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ON THE MEASURABILITY OF REAL FUNCTIONS
DEFINED ON PRODUCT-SPACES

GRAZYNA KWIECINSKA

Let (X, 01, M4, p1) and (X3, 02, P>, u2) be complete metric spaces with metrics
o: and @, respectively, and with o-finite regular complete measures p, and s,
defined over a o-field MM, and M, of subsets of X, and X,, respectively.

(1)  Let F <, and F, <M, be families of closed sets with nonempty interiors
and positive and finite measures [, U,.

Definition 1. The sequence {I.}.-, of sets from %, (%) is said to converge to
the point xo€ X, (yo€ Xz) iff xoeInt (I,) (yoelInt (I,)) for n=1,2, ... and the
sequences of diameters d(I,) converge to zero while n— .

The convergence of {I,}:-, to xo will be denoted by I, — xo.

(2)  Assume that the family %, (%;) is countable and that for every x,€ X,
(yo€ Xz) there is a sequence of sets {I,}.-; from F, (F;) converging to

Xo (yo)-

Let AicXi, A;cX;, x1€ X4, x2€ X,. Denote by u¥ and pu¥ (ui+ and p,.) the
outer (inner) measures corresponding to p, and u,, respectively.

*
Definition 2. The upper (lower) vound of the set of numbers lim “‘MA('IH)I"

taken from all the sequences {I.}.-, converging to x, is called the upper (lower)
external density of A, in x, with respect to %, and is denoted by
D¥*(x,, A)) (D¥(x1, A))).

If D¥(x\, Ai)=D%(x1, A1), then their common value is called the external
density of the set A, in x, with respect to %, and is denoted by D*(x,, A,).

If we replace in the above definitions set A, by A, point x, by x,, we get the
upper external density D*(x,, A,), the lower external density D*¥(x., A,) and the
external density D*(x2, A;) of the set A, in the point x, with respect to %,.

If A, eM, (A,eMy,), then the respective external densities are called densities
with respect to %, (%.) and denoted by D.(x1, A1), Di(x1, A1), and D(x,, A,)
(Du(x2, Az), Di(x2, Az) and D(x,, A,)), respectively.
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Point x, is called a density point of the set A with respect to F, if there exists a sct
B e, such that Bc A and D(x,, B)=1.

Moreover assume that

(3) for every set A, e, (A,eW,) the 1 (u2)-measure of the set {x: xe A,
Di(x, A))<1} ({y: ye A, Di(y, A2)<1}) is equal to zero.

Examples of the spaces that satisfy (1), (2) and (3):

1. If X,=R? g, is the Euclidean metric R? W a family of Lebesque
measurable sets, y; the Lebesque measure and #, consists of circle centres with
rational centre coordinates and radius, then the conditions (1), (2), (3) are met.

2. Let X,=R', o:(x, y)=|x—y] for x, ye R", let M, be a o-field of Borel sets
‘of the straight line, u,-a regular o-finite measure, such that all intervals are
u;-measurable and their y,-measure is non-zero and let &%, be a family of closed
intervals with rational ends. Then the conditions (1, (2), (3) are satisfied.

In order to show this it suffices to prove that for every set A €, condition (3)
holds.
w(InE) _

w(l)
1 for Ie %,, the set Z of those points x € E, for which Di(x, E)<1 is equal to
U H(l —71<->, where H=H(a) = En{x: Di(x, E)<a}. And so it is sufficient to
k=1

prove that 0<a <1 implies u,(H)=0.
Let € be any positive number and G be an open set containing H and such that

w(G)<=w(H) +e.

