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LINES IN DIRECTED DISTRIBUTIVE MULTILATTICES

OLGA KLAUCOVA

Introduction

M. Kolibiar [8] has studied properties of lines in a lattice and he has shown that
the Jordan-Holder theorem for lines is true in modular lattices. E. Gedeonovai [4]
has investigated lines in nonmodular lattices and she has proved that the Jor-
dan-Holder theorem for lines is valid in a p-modular and semimodular lattice. The
aim of this paper is to investigate properties of lines in directed distributive
multilattices. The main result of the paper is Jordan-Holder theorem for lines in a
directed distributive multilattice. The method of this paper is a modification of the
methods used in [8].

A multilattice [2] is a poset M in which the condition (i) and its dual (ii) are
satisfied: (i) If @, b, he M and a = h, b = h, then there exists v € M such that (a)
v=Eh,vZa,v=Zb,and (b) zeM, z=v, zZa, zZb implies z=v.

Analogously as in [2] denote by (a v b), the set of all elements v € M of (i). Let
(a A b), have the dual meaning. Set

avb=J(avb),, anb=J(anb),.

ash d=a
b=h d=bh

Let A and B be nonempty subsets of M, then we define
AvB=|J{avb|aecA, beB)}, AArB=U{anb|acA,beB)}.

In the whole paper we write [(avx)A(bvx).,=x ([(@arx)v(bAax)],=x)
instead of [(avx)A(bvx).={x} ([(arx)Vv(bAx)].={x}).

A poset A is called directed if for each pair of elements a, b € A there exist
elements d, 1€ A such that d=a, d=b and a=h, b=h.

A multilattice M is distributive [2] iff for every a, b, b’, d, h € M satisfying the
conditions d=a=h, d=b=h, d=b'=h, (avb),=(avb'),=h, (anb),=
(anb'),=d we have b=5b".

Let M be a multilattice and N a nonempty subset of M. N is called a
submultilattice [2] of M iff Nn(av b),#@ and Nn(a A b),# 0 for every a, b, d,
heN satisfying a=h, b=h, d=a, d=b.-
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Recall the following definition and results from [7]:

Multilattices M and M’ and said to be isomorphic (denoted as M ~ M') if there
exists a bijection f of M onto M’ satisfying: x =y iff f(x)=f(y) (x, ye M).

Let M be the Cartesian product of two posets M,, M,. M is directed iff M, and
M, are. M is a multilattice iff M, and M, are. For each element x € M denote by x,,
x. (x,e M) its Cartesian coordinates. Then for all a, b, h, veM, ve(av b),
(ve(anb),) iff vie(a v b)), (vie(a, Ab),) for i=1,2.

Properties of lines in directed distributive multilattices

Throughout the paper M and M’ denote directed distributive multilattices. Let
a, b, xe M. We say that x is between ¢ and b and write axb if

(r) [(@anx)yv(bax).=x=[(avx)Ar(bvx)].

Theorem A ([6, Theorem 1]). Let M be a directed distributive multilattice, a, b,
“xeM. Then (r) is equivalent with

(s) (anx)A(bArx)canb, (avx)v(bvx)cavh.

Analogously as in [6] denote by B(a, b) the set of all elements x € M for which
axb holds.

Theorem B ([6, Lemma 12]). Let M be a directed distributive multilattice.
a,beM. Then

B(a,b)= U (u,v).

ueanb
veavh

Lemma 1. The refation (r) in M has the properties :

(1) «xyz implies zyx,

(2) «xyz and xzy iff y =z,
(3) xyz and xzu imply yzu,
(4) xyx implies x =y,

(5) xyz and xzu imply xyu.

