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THIN SETS IN TRIGONOMETRICAL SERIES 
AND QUASINORMAL CONVERGENCE 

ZUZANA BUKOVSKA 

1. Introduction 

J. A r b a u l t [1] introduced the following notion of a thin set: a set 
E ^ <0,1> is called an 1V0-set if there exists an increasing sequence {nk}^0 of 

00 

natural numbers such that the series ]T |sinn^7ix| is pointwise convergent on E. 
k = 0 

He showed that every countable subset of <0,1> is an JV0-set. N. K. Bar i [2, 
p. 737—738] presented another proof of this fact based on an idea by V. V. 
Niemyck i j [10]. Later, N. N. C h o l s c e v n i k o v a [5] extended this result 
showing that every set of power less than m (for definition of the Martin number 
m see, e.g., D. F r e m l i n [8]) is an 1V0-set. Both N. K. Bari and N. N. 
C h o l s c e v n i k o v a proved more. Actually they showed that the series 

00 

]T |sinnfc7Cxj is convergent in stronger way than pointwise. This type of conver-
k = 0 

gence was investigated under the name of "equal convergence" by A. 
C s a s z a r and M. L a c z k o v i c h [6, 7]. In [3], we call it quasinormal conver­
gence. 

Definition 1. Letf ,fbe real valued functions, n = 0, 1, 2 , . . . , defined on a set 
X. We say that the sequence {fX=o quasinormally converges to f on X if there 

exists a sequence {^XU of nonnegative reals, lim e„ = 0 such that for every 
« - » 00 

xeX there is an index nx with \fn{x) -f(x)\ < sn for n > nx. 
This convergence lies between pointwise and uniform convergences. We shall 

need the following simple facts proved in [3, 6, 7]. 

Theorem 1. a) If '{ fXU quasinormally converges tofon X, then there are sets 
00 

Xk9 k = 0, 1, 2, ... such that X = [J Xk and {fXL0 converges uniformly tofon 
* = o 

each Xk9 k = 0, 1, 2, .... Moreover, ifX is a topological space andfn is continuous 
on X for every n, then we can suppose that Xk are closed sets. 
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b) If{fn}™=o quasinormally converges tofonXk9k = 09l9...9 then it does so 
00 

on the union ( J Xk. 
k = 0 

For every real number x we denote by ||x|| the distance of x to the nearest 
integer, i.e. if z is the integer for which z < x < z + 1, then ||x|| = min{x — z, 
z + 1 - x}. 

Remark 1. One can easily show that for any real x the following inequalities 
hold true 

2 K 

Therefore the sequences {i|n*x||}*°=o> {^nnnkx}<k = o behave equally as concerns 
00 

convergence to zero. Similarly the series £ \\nkx\\ converges if and only if 
* = o 

00 

£ Isinrc/^xl converges. 
* = o 

We conclude with a classical result which we shall need (for proof see, e.g., 
J. W. S. Casse ls [4] or N. K. Bari [2]). 

Theorem 2 ( D i r i c h l e t — M i n k o w s k i ) . Let xl9 .... xmeR9 e> 0, keN. 
77*en there exists a natural number n > k such that ||ftx/|| < e for i -= 1, 2, ..., m. 

The main purpose of this paper is to classify some thin sets in the theory of 
trigonometrical series using the quasinormal convergence and its properties. 
Moreover, we shall strengthen the main theorem of N. N. Choi see v-
nikova [5]. 

2. Some thin sets in trigonometrical series 

Let us recall some notions of thin sets (see N. K. Bari [2] or T. W. K 6 r -
ner [9]). A set E ^ <0,1> is called an i?-set if there exists a trigonometrical 
series 

00 

~ + Z an c o s 2n:flx + bn sin 2Knx (*) 
2 w= i 

convergent for every xeE but lim (a„2 + bl) is not zero. A set E ^ <0,1> is 
n -*• oo 

called an IV-set if there exists a series (*) absolutely convergent on E and such 
00 

that X \a„\ + \b„\ = +00. It is well known (see e.g. N. K. Bari [2]) that 
n = 0 
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every 1V0-set is both an 1V-set and an Z?-set. A set E c <o, 1> is called Dirichlet 
if there exists an increasing sequence {nk}k = 0 such that {znmkX}k = 0 converges 
uniformly to 1 on E. One can easily show that a set E is Dirichlet if and only 
if for every e > 0, every k, there exists a natural number n > k such that 
|sin 2nnx\ < s for every xeE. Finally, a set E .= <0,1> is called almost Dirichlet 
if every F^ E, F ?-= E, F closed in E is Dirichlet. 