Let E € . Since , is o-finite, we may assume that u,(E)< . Since

It follows from the definition of the set H that the family of closed intervals I

i (T)
there exists a sequence {I,} of mutually disjoint intervals of this family, for which

contained in G and such that <ais a Vitaly cover of H, and so (see [4])

o

u,(H—QIV)=O. Since H=v:Ul(Hr\Iv) U (H—VQIV) < U(EnL) U (H—g L),

v=1

then
w(H) <Y m(EnL)<a- X w(l)<a- m(G)<a- (w(H)+e).
v=1 v=1
Hence, while e— 0, we get u,(H)<a - :(H) and since 0 <a <1, we get u,(H) =0.

Lemma 1. ([2], Lemma 4.1) Let (X5, 05, P, ts) = (Xi X Xz, 0, X 05, M, X DX,
X p2) (M1 X w, stands for the completion of the measure X u,).
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Let A € M5 and ps(A) <. Then the set B of all points (x, y) € A, for which the
section A, = {y:ye X,, (x, y)e A} is u,-measurable of positive measure y, and
D(y, A,)=1 is us-measurable and u;(A — B)=0.

Definition 3. Let A € ; and B € M;. By A — B we denote the statement that

(i) AcB :

(ii) any point y, belonging to A,,={y: y € X, (xo, y)€ A} is a density point of
the set B,, = {y: y€X,, (xo, y) € B} with respect to %, and

(iii) any point x, belonging to A = {x: x € Xy, (x, yo) € A} is a density point of
the set B = {x: x€ X, (x, yo) € B} with respect to %,.

Lemma 2. If A €I, then there exists an F, set B = A such that u,(A — B)=0
and Bc B.

Proof. If us(A)=0, then we may take the empty set for B. Otherwisc let A’ be
such a F, that y;(A — A’)=0. Let B, be the set of all points (x, y) € A’ such that
the section A" belongs to IR, the measure p,(A'”) is positive and x is a density
point of A" with respect to #. In accordance with Lemma 1 B,edi; and
us(A’'— B,)=0. Let B, be a G, which contains A’ — B, with the ys-measure equal
to zero.

Let A,={y: ye X;, u(B3)>0}. Evidently u,(A,)=0.

Let A, c X; be a G, which contains the set A, with the p,-measure equal to
zero. We put B;=A —((X; X A;)UB;). The set B;< Xj is an F; and u;(B, — B;) =
0 and any point x € (Bs)” is a density point of the section (B;)” with respect to &,.
Let B, be a set of all points (x, y) € B; for which the section (B3);, is y.-measurable,
12((Bs),)>0 and y is a density point of the section (Bs), with respect to %,. Once
more us(B;— Bs)=0. Denote by Bs a G, of the u;-measure equal to zero
containing B; — Bs. Let As = {x: x € Xi, u2((Bs).) >0} It is clear that u,(A;) =0.

Let Ay = {y: yeX;, m(B%)>0}. Let Asc X, be a G, with the u,-measure
equal to zero containing A; and let A¢ be a G, of p,-measure equal to zero
containing As. For B take B = B; — [(AsX X:) U (XiX As) U Bs]. By this
definition B meets the conditions of the Lemma and this completes the proof.

Definition 4. The function f: X,— R is called approximately upper (lower)
semicontinous in the point x, € X, with respect to &, iff for every ae R if f(x,)<a
f(x:)>a), then there exists the set Fe, such that F < {x: xe X, f(x)<a},
(Fe{x: xeX,, f(x)>a}) and D(x,, F)=1.

A function that is simultaneously approximately lower and upper semicontinu-
ous in x, € X, with respect to %, is called approximately continuous in x, with
respect to %,.

A function that is approximately continuous (approximately lower semicon-
tinuous) ((approximately upper semicontinuous)) in any x € X, with respect to %,
is called approximately continuous (approximately lower semicontinuous)
(approximately upper semicontinuous)) with respect to %,.



Lemma 3. A function f: X,— R that is almost everywhere approximately lower
semicontinuous with respect to %,, is w,-measurable.
In order to prove Lemma 3 we first show

Lemma 3'. The set M c X,, whose almost every point is its density point with
respect to %, is p,-measurable.

