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ABSTRACT. The crossing number v(G) of a graph G is the smallest integer 
such that there is a drawing for G with v(G) crossings of edges. Let Qn denote 
the n-dimensional cube. Eggleton and Guy conjectured in 1970 that v(Qn) < 
4 n A _ 2 n - 2 [ n ^ l J . 

We exhibit a drawing for n = 6 with the same value of Eggleton and Guy's 
conjectured upper bound. We construct a family of drawings for the n-cubes, 
n > 7, with number of crossings j§^4n - 2 n 2 ~ 1

2
l n + 3 4 2 n ~ 2 , establishing a new 

upper bound for v(Qn). Our family of drawings confirms Eggleton and Guy's 
conjectured upper bound when n = 7 and 8. In addition, our upper bound 
improves the upper bound v(Qn) < 4 n | - 2 n ~ 3 n 2 - 2n~43 + ( ~ 2 ) n ^ due to 
Madej. 

1. Introduction 

A simple drawing D(G) of a graph G is a drawing of G on the plane such 
that no edge crosses itself, adjacent edges do not cross, crossing edges do so only 
once, edges do not cross vertices, and no more than two edges cross at a common 
point. In what follows, all drawings are assumed to be simple. 

A drawing of a graph G is optimum when it has the minimum number of 
crossings among all drawings of G. This number is called the crossing number 

of G and is denoted by v(G). The algorithmic problem of computing the crossing 
number of a graph has been shown to be NP-complete ([5]). 

Let Qn denote the n-dimensional cube. The vertices of Qn are all n-tuples of 
0's and l ' s , of which there are |V((5n)| = 2 n . Two vertices x — ( x l 5 x 2 , . . . , x n ) 
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and y = (yl,y2, • • • ?2/n)
 a r e adjacent if and only if xt ^ y{, for exactly one 

index i. 

Note that v(Qn) = 0 for n = 1,2,3, but v(Qn) > 0 for n > 4. Figure 1 
shows drawings for QT , Q 2 , Q3 and Q 4 . 

Recently, D e a n and R i c h t e r [1] devoted an entire article to proving that 
v(Q4) = 8. Their proof consists of two main steps. Firstly, they show that in any 
optimum drawing of Q4 there exists a C4 with at least four crossings. Secondly, 
they show that the removal of the edges of a C4 in Q4 leaves a subdivision 
of (73 x C4. Using that v(C3 x C4) = 4 was known ([8]), they establish that 
u(Q4) = 8. 

£ \ 

FIGURE 1. Optimum drawings for QnQ2iQs and Q4. 

Much has been studied about the crossing number of the class of n-cubes. 
E g g l e t o n and G u y [2] announced that v(Qn) < A71-^ - 2n~2[n^2

±1\ . But a 
gap was found in the description of the construction ([6]), so this upper bound 
still remains a conjecture. Later, E r d o s and G u y [3] conjectured equality in 
the above relation. 

Some tight upper and lower bounds have been recently established for v(Qn). 
M a d e j [7] established an upper bound for the crossing number of the n-cube: 
v(Qn) < 4 " e ~ Zn-Zn2 - 2n~43 + ( - 2 ) n ^ and the lower bound: v(Qn) = 
!T2(2nnls n\ M a d e j [7] also exhibited a drawing for the 5-cube with the number 
of crossings confirming the conjectured upper bound of E g g l e t o n and G u y . 
Subsequently, S y k o r a and V r t ' o [9] used M a d e j ' s upper bound to prove 
that v(Qn) = 0 ( 4 n ) . Therefore, the exact value for v(Qn) is known for n < 4 
only and the conjectured upper bound is verified for n < 5. 