Proof. The assertions (1), (2), (3) follow from [6, Lemma 6, Lemma 14,
Lemma 15]. We prove (4). By Theorem A, from xyx we get (x Ay)A(xAy)c
X Ax=x, hence xe(x Ay)A(xAY) and x=y. By duality we get y=ux, hence
x'=y. Proof of (5): By Theorem A, from xyz we get (x Ay)A(y Az) c x Az and
(xvy)v(yvz)exvz. Let us choose wu,e(xAay)a(ynz) and
vie(xvy)v(yvz). Obviously “s=y=w,. Using Theorem A, from xzu we get

uA(zAU)E(XADIA(zAU)Sx AU,
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vw@Evu)c(xvi)vizvu)cxvu.
Choose u,eu, A(z Au), v€v,v(zvu). Then
LE=u,=Sy=sv,=v,,

hence y € (u,, v,) < B(x, u) (Theorem B).

Four different elements a, b, ¢, d e M form a pseudolinear quadruple [8] when
they satisfy abc, bcd, cda, dab.

If A, B are subsets of some multilattices and a bijection ¢ from A onto B is
given so that abc iff @(a)@(b)@(c), we say that A, B are b-equivalent. A subset A
of M is called a line if there exists a chain that is b-equivalent to A. An element a is
an end element of a line A, if 2 € A and for each two elements x, y of the line A,
ayx or axy. Evidently, a chain in M is a line in M.

Lemma 2 (see [1]). Let C be a chain in M. The relation (r) in C has the
property:

(6) xyz, yzu, y# z imply xyu.

Remark. If A is a line in M, then A is b-equivalent with a chain, hence (6)
holds in A.

Let A be a line in M. Two elements a, b € A, a# b, are called neighbouring if
{x|x€eA, axb}={a, b}.

A lenght of a finite line is defined to be n — 1, if n is a number of the elements of
A.

A line A = M is called connected when it has the following property: If xe M
and if there exist elements a, b € A such that axb and A U {x} is a line in M, then
xeA.

An interval (a, b) (a<b) in M is called a prime interval, if (a, b)={a, b}.

Lemma 3. Let o:M— M’ be a b-equivalence of M onto M'. Then the image of
each prime interval in M is a prime interval in M’'.

Proof. Let {a, b) be a prime interval in M. Denote @(a)=a’, p(b)=>b". Since
B(a, b)={a, b}, we get B(a',b')={a’, b'}. If a’, b' are incomparable, then
there exists v'ea’'vb', v'#¥a', v'+b' and v'e B(a’, b'), which is impossible.
Hence the elements a’, 4’ form a prime interval.

We shall use the following result from [1]:

Theorem C. Let A be a set with a ternary relation axb satisfying the conditions
(1), (3), (4) of Lemma 1, (6) of Lemma 2 and '

(7) for each three elements x, y, z € A at least one of the relations xyz, yzx, zxy
holds.
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.

Then there exists a partial order = on A in whichxyziff x=y=zorz=y=x.

Theorem 1. A subset A of a directed distributive multilattice is a line iff it

satisfies the following conditions :
(7) from Theorem C and
(8) A does not contain any pseudolinear quadruple.

Remark. The proof of this Theorem is a modification of the proof of
[8, Theorem 2.1].

Proof. Let A be a line. Then A is b-equivalent to a chain. In the chain the
condition (7) is valid, hence it is valid in A, too. Assume that A contains a
pseudolinear quadruple a, b, ¢, d. From abc, bcd, b# ¢ we get adb (Lemma 2).
Using (2), from dba, dab we get a = b, which is contradictory. Hence, if A is a line,
then the conditions (7) and (8) are valid. Conversely, let A satisfy (7) and (8). We
have to verify that the relation (r) in A satisfies the conditions (1), (3), (4), (6), (7)
of Theorem C. Obviously, (1), (3), (4), (7) are valid in A. We shall prove the
validity of (6). Let xyz, yzu, y# z. From (7) it follows that we get the following
cases: 1. yux, 2. uxy, 3. xyu. In the first case from xyz and xuy we get uyz
(use (3)). This and yzu implies y = z, which is contradictory. In the second case for
x, Z, u at least one of the relations zux, uxz, xzu holds by (7). If zux holds, then the
elements x, y, u, z are not pairwise different by (8). Let x = y. Then from yzu and
zuy we get z =u, and from this xyu, hence (6) is valid. Let x = «. Then from yzx
and xyz we get y = z, which is contradictory. Let x = z. Then from zux we get xux
and this implies x = u, which is contradictory. Let z=u, then from xyz we have
xyu, hence (6) is valid. Let y = u, then from uxy we get uxu and this implies x = u,
which is contradictory. If uxz holds, then from wxz, uzy we get xzy by (3) from
Lemma 1. From xzy, xyz we have y = z, which is contradictory. If xzu holds, then
from xzu and xyz we get xyu by (5) from Lemma 1.Hence (6) is valid. This
completes the proof.

