Mathematica Slovaca

Jén Borsik

Continuous mappings and Cauchy sequences

Mathematica Slovaca, Vol. 39 (1989), No. 2, 149--154

Persistent URL: http://dml.cz/dmlcz/132121

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1989

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/132121
http://project.dml.cz

Math. Slovaca 39, 1989, No. 2, 149—154

CONTINUOUS MAPPINGS AND CAUCHY SEQUENCES
JAN BORSIK

Let (X, dy), (Y, dy) be pseudometric spaces and let f: X — Y be a mapping.
A sequence in X is a mapping of the set N of all positive integers into X.
It is known (see [1]) that if f is uniformly continuous, then for the Cauchy
sequence S in X the sequence foS is Cauchy in Y. This is not true for a
continuous f. We shall investigate the set of such Cauchy sequences in X the
images of which are not Cauchy sequences.

Let us denote Sy the set of all constant sequences, C, the set of all convergent
sequences and Fy the set of all Cauchy sequences in X. Let N(f) = {SeFy:
foS¢F,}and let f*: X" — Y" be a mapping defined f*(S) = fo S for each Se
€ X". For the members S and T of X" we define 0,(S, T) as follows: 0,(S, S) =
=0 and 9,(S, T) = min{l, inf{e > 0: In,e NVm, n = n,: dy(S(m), T(n)) <
< g}} for S # T. Further we define o,(S, T) as oy(S, T) = min{l, inf{e¢ > 0:
dn,e NVn = n_: dy(S(n), T(n)) < &}.

Remark 1. Evidently

0x(S, T) = ox(S, T) = lim dy(S(n), T(n)) for S, TeFy.

It is easy to verify that (Fy, oy) is a complete pseudometric space (similarly as
Cantor’s method of a completion of a metric space) and hence also (Fy, gy) is
a complete pseudometric space.

Remark 2. From the continuity of a pseudometric we get: If Se X" con-
verges to a and Te X" converges to b, then 9,(S, T) = 0x(S, T) = dy(a, b).

Lemma 1. Let (X, dy) be a pseudometric space. Then (X", gy) is a complete
pseudometric space.

Proof. First we shall show that g, is a pseudometric on X". Evidently
0x(S, T) =0, 0,(S, S) = 0 and g,(S, T) = ox(T, S) for all S, Te X". Suppose
that there are sequences S, 7, P in X such that g,(S, T) > 0,(S, P) + ox(P, T).
Then obviously S # T # P # Sand gx(S, P) < 1, oy(P, T) < 1. Let b, c be real
numbers such that g,(S, P) <b < 1, 0x(P, T) <c <1 and b + c < gx(S, T).
Then there is a positive integer s such that for m, n = s we have d,(S(m),
P(n)) < b, dy(P(m), T(n)) < ¢ and hence dy(S(m), T(n)) < dx(S(m), P(m)) +
+ dy(P(m), T(n)) < b + ¢ < 0x(S, T). However, this is a contradiction with the
definition of 0,(S, T). Now we shall show that (X", g,) is a complete. Let S be

149



a Cauchy sequence in (X", gy). If S has a constant subsequence, then evidently
Sis a convergent sequence in (X", gy). Now let S have no constant subsequence.
Then there is a sequence P in X" such that P is a subsequence of S and P is
one-to-one. Since P is a Cauchy sequence, there is an increasing sequence (n,)
of positive integers such that

(1) Vi, j 2 k: ox(P(n), P(n)) <27

Since P is one-to-one, there is an increasing sequence (r,) of positive integers
such that

(2) Yu, v = r: dy(P(n) (u), P(n, ) (0) < 27%,
Now we define a sequence T in X as follows:
T(k) = P(n)(r,) for keN.
Let ke N and let u, p = r, . ,. The evidently p > k and hence
dy(P(n) (), T(p)) = dy(P(ny) (W), P(n,)(r,) =

p—k-—1

S dy(P(n) (W), Py ) (r,) + ), dy(P(my ) (1), Pl ) (r) <

ji=1
p—hk—1 ) ke
< Yy 2y 2tr=27k
j=0 t=k

From this we get o, (P(n,), T) < 27%*! for all ke N. Hence the sequence (P(n,))
converges to T. Since (P(n,)) is a subsequence of S and S is Cauchy, the sequence
S converges to T. The space (X", g,) is complete.

Lemma 2. Let (X, dy) be a pseudometric space. Then each point from X" — F,
is an isolated point in (X", oy).

Proof. Let

o(S) = lim sup {dy(S(k), S(m)): k, m = n}.

Evidently Se Fy if and only if o(S) = 0. It is easy to verify that for all S, Te

ex" we have
0x(S, T) = min{l, o(5)/2}.