In this note, we confirm E g g l e t o n and G u y ' s conjectured upper bound 
for n = 6, 7, 8 which represents so far the best drawings of these n-cubes. Those 
drawings were described in the first author's master thesis [4]. We exhibit in 
Section 2.1 a drawing for n = 6 with the same value of Eggleton and Guv's 
conjectured upper bound We extend in Section 2.2 the construction given in 
[4] and obtain a family of di -iwings for Q, , n > 7 with i uTnbor of i is -
ings ^ 4 n - 2i£=li>i±2}2n ~2 , establish^- > unV, U] p ' ) < u id f . Q ) II 
proposed family of drawings confirms Eggleton and Guy s conjectured upper 
bound when n = 7 and 8. Note that while our leading term constant is j ^ , 
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M a d e j 's leading term constant is I -> 170 
6 ^ 1024 ' whereas E g g 1 e t o n and G u y 

conjectured leading term constant is ^- = j ~ . Therefore, our result improves 
M a d e j ' s established upper bound, being closer to the expected value conjec­
tured by E g g l e t o n and G u y . 

2. The proposed drawings for the n-cubes, n > 6 

Let D(G) be a drawing for G and v a vertex of G. Let v^ be a new vertex 
placed in the infinite region of D(G). Let c be a curve representing the edge 
e = (^oo) inking v to v^. 

We call exterior distance of v with respect to D(G) and to c the number of 
crossings produced between c and the edges of D(G). 

We call exterior distance of v with respect to D(G) the minimum number of 
crossings produced between a curve linking v to v^ and the edges of D(G). 

The drawings we are about to describe have all the following common con­
structive strategy: first of all, we consider just one eighth part of the drawing of 
the n-cube. The remaining seven eighth parts are similar to the first and differ 
only with respect to reflections, as denned in Figure 2. Subsequently, we define 
how to link the superior four eighth parts and the inferior four eighth parts ob­
taining two drawings for Qn_1. The total number of crossings in the proposed 
drawing is eight times the number of crossings in the corresponding one eighth 
copy plus eight times the sum of the exterior distances of its vertices. 

Copy 1 

z\ o 

straight 
line 1.1 

Copy 5 

yvCopy 2 

^ > 

Copy 3 

W 

<ü 

straight 
line 1.2 

Q 
Copy 6 Copy 7 S7 

4V 
Copy 4 

ö 
o 
<7. Copy 

V 
straight 
line 2 

straight 
line 1 

F I G U R E 2. Reflections of the copy 1 square . 

273 
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Our constructive method will be applied to Figure 3 in order to obtain the 
proposed drawing for Q6 and to Figure 5 in order to obtain the proposed drawing 
for Q n , n > 7. 

F I G U R E 3 . One eighth of the 6-cube. 

F I G U R E 4. Comple te drawing of the 6-cube (edges linking par ts superior and 
inferior are omi t ted) . 
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FIGURE 5. Drawing for the copy 1 square corresponding to a n-cube, with 
n > 7. 
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2.1. The basic construction and the case n = 6. 
Consider the diagram in Figure 2 obtained by seven reflections of copy 1 

square as follows. Copy 2 square is obtained from copy 1 square by reflection 
with respect to straight line 1.1. Copy 3 is identical to copy 1. Copy 4 is identical 
to copy 2. Copy 5 is obtained from copy 1 square by reflection with respect to 
straight line 2. We define the remaining three copies analogously. 

Next consider Figures 3 and 5 where we depict copy 1 square corresponding 
to the construction of the desired drawing of Q6 or of Qn, n > 7, respectively. 

In Figures 3 and 5, edges that take horizontal directions link vertices of copy 1 
square to vertices of copy 2 square that are symmetric with respect to straight 
line 1.1. Edges that take vertical directions link vertices of copy 1 square to 
vertices of copy 4 square that are symmetric with respect to straight line 1. 
Note that copy 3 square is linked to copy 4 square and to copy 2 square in an 
analogous way by using straight line 1.2 and straight line 1, respectively. See 
Figure 4 for a diagram of the proposed drawing of Q6. 

We consider in Figure 3 exterior distances attached to the vertices to repre­
sent the minimum number of crossings that an edge linking vertices of copy 1 
square to the symmetric vertices with respect to straight line 2 of copy 5 square 
produces with edges of copy 1 square. The sum of exterior distances in Figure 5 
are evaluated separately. The total number of crossings in each one of the two 
obtained drawings, respectively for Q6 and for Q n , n > 7, is eight times the 
number of crossings in the corresponding copy plus eight times the sum of the 
exterior distances of its vertices. 