The relationship between those sets is discussed, e.g., by T. W. K o r n e r 
[9]. However, T. W. K o r n e r requires that all those sets be closed. We in­
troduce some new types of thin sets and we shall use them for the investigation 
of the above mentioned thin sets. 

Definition 2. A set E ^ <0,1> is called a Z)-set (a strong Z)-set, a weak Z)-set) 
if there exists an increasing sequence {nk}™=0 such that {||n*x||}r=o converges to 
0 on £ quasinormally (uniformly, pointwise, respectively). Similarly, a set 
E ^ <0,1 > is called a DS-set (a strong Z)S-set, a weak Z)5-set) if for a suitable 

oo 

increasing sequence {n^} °̂=0 the series £ Wnkx\\ converges on E quasinormally 
A: = o 

(uniformly, pointwise). 
Using Remark 1 one can easily show that the notions of a strong Z)-set, a 

strong DS-set and a Dirichlet set coincide. Similarly, the Z)-set and the DS-set 
coincide. A weak DS-set is exactly the 1V0-set. A weak Z)-set was introduced also 
by J. A r b a u l t [1] as a set admitting "une suite de limite nulle". 

Theorem 3. Let E ^ <0,1>. The following are equaivalent * 
a) E is a D-set, 
b) E is a union of an increasing sequence of Dirichlet sets, 
c) E is a union of an increasing sequence of Dirichlet sets closed in E. 
Proof. Evidently c) implies b). We show that b) implies a) and a) implies 

c). 
00 

Let E = \J En, E0 ^ Ex _= ... being Dirichlet sets. By induction we can 
« = o 

choose nk such that nk > max{n,; i < k} and ||n*x|| < for every xeEk (Ek 

k+ 1 
is a dirichlet set !). 

If x e E, then xeEm for some m. For any k > m we have x e Ek and therefore 

Unwell < . Thus, Zs is a Z)-set. 
k+ 1 

Now assume that Eis a Z)-set, i.e. there exists an increasing sequence {nk}k=^0 

such that {||n*xllK°=o quasinormally converges to zero on E. By Theorem 1, a) 
the set Zs is a union of an increasing sequence of closed (in E) sets En,n = 0, 1, 
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... such that {||nkx||}£°=0 converges uniformly to zero on every En. Thus every En 

is Dirichlet and closed in E. 
q.e.d. 

A simple sequence of this theorem is a strenghtening of Lemma 4.3 of T. W. 
K o r n e r [9]. 

Corollary. Every almost Dirichlet set is a D-set. 
Proof. Let E be an almost Dirichlet set. If E is finite, then E is a Z)-set 

(actually a Dirichlet set) by Theorem 2. 
Assume E to be infinite. Then there exists an accumulation point ae <0,1> 

of the set E. Denote 

En = ( E - (a , a-\ ))u{a}, n = 0, 1. 2, .... 
V V n+1 n+1/7 

00 

Every En is a closed set, En^ En+l and \^j (En nE) = E. Since a is an accumula-
« = o 

tion point of E, EnEn^ E for every n. Thus, by the definition of an almost 
Dirichlet set the set E n En is Dirichlet and the set E satisfies the condition c) of 
Theorem 3. 

q.e.d. 
Contrary to T. W. K o r n e r [9], defining the thin sets we have omitted the 

condition that a thin set be closed. This omission is important since, e.g., 
Qn<0,1> is a D-set and it is not closed, neither is its closure a thin set. 
However, sometimes the thin sets ought to be nice, say Borel. We show that, in 
a certain sense, this can be achieved. 

Theorem 4. For every set E ^ <0,1> there exists a set F^E such that 
a) if E is Dirichlet, then F is also Dirichlet and F is closed; 
b) if E is a D-setf then F is also a D-set and F is an Fa-set; 
c) if E is an N0-setf then F is also an N0-set and F is an FaS-set; 
d) if E is a weak D-set, then F is also a weak D-set and F is an FaS-set. 
Proof. Assume, e.g., that E is a Z>-set and is not Dirichlet. Then there 

exists an increasing sequence {nk}k = 0 such that {||n*x ||}^= o converges quasinorm-
ally to zero on E. By Theorem 1 there are sets En, n = 0, 1, ..., such that 

00 

E = [J En and {Hn^xHK^o converges uniformly to zero on each En. Thus it 
H = 0 

n 

converges uniformly on every finite union [J Et. 
i = 0 

Since every function ||n*xl| is continuous one can easily find a closed set 
n 

F„ 2 ( J E, such that {||«*xll}r=o converges uniformly to zero on E„. 
1 = 0 
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By Theorem 3 the set F = [J Fn is the desired D-set which is an /v-set. 
« = o 

The other cases can be shown in a similar way. 
q.e.d. 