Proof. Decompose the set M into two disjoint sets M, and M, such that
M=MnuM,, M;e, and p,.(M;)=0. The set M, belongs to IM,, so that by
property (3) of the family %, its density with respect to &, equals 1 in almost every
of its points and equals 0 in almost every point of the set M,. Since the inner density
of M with respect to & is positive in almost every of its points, the u,-measure of
the M, equals zero, i. e. M=M,UM,eIN,.

Now we shall prove Lemma 3. Let us fix an a € R. It remains to be shown that
the set M = {x: xe X,, f(x)>a} belongs to IM,.

Let x, ¢ M and let the function f be approximately lower semicontinuous in x,
with respect to %,. Hence f(x1)>a and there exists a set F e, such that Fc M
and D(x,, F)=1. Thus the set M has the density 1 with respect to %, in almost
each of its points and thus, by Lemma 3', M e M,. With that proof Lemma 3 is
completed. ‘ :

Definition 5. ([2], def. 4.2) The function f: X,— R has the property (K) with
respect to F, iff it is pointwise noncontinuous over any closed set, whose set of
density points is dense in it with respect to F,.

It follows from the above definition that
(4)  every function belonging to the Baire class I has the property (K).

Lemma 4. ([2], Lemma 4.2) If the function g: X,— R has the property (K) with
respect to %,, then for every set F e, of positive y,-measure and for every

positive € there exists a set J € &, such that u(JNnF)>0 and 0sc g <, where U is

the set of density points of F with respect to %,.
Denote by @(f) the set of all points (xo, yo) € X5 such that either the function
P(x) = f(x, yo) (called section) is not approximately continuous in x, with respect

to %, or the section f,(y) = f(xo, y) is not approximately continuous in y, with
respect to F,.

Lemma 5. Let f: X;— R be a y,-measurable function. Then us(®(f))=0.
Proof. Let {U.}--1 be the sequence of all open intervals with rational en-
dpoints such that U;# U; for i#j. We put A,=f"'(U,). Lemma 2 implies that

every set A, contains a subset B, such that ps;(A,—B,)=0 and B, B,. Let
C,=A.—B, and
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(*) D=X3_OC,.
n=1

Let (x5, yo)eD and €>0. Assume that f(xo, yo)€U, < (f(xo, yo)—¢,
f(xo, o) +¢€). The point (xo, yo) belongs to B,, and x, is a density point of the
counterimage (f°)™" € (f(xo, yo) —€, f(Xo, yo)+€). Therefore the function f™ is
approximately continuous in x, with respect to %,. The proof that the section f,, is
approximately continuous in y, with respect to % is similar. Hence Dn®(f)=.

By () @(f)c D C. = D (A, — B.). The latter set has the measure 0, and so
n=1 n=1
us(P(f)) =0.

Lemma 6. ([1], lemma 2) Let (X, !N, u) be a measurable space with the o-finite
measure . Let g: X— R be such that for any €¢>0 for class of sets

DAD: DeN, 0sC g <g} satisfies the following condition :

(d)  for any set B < X with a positive measure u there exists a set D € D, such
that D = B and u(D)>0.

Then the function g is fi-measurable, where i stands for the completion of .
(Davies has proved the Lemma under the assumption that p is finite, whereas
o-finiteness is sufficient).

Definition 6. The function g: X,— R is said to be degenerated in the point
x1€ X, when there exists a closed interval I such that g(x,)elInt (I) and the
external density with respect to %, of the counterimage g~'(I) is in x, equal to zero.

For the function f: X;— R we define A(f) as the set of all points (x, y) € X; such
that the section f” is degenerated in x.

Let B(f) denote the set of all points (x, y) € X; such that the section f, is not
approximately continuous with respect to %, in y.