The drawing of copy 1 square depicted in Figure 3 corresponding to one 
eighth of Q6 has labels indicating 20 crossings and satisfies that the sum of 
exterior distances is 24. The Eggleton and Guy conjectured upper bound for 
n = 6 has value (46 x 5)/32 - [(62 + 1)/2J26~2 = 352 = 44 x 8. To illustrate 
the complete method, we depict in Figure 4 the case n = 6, where we omit the 
edges between the top and the bottom parts symmetric with respect to straight 
line 2 to simplify the drawing. 

2.2. The proposed family of drawings. 
We define a drawing for Qn, n > 7, with ^ 4 n - 2n2-nn+342n-2 c r o s s i n g s 

as follows. 
Consider in Figure 5 one eighth part of the proposed drawing of an n-cube. 
The vertices in Figure 5 induce a Qn_3 and are depicted in two horizontal 

lines. The vertices in the superior horizontal line of Figure 5 induce a Qn_{ 

and the vertices in the inferior horizontal line of Figure 5 also induce a Q t . 
Consider first the superior Q n _ 4 • The vertices in the left half induce a Qn - <md 
the vertices in the right half also induce a Qn_5 . The edges corresponding to the 
left Qn_b are placed below the superior horizontal line. The edges corresponding 
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to the right Qn_5 are placed below the superior horizontal line. Now consider 
the inferior Qn_4 • The edges corresponding both to the left Qn_5 and to the 
right Qn_5 are placed below the inferior horizontal line. 

Consider the superior Qn_4. There are 2n~5 edges joining the vertices of the 
left Qn_b to the vertices of the right Qn_5 . The 2n~7 edges joining the leftmost 
vertices of the left Qn_5 to the rightmost vertices of the right Qn_b are placed 
below the superior horizontal line. 

The remaining 2 n " 5 - 2n~7 = 2 n~ 7(2 2 - 1) = 3 x 2n~7 edges joining the 
vertices of the left Qn_5 to the vertices of the right Qn_b are placed above the 
superior horizontal line. The analogous placement of edges is done with respect 
to the inferior Qn_4 • 

Edges joining vertices of the superior Qn_4 to the vertices of the inferior 
Qn_4 are placed vertically as shown in Figure 5. 

Edges joining each vertex of the two Qn_4 's of copy 1 square to vertices of 
the corresponding Qn_4 's in copy 2 square are placed horizontally to the right 
as shown in Figure 5. Edges joining each vertex of the superior Qn_4 of copy 1 
square to the vertices of the corresponding Qn_4 in copy 4 square are placed 
vertically to the top as shown in Figure 5. Edges joining the | 2 n ~ 4 rightmost 
vertices of the inferior Qn_4 to the vertices of the corresponding Qn_4 in copy 4 
square are placed as shown in Figure 5: these edges go first below the inferior 
horizontal line and then go upwards and are placed in the leftmost region of 
the drawing. Edges joining the ^ 2 n ~ 4 leftmost vertices of the inferior Qn_4 to 
the vertices of the corresponding Qn_4 in copy 4 square are placed as shown in 
Figure 5: these edges go first above the inferior horizontal line and then, together 
with the ~2n~4 edges described above, also go upwards and are also placed in 
the leftmost region of the drawing. 

The eight copy squares are connected as in Section 2.L We describe edges 
joining vertices of copy squares 1, 2, 3 and 4 to the corresponding vertices in copy 
squares 5, 6, 7 and 8 by using exterior distances. This concludes the definition 
of our drawing of Qn, n > 7. 

We proceed to count the number of crossings in our proposed drawing of 
Qn • n > 7. We follow the same method used in Section 2.L First, we count the 
number of crossings in copy 1 square. Second, we sum the exterior distances in 
copy 1 square. Then, we sum these two values and we multiply this total by 8 
in order to obtain the claimed number of crossings in our proposed drawing. 

Consider Figure 5, where we depict a drawing for one eighth part of Qn 

coriesponding to square copy 1. Note that the corresponding drawings for Q7 

aii( Qs c ut be obtained as j>articular cases from the drawing in Figure 5. The 
<< of Qb s dcvilt with separately in Figure 3 because the definition of the* 
drawing of Q in Figure 5 requires a subgraph corresponding to <2n_7, which 
is not defined for Qn, n < 6. 
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• Computation of the number of crossings for the proposed drawing of Qn, 
n > 7. 