Corollary. Let A be a line in M, a, be A, and let a, b be incomparable. Then
there exists at most one element v € a v b and at most one element u € a A b, such
that u,ve A.

Proof. Letv,,v,€ A, v,,v.€aVv b, v, # v,. Then it holds av,b, av,b. From (7)
it follows that for the elements a, v,, v,, we get the following cases: 1. qv,v,, 2.
av,v,, 3. v,av,. Analogously for b, v,, v, we have one of the possibilities: 1’. bv,v,,
2'. bvyv,, 3'. v,bv,. In the first case from a = v, we get v, = v,, which is impossible.
The second case is analogous. Similarly we verify that neither bv,v, nor bv,v, can
hold. Hence the elements a, b, v,, v, satisfy av,b, v,bv,, bv,a, v,av,. We get a
pseudolinear quadruple, which contradicts (8). The second part of the assertion is
dual.

Theorem 2. Each two neighbouring elements of a connected line A in a directed
distributive multilattice M form a prime interval in M.
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Remark. The proof of this Theorem is a modification of the proof
|8, Theorem 2.3].

Proof. Let a, b be neighbouring elements of a connected line A in M. Lette M
and let arb hold. We shall prove that the set A U {¢} is a line in M. Hence we have
to verify:

(a) for each x, ye A at least one of the relations txy, xty, xyt is valid;
(b) if x, y, z€e A, then the elements x, y, z, ¢ do not form a pseudolinear
quadruple.

In view of the symmetry, for the elements a, b, x, y € A it sufficies to consider
the following cases: 1. xab, yab ;2. xab, aby. In the first case it holds xya or yxa. If
xya holds, then we get xyb by (6) of Lemma 2. From bay and bta we have bty by
(5) of Lemma 1. The relations b¢y and byx imply tyx by (3) of Lemma 1. If yxa
holds, then the proof is analogous. In the second case we get xay by (6) of Lemma 2.
From aby and atb we have aty by (5) of Lemma 1. The relations yax and yta imply
ytx by (5) of Lemma 1. Consequently (a) is proved.

Now we shall prove (b). Let the elements x, y, z, t€ A form a pseudolinear
quadruple. In view of the symmetry it suffices to consider the following cases for
theelementsa, b, x,y,z€ A: 1. xab, yab, zab ;2. xab, yab, zba ; 3. xab, yba, zab.

In the first case we have either xza or zxa. Assume that xza holds. From xza and
xyz we get xya by (5) of Lemma 1. The relations xya and xab imply xyb. From bay
and bta we have bty. This and byx imply tyx. From ¢yx and zxy it follows that x = y,
which is contradictory. The case zxa is analogous.

In the second case we get bty from bra and bay. The relations ytb and yzt imply
ztb. This and zba imply tha. From tha and bta we get ¢ = b, which is contradictory.

In the third case we get aty from aby and atb. The relations bta, baz imply taz.
This and fzy imply tay. From this and aty we get a =¢, which is contradictory.

We have proved that A U {r} is a line in M. Since A is connected, then te A.
Because a, b are neighbouring in A, we get a =t or b =¢. By Theorem B we get
that the elements a, b are comparable, hence they form a prime interval.
Consequently Theorem 2 is proved.