Theorem 1. Let f: X;— R be a function such that all its sections f* are
u-measurable. The function f is measurable if and only if us(A(f)uB(f))=0.
Proof. The necessity of the condition follows from Lemma 5 as A(f)uB(f)c
@(f). We shall therefore now show the sufficiency of the condition. Let A =
X;—[A(f)uB(f)]. Let {A.}--: be a sequence of closed sets with a us positive
measure such that A,c A,,, for i=1, 2, ... and m(A - DA,-) =0.
i=1

Put

_[f(x,y) for (x,y)eA,
f..(x,)’)—{o for (i,i):An-
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As almost everywhere !1_1}1 fa(x, y)=f(x, y) with respect to the measure s, it is

sufficient to show that the functions f, satisfy the assumptions concerning the

function g of Lemma6 in the case when X=X, and pu=u,;. Let Eed,,
0<H3(E)<°°.

Let €>0. Denote by Q the set of all points x € X, such that the sections E, € W,
and p(E.)>0 and u([A(f)uB(f)]:) =0. It follows from Fubini’s Theorem that
Qc X, is a yy,-measurable set with a positive measure u,. For x € Q the sections
fx(y) are almost everywhere approximately continuous and therefore by Lemma 3:

(1.1) For any x € Q the sections f, are y,-measurable.

Let {Ji}¢-: be the sequence of all sets belonging to #; and let {K,}7_; be the
sequence of all closed intervals with rational ends and lengths smaller then e.
Denote by Q, ; the set of all points x € Q such that

(i) w(J.nE)>0
(ii) if D(y, E.)=1 and y e J,, then f.(x, y)e K.

Notice that
(1.2) forany x € Q, any n € N and any set Z e I, with a positive measure .2 and
for any 8 >0 there exists a set J € %, such that y,(JNnZ)>0 and osc (f):<
8, where U is the set of density points of Z with respect to %,.

Indeed. Let Z €, be a set with a positive measure p, and d > 0. We discuss two
cases.

1. If u(Z — (A.)<) >0, then there exists a point y’ € X; such that y’' € Z — (A,)x«
and D(y’, Z—(A.):)= 1. As the set (A, ) is closed, it follows from property (2) of
the family %, that there exists J€ %, such that y'elInt (J) and Jn(A,).=§.

Therefore for y e J we have f,(x, y) = (f.).(y)=0. Hence ?,S‘j(f")x =0<.

2. If u,(Z—(A.)<)=0, then we notice that in this case all density points of Z
belong to (A.).. In order to show that

(1.2) holds in this case it is sufficient to show that

(1.3) there exists a set I € %, such that p,(InZn(A,),)>0 and 0SC (). <,
where U, is the set of density points of Zn(A,). with respect to %,.
Assume that (1.3) does not hold. Then we have
(1.4) if for the set Je %, the inequality p.(JNZn(A.).)>0 holds, then
o35, (- 0.
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Let ))[ezn(An)x and
(1.5) D(y,, Zn(A.),)=1.

Such a point y, exists according to property (3) of %..
Let I, e %, be a set such that

(1.6) yielnt(I))

(0 Z0(Ad) |3
(1.7) (D) >7
)
ahody: ye X ()0~ (-0l <))
(18) ua(I1) =

The existence of I follows from (1.5) and from the fact that y, is a point of
approximative continuity of the section (f.). with respect to %,.

Let Gy = {y: y €LnZA(A., 1)) = (-0 >3 )
(1.9) u2(Gy)>0.

Indeed. Assume that p,(G;)=0. Then for points y e[[,nZN(A.).]— G, the
inequality [(£):(y) — (fa)«(y1)] s;—s holds and therefore

(1.10) 0sc (f.)<d and

[NZA(An)x]-Gr

(1.11) {y: yelnt (L), D(y1, Zn(A.):) =1} c[[iNnZN(A.):] — Gu.

Indeed. Assume that (1.11) does not hold. Then there exists a point y;€
Int (I,)NZN(A,). such that D(y;, Zn(A,):)= and y; € G..