Now we compute the number of crossings in one eighth part of Qn depicted 
in Figure 5. For, we exhibit in Figure 6(a) a plane drawing with some edges of 
Figure 5. Figure 6(b) is a copy of Figure 6(a) with some edges of Figure 5 that 
are not in Figure 6(a). These new edges induce a certain number of crossings 
in Figure 6(b). We count the additional number of crossings in Figure 6(b) and 
proceed to Figure 6(c). Figure 6(c) is a copy of Figure 6(b) with some edges 
of Figure 5 that are not in Figure 6(b). We count this additional number of 
crossings in Figure 6(c). Analogously, in Figures 6(d), 6(e) and 6(f), we consider 
additional sets of edges and wre count the corresponding additional crossings. 
Since Figure 6(f) is a copy of Figure 5, we have decomposed our computation of 
the number of crossings into five steps. 

F I G U R E 6. Counting process of crossings. 
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— Computation of the number of additional crossings in Figure 6(b) . 

Consider first the superior horizontal line. We have ( 2 n - 4 — 1) + ( 2 n - 4 - 2) + 
2 n " 4 - l 

( 2 n _ 4 - 3) H h (1) = __; i corresponding crossings. This number is the sum 
i = i 

of the first ( 2 n - 4 - 1 ) natural numbers. Thus we have 2 n - 5 ( 2 n - 4 - 1 ) additional 
crossings above the superior horizontal line. Analogously, we have 2 n _ 5 ( 2 n - 4 —1) 
crossings between the superior horizontal line and the inferior horizontal line. 
Therefore, there are 2 n _ 4 ( 2 n - 4 - 1) = 4 n _ 4 - 2 n _ 4 = 64 x 4 n _ 7 - 16 x 2 n - 8 

additional crossings in Figure 6(b) . 

— Computation of the number of additional crossings in Figure 6(c). 

For each vertex of the superior Qn_4 and for each vertex of the inferior Qn_4 

there are two incident edges going upwards in Figure 6(b) . Consider first the 
crossings above the superior horizontal line. There are 3 x 2 n - 7 edges link­
ing the vertices of the left Qn_5 to the vertices of the right Qn_b in the su­
perior horizontal line. Consider e the innermost edge with crossings among 
these 3 x 2 n - 7 edges. There are two vertices between the endpoints of this 
edge e . Since for each one of these two vertices there are two edges going up­
wards in Figure 6(b), we have in e the number of 2 x 2 crossings. The in­
nermost edge with crossings among the remaining edges has four vertices be­
tween its endpoints, so we have 4 x 2 additional crossings. This counting pro­
cess stops in the outermost edge among the 3 x 2 n - 7 edges. That edge has 
2 x (3 x 2 n _ 7 — 1) vertices between its endpoints, which means that it has 

3 x 2 r i _ 7 - l 
(2 x (3 x 2 n - 7 — 1)) x 2 additional crossings. Thus, we have 4 __: i crossings for 

i = l 
3 x 2 r i - 7 - l 

the superior part and 4 __. i crossings for the inferior part. Therefore, that are 
i = i 

3 x 2 n _ 5 ( 3 x 2 n - 7 - 1) = 9 x 4 n _ 6 - 3 x 2 n _ 5 = 36 x 4 n _ 7 - 24 x 2 n _ 8 additional 
crossings in Figure 6(c). 

— Computation of the number of additional crossings in Figure 6(d). 

We denote the function of the number of additional crossings in Figure 6 (d) by 
ip(n). Consider the leftmost 2 n _ 6 vertices of the inferior Q n _ 4 that induce a 
Qn_6 in Figure 5. Consider this set of vertices in the drawing of Figure 6(d). 
Consider first the Qn_7 in the left half of this Qn_6. For each vertex in this 
Q n _ 7 , there are two edges going upwards in the drawing of Figure 6(c). Now 
consider the Qn_7 in the right half of this Qn_6 • For each vertex in this Qn_7 

there are three edges going upwards in the drawing of Figure 6(c). Therefore, 
in the drawing of Figure 6 (d) we count 2 for 2 n _ 6 — 1 vertices of the leftmost 
Qn 6 and we count 1 more crossing for 2 n _ 7 — 1 vertices of its right half Qn-7 > 
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obtaining the following number of additional crossings: 