Theorem 3. Each line A in M is a submultilattice of M.

Proof. Let A be aline in M, a, b € A and assume that there exists # € A such
that a=h, b=h. Obviously (av b),n A+, if a, b are comparable. Let a, b be
incomparable. At least one of the relations ahb, abh, bah holds. From ahb it
follows that #e (u, v), where uea A b, veav b (Theorem B), hence #=wv, and
h =v.Consequently (a v b), n A# 0. In the case abh,froma=hwegeta=b=h,
which is impossible. Analogously bak is impossible. Hence (a v b), n A+, if
a,b,he A a=h, b=h. The dual assertion can be proved analogously.

Lemma 4. Let A be a line in M with end elements a, b. If a<b, then A Is a
chain in M. !
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Proof. Let x, ye A. From axb and ayb we get a=Sx=bh, a=y=b. For the
elements a, x, y one of the relations axy, ayx holds. From axy and ayb we get xyb.
hence x=y=5). Analogously from ayx we get y=x=b. Hence x and y are
comparable.

Lemma S. Let A be a finite connected line in M with end elements a, b. Then
there exists an interval (u,v), ueanb, veav b such that A c (u, v).

Proof. The assertion is evident, if @ and & are comparable. Let «¢, b be
incomparable. We prove the assertion by induction with respect to the length of A.
Since A is connected and its end elements are incomparable, then A has at least
three elements. If A has three elements a, x, b, then we get the following cases: 1.
a=x,xZb;2.a=x, x=b. In the first case obviously xea v b and A < (u, x)
for an element u € a A b. The second case is dual. Now we assume that the assertion
is true for lines having length n —1 (n=3) and prove it for n. Let A have the
length n (n=3) and denote its elements a = a,, a,, ..., a, ., a, = b, where a,, a,,,
are neighbouring elements (i =1, ..., n — 1). The elements a,, ..., a, , form a line
with lenght n» —1, hence there exist u,€a,Aa,_, and v,€a,v a, , such that
A c(u,v,). Let uea,_,na,, v.€a, ,va,. From a,a,_,a. by Theorem A it
follows that there exist u € u, A u,, u€a, A a, and v € v, v v,, U €a, Vv a, such that
Ac{u,v).

Jordan-Holder Theorem for Lines

A subset {a, b, u, v} of M is called an elementary quadruple if uea A b,
veav b and the intervals (u, a), (u, b), (a,v), (b, v) are prime intervals.

Lemma 6. Let ¢: M— M’ be a b-equivalence. Then the image of an elementary
quadruple in M'is an elementary quadruple in M'.

Proof. Leta,b,u,veM,ucanb,veav b and {a, b, u, v} be an elementa-
ry quadruple. Denote x’ = @(x) for each x e M. By Lemma 3 the images of (u, a),
(u,b), (a,v) and (b, v) are prime intervals in M’. Now the assertion of the
lemma follows immediately from [5, Lemma 5 and Lemma 6].

Let (u, a) and (b, v) be intervals of a directed distributive multilattice. The
intervals (u, a) and (b, v) are called transposes if ueanb and veav b. The
intervals (u, a) and (b, v) are called projective if there exists a finite sequence of
intervals (u, a) = (xo, yo), {x1, v1), ..., {x., y.)={(b, v) such that (x; .y, )
and (x;, y,) are transposes for i=1,2, ..., n. The intervals (x, y,) are called
middle for i=1,2,...,n—1.

From the paper [2] it follows that the following theorem is true.

Theorem D. Let A, B be finite connected chains with end elements a, b in a
directed distributive multilattice. Then the chains A, B have the same length and
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there exists a one-to-one mapping of the set of all prime intervals of the chain A
onto the set of all prime intervals of the chain B such that the corresponding prime
intervals are projective and the middle intervals (x;, y;) satisfy {x., y;) < {(a, b).