Then |(f2)«(y1) — (f.)(y1)| >g. The point y; is a density point of the set (A,).

with respect to %, and therefore it is a point of approximative continuity of the
section (f,). with respect to %,.

' . o)
Assume that (£,).(y7)> (£):(y)- Denote 1 = ().(yi) = ()e(y) = 3. The
number m chosen in this way is positive. Consider the set
Hi={y: ye hlnZn(Au)s, |(f)(y) ~ (f):(yD)] <n}

being a subset of G,. As yi is a point of approximative continuity of the function
(fa), it is also a density point of the set H; = G, which contradicts the condition
t2(G1) =0. In the case when (f,).(y1) <(f.)«(y1), the reasoning is analogous. Thus
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we have shown that the nodensity point of Zn(A.,). belonging to Int (I,) can
belong to G, too. We have proved (1.11) in spite of the assumption that (1.11)
does not hold. Therefore (1.11) must be true. Therefrom and from (1.10) we infer
that

(1.12) 0s¢ (fu)x<90.

Uinh

As I,e %, and because of (1.7) u(IinZn(A,)x)>0, therefore by (1.4) we
obtain ose (f.)->9, which contradicts (1.12). Thus negation of (1.9) leads to
a contradiction and therefore (1.9) must be true.
(1.13) There exists a point y,€ G,nInt (I,) such that D(y,, G\)=1.

Indeed. Assume that (1.13) does not hold. Then
{y: ye GinInt (I,), D(y, G\)=1} =0 and therefore
(1.14) t(GinImt (1,))=0.

The inequality |(f,.)x(y)—(f,.),(y1)|sg must hold for all y € [Int(I,) n Z n
(A.)<]— G, and therefore
(1.15) osc (f:)«<6.

[Int (1)) ZN(An)x]-Gi

On the other hand (1.6) and (1.5) hold true. Therefore there exist I; € #, such
that I < Int ({,) and

(1.16) puA(IiNZN(AL))>0.
We shall prove that
(1.17) Gin(UinI))=0.

Assume that there exists a point yj € GinIinU,. Then the inequality |(f.).(y?)
= (f)(y)] >g holds. Point y{ is a density point of (A,). and is therefore a point
of approximative continuity of the section (f,)x. Assume that (f,).(y7) > (f2):(y1)-
Denote 1 = (f.).(y1) — (f.)-(y1) — g The number chosen in this way is positive.
Define

H,={y: y eInt (I)NZN(A.)s, [(£)(y) = (f)x(»)| <}

Obviously H, < G,nlInt (I,). As y{ is a point of approximative continuity of the
section (f.)x it is also a density point of H, = G,nInt (I), which contradicts (1.14).
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In the case when (f.).(y7) < (fa)«(y1) the reasoning is analogous. The assumption
that (1.17) does not hold leads to a contradiction. Thus (1.17) holds. From this and
from (1.15) we get

(1.18) osc (fa).<d.

Uinh

As I € %, and (1.16), we obtain by (1.4) 9sc (fa)= > 9, which contradicts (1.18).

We have shown that the negation of (1.13) leads to a contradiction. Therefore
(1.13) leads to a contradiction. Therefore (1.13) houlds true. Thus |(f.).(y2)

)
= (I>3-
Let I,.<Int (I,) be such a set belonging to the family %, that y,eInt (I,) and
d(Iz)<% and

i(LNZN(AL).) 3

(1.19) (D) >4 and
(1.20) uz(lzn{y: yeX, |(fn)x(yz)—(fn)x(y)|<g}) 3
(1) 4

The existence of I, follows from the fact that y, is a point of approximative
continuity of the section (f,).. Similarly as before the set

Gz={y: yeLnZN(A,)., |(fn)x()/2)—(f,.),(y)|>g}’

being a subset of ,NZN(A.),, is u,-measurable and has a positive measure p,.
Let y;e G,nInt (I;) be a density point of G, with respect to %,. Evidently

[(f)x(y3) = (fu)e(y2)] >g. Proceeding analogously we define the sequence {L}7 .

of the sets from %, such that I.,,cInt (L), d(I) < % for i=1,2,... and the
sequence points {y«}«-1 such that y, eInt (L) (k=1,2, ...) and

. 4 .
(1.21) (i) = ()| >3 for i=1,2, ..