2 n _ 6 - l 2 n _ 7 - l 

ф(n) = 2j2 i+ __ * 
i = l 

->n—6/c%n-

That yields: 

i=l 

Ąn ĄП 

( 2 „ - ь _ 1 } + 2 n - в ( 2 n - 7 _ 1 } = + _ 2 

ф(n) = | 4 " - 7 - 5 x 2 n " 8 . 

n—6 o n - 8 

— Computation of the number of additional crossings in Figure 6(e). 

Consider Figure 7. We present in a horizontal straight line a drawing for Qn ? 
n > 1, such that all edges of Qn are below this straight line. The drawing for Qn 

is obtained from two drawings for Qn_1 by appropriate adding of 2 n _ 1 edges. 
That this is indeed a drawing for Qn is due to the fact that Qn can be defined 
as Q1 = K2 and Qn = K2 x Qn_l for n > 2. 

F I G U R E 7. Auxiliary drawing for Qn with the edges below a horizontal straight 

line. 

First we want to compute the number of crossings produced in this drawing of 
Qn by 2 n vertical new edges each one incident to each one of the vertices of 
Qn. In other words, we want to compute the sum of exterior distances of the 
vertices of Qn with respect to the infinite region below the horizontal straight 
line of this drawing for Qn. We denote this number by (p(n). See Figure 8. This 
means that; <f)(n) is the number of crossings that 2 n edges going downwards in 
Figure 8(a) share with the edges of Qn. 

We compute the value of (j)(n) in two parts. In the first part, as shown in 
Figure 8(b), we compute the number of crossings of the vertical edges with the 
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edges of each one of the Qn-\ 's on each one of the halves right and left of Qn > 
that is 2(j)(n — 1). 

F I G U R E 8. Exterior distances for 4>{n). 

In the second part, as shown in Figure 8(c), we compute the number of 
crossings of the vertical edges with the 2 n _ 1 edges linking the vertices of the 
Q n - 1 on the right half of Qn to the vertices of the Qn_1 on the left half of Qn. 
The outermost of these 2 n _ 1 edges linking the vertices of the two Qn_1 's has 
( 2 n _ 1 — 1)2 crossings, corresponding to the ( 2 n _ 1 — 1)2 vertices between its two 
endpoints. Analogously, from the exterior to the interior we have, respectively, 
(2n~1 - 2 ) 2 , ( 2 n _ 1 - 3 ) 2 , . . . , 2 x 2 , 1 x 2 and 0 x 2 crossings for the innermost 
of these 2 n _ 1 edges. Hence, the value of 4>(n) satisfies the recurrence: 

# 1 ) = 0, 
2 n - l _ 1 

(j)(n) = 2<f)(n - 1) + 2 ] T i , n > 1, 
2 = 1 

giving that <j>{n) = ^ - 2 n _ 1 (n + 1). 

Now we want to compute the number of crossings in the drawing of Qn in 
Figure 7. This number of crossings is denoted by £(n). We shall use <j>(n) to 
compute the value of £(n). 

By definition of the drawing in Figure 7, the number of crossings in this 
drawing of Qn is equal to twice the number of crossings in the drawing of 
Qn-i P m s twice the number of crossings of the edges of Qn-\ with the 2 n _ 1 

edges linking the corresponding vertices to the two Q n - i ' s ' ^^1 S m e a r j s that 
i(n) = 2 f ( n - l) + 2(j)(n- 1). 
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Solving the recurrence for £(n): 

£(2) = 0, 

f (n) = 2£(n - 1) + 2</>(n - 1), n > 2 , 

gives that £(n) = ~ - 2 n " 2 (n 2 + n + 2) . 
Figure 6(e) is obtained from Figure 6(d) by adding the corresponding edges 

to four Qn_5 's. First of all, we consider the number of crossings in the pairs of 
edges of each Qn_5, that, by definition, is £(n - 5) . It remains to compute the 
number of crossings of the edges of the four Qn_5 's with the edges of Figure 6 (a). 
These crossings are, by definition, 0 ( n - 5 ) for the left half Qn_b of the superior 