Lemma 7. Let ay, a,, ...,d,,, €M and a,<a,<...<a,, a,>da,.,>...d,... The
clements a,, a,, ..., a,., form a finite line with end elements a,, a,., in M if and
only if a, € a,Vv a, .

Proof. Let a,€a,v a,... We prove that the elements a,, a,, ..., a,., form a
finite line in M. According to Theorem 1 we have to verify that the conditions (7)
and (8) hold. First we prove the condition (7). Since the elements a,, a,, ..., a,
form a chain, we get aaa, for i<j<m, i=0,1,..., n—=2, m=2,3,...,n.
Analogously we get aaa, for r<s<t, r=n,.n+1,..., n+k—-2, t=n+2,
n+3,...,n+k.Leti=0,1,...,n,j=n,n+1,...,n+k:Since a, €a, v a,.,, then
a,€a, v a; and we have aa,q;,. From this and aa,a, (i<p<n) we get aa,a;. The
relations aa,a;, a,a,a, (n <q <j) imply a,a,a;. Hence we have proved that for each
three elements a,, a,, 0, € A, x<y<z,x=0,1,..,n+k—-2,2=2,3,...,n+ kit
holds a.a,a,. Consequently the condition (7) is true. Now we prove the condition
(8). Let the elements a,, a,, a,, a, € A form a pseudolinear quadruple (x, y, z,
w=0, 1, ..., n+ k), hence we have a,4,a,, a,a.a,, a.a.a., a.aa,. In view of the
symmetry it suffices to consider the following case: x <y <z <w. Then a.a.a,. This
and a.a,a, imply a, = a,, which is contradictory. We have proved that the elements
o, 4, ..., .. form a line in M. Evidently the elements a,, a,. are end elements
of this line. Conversely, we prove that a,€a,V a.... Since a,>ay, a,>a,.,
Ava,d, ., We get a, €ayV a,. by [5, Lemma 2].

Lemma8. Leta, a,,...,a,.€M, a,<a,<...<a,, a,>d,.,...>a,., and let
these elements form a finite connected line A with end elements a,, a,., in M. Let
b.eM, b, €a,A a,... Then there exists a finite connected line B with end elements
Ao, 44, Which has elements by>b,>...>b,, b, <b, .\ <...<byspn, bo=a0, bin=
@..«, such that the intervals (a;, a;,,), {bi.i, bxsis,) are transposes and
(Qjsns Qjvnsr), {b;, b;.,) are transposes for i=0,1,....,.n—1,j=0,1,..., k—1.

Proof. Denote a,=b,, a,.k=bs... By Lemma 7 a,€a,v b,... By [5, Lem-
ma 10] the intervals (ao, a.), {bx, b..,) are isomorphic and there exist elements
bivi€(bi, bi.n) such that b,..=(a Abi..)s, and (ayV bis)., =a, for i=
1,2, ..., n—1. Next it holds b..€(a A bisir1)s, and a,.,€(a; V byrisy),. Conse-
quently the intervals (@, @.\), (b«.i» bisivy) are transposes for i=1,2, ..., n—1.
Analogously we get the elements b, € (b, b,) and the validity of the assertion “the
intervals (a;,n, @j+ns1), (b;, b;+,) are transposes”, for j=1, 2, ..., k — 1. From this
and from Lemma 7 it follows that the elements b, b,, ..., b... form the finite
connected line B.

Remark. Evidently, the dual of Lemma 7 and the dual of Lemma 8 are valid
too.
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Lemma 9. Let a, b be incomparable elements in M. Let A be a finite connected
line with end elements a, b in M. Further we assume that u,veM, uea b,
veav bsuchthat A c (u, v). Then there exists a finite connected line B with end
elements a, b, which has the elementsa=b,>b,>...>b,=u,u<b,,.,.<b,,,=b
(a=b,<b<...<b.=v,v>b,,,>...>b,.,=b), and a one-to-one mapping of
the set of all prime intervals of line A onto the set of all prime intervals of the line B
such that the corresponding prime intervals are projective and the middle intervals
{x,,y,) satisfy ax,b, ay,b.