The set nL consists of one point y,. As the section f, is approximately

i=1

continuous in yo (as yoeﬁ(Lm(A,,),)), we have D(y,, K)=1, where K
i=1

= {y: y € Xa, lfx()’o) e fX(Y)l<g'
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Moreover “2(1;0(([/;" = >§, hence therc exists N such that for k>N
2\ 1k

tal Ly 2(23: ;" nK) 2% and consequently also

;tz(Ik m{y: Y €Xo, |(f)<(yo) = (f)(¥)] <g}) >l
A 2

(1 the other hand

0=l <g])
= 4

.uz<Ikh{y: yeXe

(cf. (18) and (1.20)).
Therefore for

k>N{y: yeXs,

(1)~ ().l <gJn

v ye X 100) = (00l <g | #0.

Thence for k> N the following inequality holds |(f.).(y«) — (fu)<(yo)| <g, which

contradicts (1.21). Thus the ncgation of (1.3) leads to a contradiction. Therefore
(1 3) holds true and also (1.2) holds true, because both possible cases have been

proved. Therefore Q=|JQ,... Thus there exists a couple of positive integers

(ro, so) such that u,(Q,,, )>0. Put P = {x: x e Xi, D*(x, Q,, ..)=1}. Set PeN,
and 11,(P)>0. Let F=En(Px1,). Set FeWi; and uy(F)>0, because for any
x € Q,, ., t2(F.)>0. By Lemma 2 there exists the sets G < A,, H<(X;— A.) and
L c F of the F, type such that y3(A. — G)=0, us((Xs—A,)—H)=0, is(F— L) =
0 and Ge G, HcH and L L. Let M=Ln(GUH). Notice that M e, has
a positive measure ((3(X;—(GUH))=0 and p;(L)>0).

To prove the theorem it is sufficient to show that f.(x, y) € K,, for any point
(x,y)eM. Let (E,n)eM and let $>0. Denote by a the upper density of
(DY (fa(E, m) =, f.(E, ) + ) in E with respect to F,. Evidently a>0. Discuss the
case when (€, 1) € G. Then E is a density point of G" and therefore also of (A.)". As
the upper density of the counterimage (f")™'(f(E, n) — 9, f(E, ) + ) is positive in §
with respect to %, the same must hold for the density of the counterimage
(Y '(f.(E,m) =9, f.(E. )+ ) in E with respect to . In the case when (§.n) € H,
then € is a density point of H" with respect to %, and therefore also of (X5 — A.)"



On this set f, is a constant equal to zero. The density of the counterimage
(. (E, m) =9, f.(E,m)+9) in E with respect to %, is in this case equal to 1.

For >0 there exists a set I € %, containing § such that “—‘(‘%AQ)>1—%,
1

plIngx: xe X |f(x - fEI<O)_, _a
ui(I) 4 .

Hence all these three sets have a common point x, € I. As (xo, n) € M, the section
F,, is p,-measurable and has a positive measure p, and 7 is a density point of F,,
with respect to %,. Moreover n € I, and xo0 € Qs AS Xo € {x: |fa(x,m) — fu(E, )<
8}, we have f,(xo, ) € K,,. From this we infer that the distance from f.(§, n) to K,,
is smaller thand. As O is an arbitrary number and K, is closed, there is
f. (&, m) € K. The proof of the theorem is completed. Theorem 1 is a generalization
of Theorem 6 of [3].

Let f: X, X X,— R be founded, where X;=R". Let g, be a Euclidean metric in
R" and p, an arbitrary regular complete measure o-finite and defined on some
o-field M, enclosing Borel sets.

