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Math. Slovaca 32,1982, No 1, 35—48 

TOPOLOGY ON REGULATORS OF LATTICE 
ORDERED GROUPS 

II. COMPLETELY REGULAR REGULATORS 

FRANTISEK SIK 

In the present paper we continue investigating mutual relations between the 
properties of an /-group G and the induced topological space (9t, G) [6]. The main 
attention is paid to completely regular regulators (9t, U)- These regulators are 
characterized as regulators formed by minimal prime subgroups of G (1.2 and 1.4). 
The mappings Z and W are (mutually inverse) dual isomorphisms between the 
lattice of clopen sets of (9t, G) and the lattice JT(9t, G) of all the so-called 
ambiguous polars of G (2.2; a polar K is said to be ambiguous with respect to 
(9t, U ) « no U*(*e9t) contains both K and K'). If (9t, U ) is a standard 
^-regulator ( = every solid subgroup of G is the meet of some family of U*)> then 
T(9t, G) is the set of all direct factors of G (3.4). There are defined the equality, 
similarity and equivalence of regulators and it is examined which of these relations 
carry the property of the complete regularity or reducibility. The connection of 
regulators with the most comprehensive reduced and completely regular regulator, 
the 17'-regulator, is investigated. 

The paper is a continuation of [6] where the reader can find all less frequent 
notions or new ones used (as a rule without any reference) in this second part. For 
the terminology and denotations concerning the general theory of /-groups cf. [1] 
and [2]. 

1. Completely regular elements 

1.1 Definition. Let G be an /-group and (9t, U ) a regulator of G. An element 
fe G is said to be completely regular with respect to (9t, U ) if to an arbitrary 
x e Z(f) there exists g e G such that x edi\Z(g) c Z(/), [5] 2.1. If every element 
of G is completely regular with respect to (9t, U)> the regulator (9t, U ) -s called 
completely regular, [4] II 3; [6] I 1.6. Note that the condition x e9t\Z(g) c Z(f) 
can be replaced by the following one: fdg and x e Z(g) ([6] 2.15). 

35 



In the definition of the induced topology on 9t one supposes that the regulator is 
standard, [6] 1.2. In all the following assertions in which the topological space 
(9t, G) occurs and the regulator (9t, U ) is n o t specified, we often assume tacitly 
that (9t, U ) is standard (and so G=£ {0}). 

1.2 Theorem. Let (9t, U) be a standard regulator of an l-group G. The 
following conditions are equivalent. 
1. f is completely regular with respect to (9t, U)-
2. Z(f) is an open set of the topological space (9t, G). 
3. Z(f ) = 9t\Z(/). 
4. There holds: 

(a) Z(f)nZ(f") = Q 
and one of the following equivalent conditions (b), (c) 
and (d): 

(b) fl6G,/" = fl"^>Z(/) = Z(fl); 
(c) Z(/) = Z(/"); 
(d) Z(/)e3TC(9t, G). 

(5) f £\Jx for every xe9t withfe\Jx. 
Proof. (Cf. [5] 2.1) 1-^2. From the difinition 1.1 it is clear that x e Z(f) is an 

inner point of the set Z(f). 
2 --> 3. By [6] 2.15 we have gef = Z(fl)^9t\Z(/). Hence by [6] 2.2, 

Z(f ) = n{Z(fl) :f lGf} = n{Z(fl):Z(fl) 2 9t\Z(/)} =9t\Z(/) = 9t\Z(/). 
3 --> 4(d). Z(/) = 9t\Z(f) is a clopen set, hence 4(d). 
(d) --> (c). Z(f)eW(% G) ^ K=WZ(S)eT(G) ([6] 2.18) => feK ([6] 2.4) 

--> /" c K :» Z(/") 3 Z(K) = ZWZ(f) = Z(f) ([6] 2.4). The converse inclusion 
is clear. 

(c) :-> (b) is evident. 
(b) --> (d). It gef", then (|fl|v|/|)" = fl"vf = f, hence Z(g) => Z(|fl |v|/ |) = 

Z(f). Finally Z(f') = n!Z(fl) : g e f } 2 Z ( / ) . Evidently Z ( / ) D Z ( / " ) , whence 
Z(f) = Z(/") e SK(9t, G), [6] 2.18. 

3 --> 4(a). There holds Z(/") n Z(/') c Z(/) n Z(f') = Z(/) n (9t\Z(/)) = 0. 
4 --> 5. Pick xeZ(f). Then JceZ(/) = 9i\Z(f) = 9t\n(Z(fl): fl ef} 

= U(9t\Z(fl): gef). It follows that there exists gef with A:e9t\Z(fl), i.e. 
fliU*> whence f ^ U ^ -

5 --> 1. Fix x e Z(f). By assumption there exists g e f \U*> thus * ^ Z(fl) and 
/6fl, whence 1. 