Therefore, for Se X¥ — F, we have that 0,(S, T) < n < o(S)/2 < 1 implies
S = T. Hence each point from X" — F, is an isolated point in (X", gy).
Theorem 1. Let (X, dy), (Y, dy) be pseudometric spaces and let f: X — Y be a
mapping. Then N(f) is a boundary set in (Fy, 0x)-
Proof. It is easy to see that S, is dense in Fy. Since every constant
sequence evidently belongs to F, — N(f), the set Fy — N(f) is dense in Fy and
therefore the set N(f) is a boundary in Fy.
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Theorem 2. There are pseudometric spaces (X, dy), (Y, dy) and a mapping
[+ X = Y such that the set N(f) is residual in (Fy, Qy).

Proof. We put X = Qn (0, 1) (the set of all rational numbers in the in-
terval (0, 1)), Y = N, both with the usual metric. Let f: X — Y be a one-to-one
mapping. It is easy to see that Se F, — N(f) if and only if S is an eventually
constant sequence. Hence

Fy—=N(f)= U 4,
ief(x)
where
A, ={SeFy:3keN:Vn=k: S(n) =f"">i).

It is easy to verify that cl(4)) (the closure of the set 4; in (X", g,)) is obtained
in the set
={SeC,: hm S(n) = f7'(i)}.

However, gy(S, T) = 0 for S, Te B (by Remark 2) and hence the set cl(4,) has
the empty interior, i.e. the set 4, is nowhere dense. Therefore F, — N(f) is a set
of the first category and in view of Remark | the set N(f) is residual in (Fy, 0y).

Now we shall investigate the set N(f) for a continuous mapping f. The
symbol C, denotes the set of all continuity points of fand D, denotes the set of
all discontinuity points of f.

Lemma 3. Let (X, dy), (Y, d,) be pseudometric spaces and let f: X — Y be a
mapping. Let S€ X" converge to xe C,. Then Se C,..

Proof. Let £ > 0. With respect to the continuity of f at x there exists
6 > 0 such that

3) dy(f(x), f(»)) < €/4 whenever d,(x,y) <é.

Let 04(S, T) < 6. Then there is 1, 0 < n < &, and nye N such that d,(S(n),
T(m)) < n and dy(S(n), x) < 6 — n for m, n = n,. For m, n = n, we obtain
dy(T(m), x) = dy(S(n), T(m)) + dy(S(n), x) <6
and hence according to (3)
dy(f(T(m)), [(S()) = dy(f(T(m)), f(x)) + dy(f(x), [(S())) < &/2,

ie. 0,(f*(S), [HT) S g2 <&

Lemma 4. Let (X, dy), (Y, dy) be pseudometric spaces and let f: X — Y be a
continuous mapping. Then D\ Fy is a set of the first category in (Fy, 0y).

Proof. According to Lemma 3 we have Cyc C,. N Fy. The set Cy is
dense in Fy and hence the set D,. N Fy is a boundary in F,. Since the set of all
discontinuity points is an F- set D;.n Fy is a set of the first category in Fy.

Lemma 5. Let (X, dy), (Y, dy) be pseudometric spaces and let f: X — Y be a
mapping. Then N(f) < Do Fy.
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Proof. We shall show that FynCp. = Fy — N(f). Let Se Fyn Cy.. Let
£>0.
Then there is 6 > 0 such that

4) oy(f*(S), fX(T)) < g2 whenever o,(S, T) <.

Since S€ Fy, there is n; e N such that dy(S(m), S(n)) < 6/2 for each m, n = n,.
Let Te X" be defined T(k) = S(n,) for all ke N. Then for m, n > n, we have
dy(S(m), T(n)) < 6/2 and hence g,(S, T) < 4. According to (4) we get 0, (f*(S),
f*(T)) < g/2. Hence there is n,e N such that

dy(f(S(n)), f/(S(n)) < &2 whenever n=n,.

Thus for m, n = n, we have

dy(f(S(m), f(S@)) < dy(F(S(m)). f(S(n)) +
+ dy,(f(S(n). f(S(n))) <&,

i.e. f*(S)eF,. Therefore Se Fy — N(f) and
Fyn Cp. c Fy— N(f).

Theorem 3. Let (X, dy), (Y, dy) be pseudometric spaces and let f - X — Y be a
continuous mapping. Then N(f) is a set of the first category in Fy.

Proof. It follows from Lemma 5 and Lemma 4.

Lemma 6. Let (X, dy), (Y, dy) be pseudometric spaces. Let M be a dense subset
of X and let f: M — Y be a mapping. Let W(M, f) = {xe X : if Se M" converges
to x, then fo Se F,}. If X — W(M, f) is a dense subset of X, then N(f) is a dense
subset of Fy,.