In literature (see e.g. T. W.Korner [9, p. 222]) the notion of a weak Di-
richlet set is investigated: a set E c <0,1> is called weak Dirichlet if for every 
positive finite Borel measure JU on <0,1>, for any e > 0, r\ > 0 and given n0, we 
can find n > n0 such that n*({xeE\ \e2ninx — 1| > e}) < X] (//* is the exterior 
measure associated with //). Using Lebesque's Dominated Convergence Theo­
rem (see, e.g., W. R u d i n [11]), from part d) of Theorem 4 we have 

Corollary. jEVery weak D-set is a weak Dirichlet set. 

3. Thin sets and groups 

The set <0,1 > can be considered as an Abelian group with the addition 
modulo 1. If E c <0,1>, we denote by G(E) the subgroup of <0,1> generated 
by E. Group-theoretical properties of thin sets were investigated by several 
authors (see N. K. Bari [2]). We shall use them for distinguishing D-sets 
from almost Dirichlet sets. We start with a rather elementary result. 

Theorem 5. Let E c <0,1>. If E is a D-set (an N0-set, a weak D-set), then 
G(E) is also a D-set (an N0-set, a weak D-set). 

Proof. Let E be a D-set. Let {nk}k = Q be an increasing sequence of in­
tegers such that {||«&xllK°=o quasinormally converges to zero pn E. Let {sk}k = o 
witness this convergence, i.e. if xeE, then \\nkx\\ < sk for sufficiently big k and 

lim sk = 0. We denote 
k~* oo 

F0 = {xe<0,1>; xeE or 1 — xeE}, 

Fn + i = {xe<0,1>; (3y, zeFn)x = y + z mod 1}. 
00 

Then G(E) = ( J Fn. If xeFn, then | |^x | | < 2nek for sufficiently big k. Therefore, 
« = o 

{\nkx || }ks= 0 quasinormally converges to zero on J^. By Theorem 1, b) the set G(E) 
is a D-set. 

For JV0-sets and weak D-sets the proof is straightforward. 
q.e.d. 

The aim of this part is 

Theorem 6. If E s <0,1> is an almost Dirichlet set which is also an additive 
group, then E is finite. 

Proof. Assume E is infinite. Then there is an accumulation point a of E, 
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i.e. a 5a lim xn for some xneE9 xn^xn + x. Setting yn = |x„ + 1 - xw| we have 
W - > 0 0 

lim yn = 0, yneE and yn # 0. Thus 0 is an accumulation point of E. 
/I—> 00 

Since .£ is a group we have E n / 0, - W £. We show that / 0, - \ n is is not 

a Dirichlet set. It suffices, for given e > 0, n e N, to find a n i e / 0 , - \ n £ such 

that ||nx|| > £. 

So, let £ > 0, e < - , n arbitrary. Since 0 is an accumulation point of E there 
4 

exists y e is such that 0 < y < - . Let k be the smallest natural number for which 
n 

g 
ky > - . Set x = ky. Then 

n 

0 < nx = nky = n(k — l)y + ny < £ + £ < -
2 

and therefore 

||nx|| = nx = nky > £. 
q.e.d. 

Corollary 1. //*£' £ <0,1> is a Dirichlet set and an additive group, then E is 
finite. 

Corollary 2. 77*ere exist D-sets which are not almost Dirichlet. 
Proof. Take any infinite countable E^ <0,1>. Then E is a D-set (see, 

e.g., Corollary 2 to Theorem 10) and G(E) is also a Z)-set. G ^ ) is not almost 
Dirichlet. 

q.e.d. 

4. A set of cardinality smaller than p is a D-set 

The cardinal numbers m and p are defined, e.g., in D. F r e m l i n [8, p. 3]. 
Always K, < m < p and the consistency of the inequality m < p is known (for 
detailed discussion see D. Fremlin [8, p. 290]). 

As we have already noted N. N. C h o l s c e v n i k o v a [5] has shown that 
every E s <0,1>, |is| < m is a D-set. We shall improve this result replacing m 
by p. For to make this paper self contained we repeat the definition of the 
cardinal number p. 
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A family OF of subsets of N (the set of all natural numbers) has the finite 
intersection property if A0n ... n An is infinite whenever A09 ..., A„e3F9 ne N. 
The cardinal p is the least cardinal such that there exists a family J^ of subsets 
of N with the finite intersection property, |#" | = p and such that for any B c N 
infinite, there exists A e & with B — A infinite. 

One can easily show that K0 < p < 2 °. The set N in this definition can be 
replaced by any countable infinite set. 

Theorem 10. Let Es c <0,1> be a Dirichlet set9 seS9 \S\ < p. If for every 

T _= S9 Tfinite the union [J Es is Dirichlet, then E = [J Es is a D-set. 
SET SGS 

Proof. For any f c ^ w e denote 

B(T9m) = l[k9n]eN x N; k9n > m&(vxe\J Es\ \\nx\\ <—— j . 