Proof. We can restrict our consideration to the following line A: a =a,<a, <
<a,, a,>a,.,>...>a,, a,<a,.,<..<a,, ..., a, <a, . <..<a,, 4 >
a,..>...>a, =b. (The proof is analogous, if.the line A has another form.) The
elements a,, a,,, ..., a, are called edges. We prove the assertion of the lemma by
induction with respect to the number of the edges in A. Let s=1, then the
assertion follows by Lemma 8. Now we assume that the assertion holds for
s =m — 1 and we prove it for s = m. The elements a = a,<a,<...<a,, a,>a, ., >
e >a,, ..., a,, <a, <..<a, form a connected line C, which has m —1
edges a,, a,,, ..., a,,_,. Evidently, C = (u, v). From this it follows that there exist
we(ava,),, z€(ana,),such that C c (z, w). Since C has m — 1 edges, there
exists a finite connected line D: a=d,>d,>...> d,=2,z2<d,.,.<...<d,..=a,,
and a one-to-one mapping of the set of all prime intervals of the line C onto the set
of all prime intervals of the line D such that the corresponding prime intervals are
projective and the middle intervals (x,, y,) satisfy ax.a, , aya,_ ({x, y.) denotes an
arbitrary middle interval of the projective corresponding intervals). Next it holds
a,,>b, a_<uwv, hence a, € (b, v). By [5, Lemma 10] we have that the intervals
(b,v), {u,a) are isomorphic. The isomorphism described in this lemma and

‘ze(ana,),imply(zvb),=a,.ByLemma 7 we get that the elements z<d, ., <
...<a,, a,>a,,>...a,, =b formaline E. Evidently, E is connected. By
Lemma 8 we get that there exists a line F: z>e,>...>e,=u, u<e,,., <e,..<
... <ewn=b such that the intervals (d,.i, d,.i+1)> (€nsn €nsisy) are transposes
and (a,.;, a,, 1), (€, e;.,) are transposes for i=1,2,..., n—1, j=1,2, ...,
h—1. Denote d,=b, for i=0,1,...,p (evidently b,=2), ¢=b,.,, j=1,2, ...,
h+n (evidently b,,,=u). Obviously, the elements a=b,>b,>...>b,.,=u,
u<b,,, 1 <...<bu.p+n=>b form a finite connected line B. From the construction
of B it follows that there exists a one-to-one mapping of the set of all prime
intervals of the line A onto the set of all prime intervals of the line B such that the
corresponding prime intervals are projective. The middle intervals of the corres-
ponding projective intervals are the intervals (x,y,) and the intervals
(dpsi» dprivi) fori=0,1, ..., n—1.Since axa,, aya,,,ad,.a,,, aa, b we get ax,b,
ayb, ad,..b for i=0,1, ..., n. Hence the middle intervals have the demanded
property. The assertion of the lemma in the brackets can be proved analogously.
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Theorem 4. Let A, B be finite connected lines with end elements a, b in a
directed distributive multilattice. Then the lines A, B have the same length and
there exists a one-to-one mapping of the set of all prime intervals of the line A onto
the set of all prime intervals of the line B such that the corresponding prime
intervals are projective and the middle intervals (x, y;) satisfy ax.b, ayb.