Proof. Let SeF, — N(f) and let £> 0. Since the set of all constant
sequences is dense in F,,, there is ae M such that g,(S, T) < & where T(n) = a
for all ne N. Let § be a positive real number such that K(7T, ) < K(S, €). From
the density of X — W(M, f)in X thereisbe X — W(M, f) n K(a, 6). Hence there
is Pe M" converging to b such that fo P¢ F,. Therefore Pe N(f). According to
Remark 2 we have 0,(T, P) = dy(a, b) < & and hence Pe K(S, &) n N(f); i.e.
N(f) is dense in F),.

Theorem 4. There are pseudometric spaces (X, dy), (Y, dy) and a continuous
mapping f: X — Y such that the set N(f) is dense in (Fy, 0s).

Proof. Let X = Q' n (0, 1) (the set of all irrational numbers from the
interval (0, 1)) and Y = R, both with the usual metric. For each ne N we define

f,: X - Y as follows:

. + 1
fn(x):sz_", if £ :

<x< .
n+1 n+ 1

Then f, is a continuous mapping and |f,(x)| £ 27" for each xe X. Now we put
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£ = gmx).

Then f: X — Y is a continuous mapping. Let xe (0, 1)n Q, x = p/q (where p
and g are relatively prime). Since evidently all f, are nondecreasing functions,
fora, be X, a < p/q, b > p/q we have

f,,(a)éf,,(b) forall neN and
fooi®) —fr_ @2z (@g—-17"-2' e

Hence also f(b) — f(a) = (¢ — 1)'-2'~ 7. From this we observe that W(X, f) =
= X and (0, 1) — W(X, f) is dense in (0, 1). Hence according to Lemma 6 the
set N(f) is dense in Fy.

Now we shall show a relation between the continuity of /and f/*. Evidently
C/. is a nonempty set, unless dy(X) = 0. From Lemma 4 and Lemma 2 we have:

Theorem 5. Let (X, dy), (Y, dy) be pseudometric spaces and let f: X — Y be a
continuous mapping. Then D,. is a set of the first category in (X", oy).

Theorem 6. Let (X, dy), (Y, dy) be pseudometric spaces and let f: X —» Y be a
mapping. Then f* is a continuous mapping if and only if N(f) is the empty set.

Proof.

Necessity. It follows from Lemma 5.

Sufficiency. Let /* be not continuous at a point Se€ X". Then there are a
positive number ¢ and a sequence (S,) of elements of X" such that

0x(S,, S) < 1/n and
or(f*(S), S*(S) 2 &

Since 04(S,, S) < 1/n, there is an increasing sequence (k,) of positive integers
such that

6)) I, mz k,=dy(S(), S,(m)) < 1/n.

Since 0,(f*(S,), f*(S)) = ¢, there are increasing sequences (/,) and (m,) of
positive integers such that

(6) l,, m,=k, and
Q) dy(f(S()), £(S,(m,))) 2 &

We define a sequence T as follows:
T(2n) = S() and T(2n—1)=S,(m,) for neN.

In view of Lemma 2 and the discontinuity of f* at S we see that Se Fy. From
this fact and (5) and (6) we observe that T is a Cauchy sequence. On the other

153



hand with respect to (7) we see that fo T is not a Cauchy sequence. Therefore
Te N(f).

Remark 3. All theorems and lemmas in this paper are true also for oy,
except Lemma 2 and Theorems 5 and 6.

The example X = Y = R with the usual metric, f(x) = x? shows that the set
D,. (with the respect to the pseudometrics oy and oy) need not be a set of the
first category (for the sequence S, where S(n) = n, we have K(S, 1/4) < D,.).
Instead of Theorem 6 the following theorem holds: '

Theorem 7. Let (X, dy), (Y, dy) be pseudometric spaces and let f: X — Y be a
mapping. Then f* is a continuous mapping (with respect to the pseudometrics oy
and o) if and only if the mapping f is uniformly continuous.

Proof.

Necessity. Let f be a uniformly continuous mapping and &€ > 0. Then there
is 6 > 0 such that dy(f(a), f(b)) < &/2 whenever dy(a, b) < . Let 0,(S, T) < 6.
Then there is nye N such that dy(S(n), T(n)) < éfor n = n,. Hence for n = n, we
have d,(f(S(n)), f(T(n))) < g2. From this o,(f*(S), f*(T)) < ¢/2 < & The
mapping f* is therefore uniformly continuous and hence also continuous.

Sufficiency. Let f not be a uniformly continuous mapping. Then there are
&> 0 and sequences (a,), (b,) of elements of X such that dy(a,, b,) < 1/n and
dy(f(a,),f(b,) = €. Let S(n) = a,and T(n) = b, for each ne N. Then we observe
that o,(S, T) = 0, however, o,(f*(S), f*(T)) = ¢. Therefore the mapping f*
is not continuous.
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