First we show that B(T9 m) is infinite whenever Tis finite. So, suppose Tis finite. 

By the assumptions the set [J Es is Dirichlet. Therefore there exists an 
seT 

increasing sequence {nk}k = 0 such that ||%x|| < for every keN, every 
k+ 1 

xe [J Es. Since nk > k, we have [k9nk]eB(T9m) for every k > m. 
seT 

From the definition of B(T9m) we obtain directly 

B(T9m) s B(T09m0) n...n (Tk9mk)9 

where r = T0u ... u 7J, m = max{m0, ...,mk}. therefore the family 

& = {B(T9m); T^ S finite, me N} 

has the finite intersection property. Since |J^| < K0- |*S| < p there exists an 
infinite set C c N x N such that C — B(T9m) is finite for every T £ S finite, 
every m e N . 

If m is an arbitrary integer, then C nB(T9m) # 0 for any r s S finite. Hence, 
there are k9n> m with [k ,n]eC. 

Now, we shall construct two increasing sequences {fc,}j*L0» (w/}r=o of natural 
numbers. Let k0 be the smallest natural number for which there is an n0 such that 
[k0, n0] e C. By induction, let k, + } be the least natural number greater than k, for 
which there is ni+, > n, such that [ki+]9 H l + , ]eC. 

S Є S 

We show that for every x e E = \J Es there exists an /0 such that 
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1 
||if,*|| < for i>i0. Let xeE. then xeEs for some seS and the set 

*, + 1 
C — B({s}9 0) is finite. Since [ki9 nf] e C for every ie N, there exists an i0 such that 

[ki9 wje B({s}, 0) for i > i0. By the definition of B({s}9 0) we have \\ntx || < 
k,+ 1 

q.e.d. 
Theorem 3 can be strengthened as 

Corollary 1. Let E^t,< a be an increasing sequence of Dirichlet sets, a being 

an ordinal. Ifa<p9 then ( J E$ is a D~set. 

Strong D - set 
II 

Strong OS - set 
II 

Dir ichlet set 

f l . W . KORNER[9] 

Almost Dirichlet set 

Corollary to Theorem 3 Corollary 2 to Theorem 6 

D-set 
II 

DS - set 

HP 
weak DS - set 

R-set <• >weak D-set 

Corollary 
to Theorem 4 

weak Dirichlet set 
Fig. 1 
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By the Dirichlet—Minkowski theorem every finite set E £ <0,1> is Dirichlet. 
therefore 

Corollary 2. IfE £ <0,1> is of cardinality smaller than p, then E is a D-set. 

5. Concluding remarks 

The main purpose of introducing new types of thin sets was to make the 
relationship between some classical notions of thin sets clear. The obtained 
result is presented in Figure 1. A double arrow indicates the immediate conse­
quence of definitions. A simple arrow indicates a nontrivial result with a 
corresponding reference. A simple arrow without reference means a conse­
quence of related results indicated in the figure. Similarly for crossed arrows. 

Of course, the absence of an arrow indicates an open problem. The most 
important are the following: 
1) Is there an R-set which is not an N-set (see N. K. Bari [2])? 
2) Is there an N0-set which is not an D-set? 
3) Is there a weak D-set which is not an N0-set? 

The first question is open for more than thirty years. We show a relation of 
this question to the third one. 

Theorem 11. If there exists an R-set which is not an N-set, then there exists a 
weak D-set which is not an N-set. 

Proof. Let E c <0,1> be an if-set which is not an IV-set. Take any x0eE. 
Then 

F = {x — x0; x e E} 

is an i?-set (see [2, p. 731]) and OeF. Therefore, Fis a weak £>-set (see [1] or [2, 
p. 732]). 

Suppose that F is an IV-set. Then by [2, p. 752] the set E = F + x0 is also an 
Ar-set — a contradiction. 

q.e.d. 
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ТОНКИЕ МНОЖЕСТВА В ТРИГОНОМЕТРИЧЕСКИХ РЯДАХ 
И КВАЗИНОРМАЛЬНАЯ СХОДИМОСТЬ 

2.игапа Викоу$ка 

Р е з ю м е 

Используя квазинормальную сходимость, вводим новое понятие тонкого множества в 
теории тригонометрических рядов — множество типа ^. Всякое почти Дирихле множество 
[9] является множеством типа /), а множество типа ^ является множеством типа Ы0 [2]. 
Доказано, что всякое множество мощности меньше р [8] есть /)-множество, разширяя так 
основную теорему [5]. Показано, что почти Дирихле множества и /)-множества не сов­
падают. 
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