Proof. If a, b are comparable, then the assertion is true by Theorem D. Let
a, b be incomparable. Let A, B be finite connected lines with end elements a, b.
By Lemma 5 there exist u,u’€eanb, v,v'€eavb such that A c (u,v) and
B c (u', v'). By Lemma 9 there exists a finite connected line C with end elements
a, b, which has elements a=c,>c¢,>..>c=u, u<c,n<...<cp.,=b, and a
one-to-one mapping @, of the set of all prime intervals of the line A onto the set of
all prime intervals of the line C such that the corresbonding intervals are projective
and the middle intervals (x., y.) satisfy ax.b, ay.b. Analogously there exist a finite
connected line D with end elements a, &, which has elements a =d,<d,<...<
d=v',v'>d,,,>...>d,,.=b, and a one-to-one mapping ¢, of the set of all
prime intervals of the line B onto the set of all prime intervals of the line D such
that the corresponding intervals are projective and the middle intervals (x,, y,)
satisfy ax,b, ay,b. By Lemma 8 there exists a finite connected line E, which has
elements a=e,>e,>...>e,=u, u<e,.,<...<e,.,=b, such that the intervals
(d,, d,..) and (€,.p, €msp+1) are transposes, (d,.,, d,.,+:) and (e,, e,.,) are
transposes for p=0,1, ...,r—1,¢=0,1, ..., m—1. Hence there exists a one-to-
-one mapping @, of the set of all prime intervals of the line D onto the set of all
prime intervals of the line E such that the corresponding intervals are transposes.
The elements a=e,>¢,>...>e¢,, =u form a finite connected chain E,. The
elements a =c,>c¢,>.,.>¢ =u form a finite connected chain C,. The chains
C\, E, have the same end elements a, u. By Theorem D k = m and there exists a
one-to-one mapping of the set of all prime intervals of the chain C, onto the set of
all prime intervals of the chain E, such that the corresponding prime intervals are
projective and the middle intervals (x.,, y.,) satisfy (x.,, y.,) = (u, a). Analogous-
ly we get the chain C, with the elements ¥ <c,.,<...<c«.+,= b and the chain E,
with the elements u<e,,,<...<e,,,=b. By Theorem D r=r and there exists a
one-to-one mapping of the set of all prime intervals of the chain C, onto the set of
all prime intervals of the chain E, such that the corresponding prime intervals are
projective and the middle intervals (x.,, y.,) satisfy (x.,, y.,) = (u, b). Conse-
quently, the line C and the line E have the same length and there exists a
one-to-one mapping @, of the set of all prime intervals of the line C onto the set of
all prime intervals of the line E such that the corresponding prime intervals are
projective. The middle intervals of the corresponding prime intervals under @, are
the intervals (x.,, y.,) and the intervals (x.,, y.,). Since (x., y.,) = (4, a) and
(Xeps Ye,) < {u, b) we get ax. b, ay. b, ax.,b, ay.,b by Theorem B. From these
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considerations it follows that the line A and the line B have the same length and
the mapping @ = @;'@;'@.@, is a one-to-one mapping of the set of all prime
intervals of the line A onto the set of all prime intervals of the line B such that the
corresponding intervals are projective. The middle intervals (x;, ;) of the corres-
ponding prime intervals under @ are the intervals (x., y.), (¢, ¢, 1), (X, Yo )\
(Xers Ver)» (€, €,01), {dis d;v1), (x4, Ya), which have the demanded property. This
completes the proof.
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JIMHUU B'HATIIPABJIIEHHBIX JUCTPUBYTUBHbBLIX MYJIbTUCTPYKTYPAX
0. KnaByoBa

Pesome

[TousiTHE AUCTPUOYTHBHOI MYJIbLTUCTPYKTYPbI, KOTOPBIM Mbl MOJIb3YEMCS B 3TOI paboTe, coBnajgaeT
¢ noHsiTHeM, BBeeHHbIM M. Benano [2]. B paGorte onpenensieTcs MOHATHE JIMHUA B HANpPABJIEHHON
AMCTPUOYTHMBHOI MYJIbLTUCTPYKTYPE MpPH MOMOILM OTHOLIEHHS «Mexay». HccrenytoTest HEKOTOpble
cBoiicTBa NuHmnit (TeopeMma 1, Teopema 2, TeopeMa 3). [Toka3sbiBaeTcs jajnee, YTO Ui JIMHHHA B
HAMPABJICHHOM NUCTPUOYTUBHON MYJIbLTUCTPYKTYpE CnpaBeinBa Teopema 2Kopaava-I'énbaepa.
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