Qn-4 J ^ ( n ~~ 5 ) for t i i e r i S n t n a l f Qn-5 ° f t l i e S U P e r i o r <5n-4 ' 0 ( n ~ 5 ) for t l i e 

right half Qn_5 of the inferior Qn_4 and |</>(n - 5) for the left half Qn_5 

of the inferior Qn_4. So the number of additional crossings in Figure 6 (e) is 
4£(n - 5) + | 0 ( n - 5). Thus, we have the following number of crossings: 

4£(n - 5) + | - 0 (n - 5) = 15 x 4 n ~ 6 - 2n~7(4n2 - 29n + 60). 

Therefore, there are 60 x 4 n ~ 7 — 2n~8(8n2 — 58n + 120) additional crossings in 
Figure 6(e). 

— Computation of the number of additional crossings in Figure 6(f). 

In this case, the additional number of crossings is computed in two parts. First, 
we compute the number of crossings of the additional edges in Figure 6(f) with 
the edges of Figure 6(a). Second, we compute the number of crossings of the 
additional edges in Figure 6(f) with the edges of the four Qn_5 's placed in 
Figure 6(e). 

We start by computing the first part. We consider first the crossings with 
the 2 n ~ 7 edges placed in Figure 6(f), in the region between the superior and 
inferior horizontal lines. Consider the outermost edge of the 2 n ~ 7 edges. There 
are (2 n~ 4 — 2) crossings in this edge corresponding to the ( 2 n _ 4 — 2) vertical 
edges between the two endpoints of this edge. Analogously, the next edge has 
(2 n~ 4 - 2 x 2) crossings. Hence, we have: (2 n~ 4 - 2) + ( 2 n " 4 - 2 x 2 ) + (2 n~ 4 -
2 x 3) + • • • + ( 2 n " 4 - 2 x 2n~7) = 2 n - 4 2 n " 7 - 2 x 2 n ~ 8 x (2 n ~ 7 +1) = 2 n ~ 4 2 n ~ 7 -
2 n ~ 7 x ( 2 n _ 7 + l) crossings in this region. Consider now the outermost edge of the 
2 n ~ 7 edges below the inferior horizontal line. There are ( | 2 n ~ 4 — l) crossings 
in this edge corresponding to the ( | 2 n ~ 4 — l) vertical edges between the two 
endpoints of this edge. Analogously, there are ( | 2 n ~ 4 - l ) + ( | 2 n ~ 4 - 2) + 
( | 2 n ~ 4 - 3 ) + - - - + ( | 2 n - 4 - 2 n - 7 ) = | 2 n - 4 2 n - 7 - 2 n - 8 ( 2 n ~ 7 + l) corresponding 
crossings. Therefore, in first part we have 

7 2 n - 4 2 n - 7 _ 3 x ^ - 8 ^ n - 7 + l ) = ^ - 4 n ~ 7 - 3 X 2 n ~ 8 , 
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additional crossings. 
Let us compute the second part . Observe first that the additional crossings 

produced between the additional edges of Figure 6 (f) with the edges of the four 
Qn_5 's are exactly four times the sum of exterior distances of the 2 n _ 7 leftmost 
vertices with respect to the infinite region below the horizontal straight line of the 
drawing of Qn-5, defined in Figure 7. We denote this sum by <j>'(n). We derive 
(j)'(n) in three parts . First part corresponds to the sum of exterior distances in 
the leftmost Qn_7 that is equal to </>(n - 7). Second part corresponds to the 
2"~7 edges linking those 2 n ~ 7 vertices to the vertices of the corresponding Qn_7 

to produce the Qn_6 on the left half of the Qn_5. For these edges we have to 
sum to the exterior distances: 2 n _ 7 - 1 for the outermost edge, 2 n _ 7 - 2 for 
the next edge and respectively, 2 n ~ 7 - 3, 2 n " 7 - 4, . . . , 2 n ~ 7 - ( 2 n " 7 - 1) for 
the remaining edges. Third part consists in the 2(n_7I edges linking the 2 n _ 7 

vertices of the leftmost Qn_7 to the vertices of the corresponding rightmost 
Qn-7 of the Qn_5. For these edges we have to sum the exterior distances: 
2n~7 — i for the outermost edge, 2 n _ 7 — 2 for the next edge, and respectively, 
2 n ~ 7 - 3, 2 n _ 7 - 4, . . . , 2 n _ 7 - (2 n ~ 7 - 1) for the remaining edges. 

