem 1 and hence omitted.

(2) = (1): Suppose 7" is a variety with a nullary operation ¢ and A€ ¥,
x,yeA. Put a = q(x, c, y, ¢, x, y). By the Lemma we can see

a, ¢y = {q(x, ¢, ¥, ¢, X, ), q(c, x, ¢, y, x, y)ye T(x, ) v T(y, c).
Conversely,

{x, ) =<ula, c, x, y), u(c, a, x, y)ye T(a, c)
y, e =<wla, ¢, x, ), wic, a, x, y)yeT(a, c),

thus, altogether,
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T(a, ¢) = T(x, ¢) v T(y, ¢).

Example 2. Each variety of lattices with the least element 0 is
0-tolerance principal. Each variety of lattices with the greatest element 1 is
1-tolerance principal.

Proof. Put g(a, a,, a5, a,, x, y) = a, v a,

u(a, b, x,y)=a nx
w(a, b, x, y)=a A y.

Then
q0,x,0, vy, x,y))=0v0=0
u(g(x, 0, 9,0, x,5),0,x, ) =¢q(x,0, y, 0, X, ) AX=(XV ) AX=x
u0, g(x,0,»,0,x,1), x,y)=0Ax=0
w(g(x, 0,3, 0,x,9),0,x,))=¢q(x,0,3,0, x, )Ay=(xVvy)Ay=y
w(0, ¢(x,0,y,0, x, ), x,y)=0Aypy=0.

For lattices with the greatest element 1 the proof is dual.
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AJITEBPbLI C TJTIABHBIMU TOJIEPAHLUAMBI
Ivan Chajda
Pesome

Anrebpa A TONEPAHTHO rJIaBHAS, €CJIM KaX bl KOMNAKTHBIA 3JIIMEHT PELIETKH TOJIEPAHIMit
anreGpsl 4 ABAAETCA IN1aBHAs TojlcpaHUMs. B cTaThe naHbl HEOOXOAMMBIE U AOCTATOYHbBIE YCIOBUS
TOro, 4To6bI MHOrooOpa3ue GbLI0 MHOrOOOPA3MEM TOJIEPAHTHO IIABHBIX anare6p. DTOT KOHUENT
TOXe 00o6uIaeTcs Ans ciay4as anrebp ¢ HyJSpHbIMH ONEpalUsIMHU.
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