Denote by M2 (x,, yo) the upper bound of the functions ¢(y) = f(xo, y) in the

open sphere K( Yo, %) cR".

Let AcX,XX, and f: X;XX,— R The definition of density of the set
Ac XXX, in (x, y) with respect to %; is analogous to Definition 2.

Also similar to Definition 4 is the definition of the approximative lower
semicontinuity of the function f: X, X X;— R with respect to %;.

Lemma 7. If all sections f” are approximately lower semicontinuous with respect
to &, then M} considered as a function of two variables x and y is approximately
lower semicontinuous with respect to %, where

9'-3=9:1X9;2={F:F=F1XF2, Flegﬂ, ergz}.

Proof. Fix the point (xo, yo)€ X; X R" and a number a e R. Assume that
M3 (xo, yo)>a. Let 0<e<M}(xo, yo)—a. It follows from the definition of

M (xo, yo) that in the sphere K(yo, %) there exists a point y, for which the

inequality
(1) f(xo, y1)>MZ(x0, )’o)“g holds.

According to the approxim.tive lower semicontinuity of the function f”* with
. 3
respect to F, in x, for the set E = {x: xe X,, f"(x)>b}, where b =fy‘(X())_§,
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there exists the set Fel, such that Fc E and D(x,, F)=1. Therefore for any
x € F the inequality

(2) f(x, y1)> f(xo, y.)—% holds.

Let f=o(y:, Fr K(yo, %)), where Fr K(y(,, %) denotes the border of K(yo, %)
_ . .

Then o(y, yo)<p implies y, € K(y, k)' As y € K<y, %) for y e K(yo, 3), for these
points y the inequality

3) Mi(x, y)=f(x, y)

holds (according to the definition of MY in (x, y)).

From (1), (2), (3) we obtain MY(x, y) > Mi(xo, yo)—¢ for all points (x y)
belonging to the set

A =(Fx X5)n(X: X K(y,, B))
As D((xo, yo), A)=1 and

Ac{(x,y): (x,y)e XiXR", Mi(x, y)>a},

because 0 <e <M} (xo, yo) — a we come to the conclusion that M} is approximately
lower semicontinuous in (xo, yo) with respect to F;. The proof of the Lemma is
completed.

Theorem 2. If all sections f” of the function f: X; X R"— R are approximately
lower semicontinuous with respect to %, and all sections f, of this function are
upper semicontinuous, then f is a point limit of a non-increasing sequence of
functions approximately lower semicontinuous with respect to ;.

If we assume that the family %, satisfied (3) for the families %, and %., then f
would be p;-measurable.

Proof. Denote M”(xo, yo) = ll(x_n; M3 (xo, yo). As the sections f, are upper

semicontinuous, M”(x,, yo) = f(xo, yo). The function M”: (x, y)— M} (x, y) is the
point limit of a non-increasing sequence of functions M7, which are according to
Lemma 7 approximately lower semicontinuous with respect to %;. This ends the
proof of the Theorem.

Theorem 2 is a generalization of Theorem 2.1 of [2].
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POLAND

U3MEPUMOCTb JEUCTBUTEJIbHBLIX ®YHKIIUN,
3AIJAHBIX HA JEKAPTOBOM ITPOU3BENEHNHU METPUYECKUX IMPOCTPAHCTB

I'paxuna KBeunHsncka

Pesiome
B Hacrosiuieit pabore HaXOmMTCH HEOGXOAUMOE M JOCTATOYHOE YCJIOBHE W3MEPHMOCTH (PYHKLMM,

3alaHHbIX HA ICKAaPTOBOM MPOHU3BEACHHH IBYX METPHYECKHX NMPOCTPAHCTB C MEPAMH, KOTOPbI YAOBJIET-
BOPSAIOT HEKOTOPbLIM NOIMOIHUTENIbLHBIM YCIIOBHAM.
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