In this way, 4>'(n) is computed as follows: 

2 n - 7 _ 1 

0'(n) = 0(n-7) + 2 £ i, 
2 = 1 

which gives the value: 

<f>'(n) = | 4 n " 7 - 2 n - 8 ( n - 4 ) . 

Thus, the corresponding number of crossings to the second part is: 4 x (j>'(n) = 
| 4 n - 6 _ 2 " - 6 ( n - 4) = -f 4 n ~ 7 - 2 n " 8 (4n - 16). 

Therefore, in Figure 6(f) there are ^-4n~7 — 2 n - 8 ( 4 n — 13) additional cross­
ings. 

Therefore, we have that the sum of the crossings in the drawing of one eighth 
for Qn in Figure 5 is given by: 183 x 4 n " 7 - 2n-8(8rz2 - 54n + 152). 

Now we compute the sum of the exterior distances in Figure 5. 

• Computation of the sum of the exterior distances in Figure 5. 

We partition the vertices of Figure 5 into six groups of vertices, which are the 
vertices in the regions ED1,ED2,ED3,ED4,ED5 and ED6 defined by Fig­
ure 9(a). The exterior distances are derived with respect to curves following the 
flow chart diagram corresponding to each region in Figure 9(b). 

In this way, we derive the sum of exterior distances of the vertices in each 
one of the regions ED1,ED2,ED3,ED4,ED5 and ED6. 
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F I G U R E 9 . Counting regions of exterior distances . 

— Regions EDI and ED3. 

By definition of ip(n) and because we have 2 n _ 6 vertices in each one of the 
regions EDI and EDS, the sum of exterior distances of the vertices in each of 
these regions is: 

ф(n) + T -4 2 n-ť = iЦ»-7 

2 
5 x 2 " " 8 + 4 n ~ 5 = # 4 " ~ 7 - 5 x 2n~8 . 

— Region ED2. 

Because of the additional edges in Figure 6(e), we have <j)(n — 5) crossings. 

Because of the edges linking the vertices of copy 1 square to the vertices of 
copies 2 and 4 squares and because we have 2 n _ 5 vertices in region ED2, we 
have additional 2 n - 4 2 n _ 5 crossings. 

Because of the additional 2 n _ 7 edges in Figure 6(f) between the superior and 
inferior horizontal lines and because we have 2 n _ 5 vertices in region ED2, we 
have 2 n _ 7 2 n _ 5 crossings. 

Let us analyze the crossings with the 2 n _ 4 vertical edges linking the vertices 
of the superior Qn_4 to the vertices of the inferior Q n _ 4 . Consider the leftmost 
vertex of ED2. This vertex is responsible for 2 n _ 6 crossings with the vertical 
edges. The first vertex in ED2 on the right hand side of this vertex is responsible 
by 2 n _ 6 + l crossings with the vertical edges. It is easy to see that the zth vertex, 
1 < i < 2 n - 6 - 1, of ED2 on the right hand side of the leftmost vertex of ED2 
contributes with 2 n _ 6 + i crossings with the vertical edges. So, the rightmost 
vertex of the left half of ED2 is responsible for 2 n _ 5 — 1 crossings with the 
vertical edges. Following the direction of the flow chart diagram of ED2 an 
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analogous sum of exterior distances is obtained for the vertices in the right half 
2 n - 5 _ 1 

of ED2. That gives, 2 £ i = 2n~6(3 x 2 n ~ 6 ^ 1) additional crossings. Thus we 
i=2n~Q 

have the following number of crossings in region ED2: 

(f)(n - 5) + 2 n - 4 2 n ~ 5 + 2 n " 7 2 n - 5 + 2n~6(3 x 2 n ~ 6 - 1) 

= ^ 4 n ~ 5 - 2 n " 6 (n - 4) + | 4 n ~ 4 + 4 n ~ 6 + 3 x 4 n " 6 - 2 n ~ 6 

= (8 + 32 + 16)4n"7 - 2n~8(4n - 12) 

= 5 6 x 4 n - 7 - 2 n " 8 ( 4 n - 1 2 ) . 

— Region EDA. 

Because of the additional edges in Figure 6(e), we have \4>(n — 5) crossings in 
region EDA. 

Because of the additional 2 n ~ 7 edges in Figure 6(f), we have the sum 
2 n - 7 _ 1 

£ i = 2 n " 8 ( 2 n - 7 - 1) of crossings for the 2 n ~ 7 vertices in the left half 
i = i 

of EDA and 2 n _ 7 2 n - 7 crossings, for the 2 n " 7 vertices in the right half of EDA. 

Because of the | 2 n " 4 edges leaving the bottom part of the inferior horizontal 
line and linking the vertices of the inferior <2n_4 with the corresponding vertices 
of copy 4 square, and because there are 2 n " 6 vertices in region EDA, we have 
3 on—4 on—6 

EDA: 
4 2 n 4 2 n 6 crossings. This gives the following number of crossings in region 

^ 0 ( n - 5) + 2 n " 7 2 n - 7 + 2 n _ 8 ( 2 n - 7 - 1) + 3 x 2 n ~ 6 2 n - 6 

= 4^-6 _ 2"-7 (n - 4) + 4n"7 + 14n"7 - 2n~8 + 3 x 4n"6 

= (4 + 1 + i + 12 )4 n " 7 - 2n~8(2n - 8 + 1) = ^ 4 n " 7 - 2 n " 8 (2n - 7 ) . 

Region EDb. 
Because of the additional edges in Figure 6(e), we have </>(n — 5) additional 
crossings. 

Let us consider the | 2 n ~ 4 rightmost edges linking the vertices of the inferior 
Qn-A t ° the corresponding vertices in copy 4 square. Consider the rightmost ver­
tex of EDh. The flow chart direction of EDb shows that this vertex contributes 
with 2 n _ 6 crossings with the 2 n ~ 6 rightmost edges of the | 2 n " 4 edges. The first 
vcitex of ED5 on the left hand side of this vertex contributes 2 n _ 6 + l crossings 
with the 2n 6 + 1 rightmost edges among the | 2 n _ 4 edges. It is easy to see that 
the zth vertex, 1 < i < 2 n ~ 5 — 1, of ED5 on the left hand side of the rightmost 
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vertex of EDh contributes with 2 n ~ 6 + i crossings with 2 n _ 6 + f rightmost edges 
r\Tl — 6 \r\Tl — 5 -1 

among the §2 n ~ 4 edges. So, we have the sum J2 i = 2 n " 6 ( 2 n " 4 - 1) of 
z = 2 " ~ 6 

additional crossings. 
Because of the additional edges in Figure 6(f) and because we have 2 n ~ 5 

vertices in region ED5, we have 2 n ~ 7 2 n _ 5 crossings. That gives the following 
number of crossings for region ED5: 

0(n - 5) + 2 n " 7 2 n ~ 5 + 2 n ~ 6 ( 2 n - 4 - 1) 

= l 4 n ~ 5 _ 2 n _ 6 ( n - 4) + 4 n ~ 6 + 4n"~5 - 2 n - 6 

= (8 + 4 + 16)4n~7 - 2n~8(4n - 16 + 4) = 28 x 4 n ' 7 - 2n~8(4n - 12). 

— Region ED6. 

By definition of ip(n), the sum of exterior distances of the vertices in this region 
is ^{n) = | 4 n " 7 - 5 x 2 n - 8 . 

This give 147 x 4 n ~ 7 — (10n — 16)2n~8 for the sum of the exterior distances 
in Figure 5. 

Therefore, the number of crossings in Figure 5 added to the exterior distances 
is: 

330 x 4 n ~ 7 - (8n2 - Un + 136)2n~8 . 

In this way, we obtain the claimed upper bound for the crossing number of the 
rc-cube: 

HQJ < 8(330 x 4"~ 7 - (8n2 - 44n + 136)2"-8) 

lfifi4„ 2 n 2 - l l n + 3 4 2 r a , 2 

1024 
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