13 Definition. Denote by 0>(G) or m^(G) the set of all prime or minimal 
prime subgroups of G, respectively. 

1.4 Theorem. Let (9t, U ) be a standard regulator of an l-group G. The 
following conditions are equivalent. 
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1- OR, U ) is completely regular. 
2. Z(f) is an open set of the topological space (9t, G) for every 

feG. 
3. Z(f') = m\Z(f) for every feG. 
4. U * is a minimal prime subgroup of G for every xedi. 
5. For every (minimal) prime subgroup J of G and for every x e Z(J) we have 

J=Ux-
6. { U x: x e 9t} is the set of all minimal prime subgroups JofG with Z(J) ± 0. 
7. (a) Z(f")nZ(f') = 0 for every feG 

holds and simultaneously one of the following equivalent conditions (b), (c) and 
(d): 
(b) f,geG,f" = g"^>Z(f) = Z(g); 
(c) Z(f) = Z(f") for every feG; 
(d) Z(f)eWl(% G) for every feG. 

8. Z maps W onto g ' = {9l\Z(/): fe G}. 
9. Z maps II onto % = {Z(f):feG} and Z(f')nZ(f") = 0 for every f eG. 

Proof. (Cf. [4] IV 8.10). The equivalence of 1, 2, 3 and 7 and the equivalence 
of b, c and d in the condition 7 follow from 1.2; 1 =4 follows from 1.2 (1 = 5), too, 
since the condition fe[Jx = > / ' ^ U * for every feG characterizes U * as 
a minimal prime among all prime subgroups, [4] III 7.6; [1] 3.4.13. 

4 => 5. Let J be a prime subgroup of G and Z(J)±0. Then x eZ(J) --> U * 
= V(x) 3 WZ(J)^J, [6] 2.3 and 2.4. By supposition U * is a minimal prime 
subgroup of G, thus [Jx = J. 

5 --> 6. Fix x e 9t. A minimal prime subgroup J of G exists with U * 2 J- Hence 
x e ZW(x) = Z(U*) £ Z(J) and by 5, U * = J- There is proved {U*: * e9l} c 
{Jem^(G): Z(J) ± 0}. Conversely, if Jem0>(G), x e Z(J), then (by 5) J = \Jx9 

hence 3 . 
6 --> 1 holds since 4 --> 1 is true. 
7 --> 8. Pick / e G. By 7(a), (c), there holds 0 = Z(/') n Z(f") = Z(/') n Z(/). 

Since f'bf", we have at = Z(/') u Z(/") = Z(/') u Z(/) ([6] 2.15), and so Z(/') 
= 9t\Z(/). Consequently, Z maps IT' onto g \ 

8 => 2. For / E G there exists fteG with Z(h') = ?H\Z(f). Therefore Z(f) 
= 9fl\Z(h') is an open set. 

7 =-> 9. By 7(c), Z maps II onto g. The remainder of the condition 9 is 7(a). 
9 => 7. For / e G there exists heG with Z(f) = Z(ft"), whence Z(/) e 3ft(9i, G) 

for every f e G . Hence 7(d) is true. 

Note. The condition 9 is a transparent transcription of the condition 7. It is 
introduced to be shown that it is not possible "to omit the dash" (over II and g) 
in 8. 

1.5 Corollary. 1. The JT'-regulator is standard, completely regular and re-
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duced. Moreover, Z(J)J=0 for every J emSP(G). Consequently, every l-group 
G ^ {0} possesses a regulator which is completely regular and reduced (and thus 
standard). 

2. Every completely regular regulator is standard and its simplification is 
reduced. 

3. Every minimal prime subgroup is a zsubgroup. 
Proof. 1. U * is a minimal prime subgroup for every xe 11(17'), [4] III 7.2. 

Thus 5Rn is completely regular by 1.4 (see also [4] II 4.16) and standard. 9tn is 
reduced because different minimal prime subgroups are incomparable sets. 

2. If (9i, U ) is completely regular and / = 0, then xeZ(f) for every xedi. 
Hence for every x e dt there exists g e G with g e [Jx. The latter part of 2 is proved 
by a similar argument to that in 1. 

3. This well-known result is an immediate consequence of 1 and 1.4. Indeed, the 
IT-regulator 5trr is completely regular by 1 and { U * : xedin} is the set of all 
minimal prime subgroups by 1 and 1.4. Again by 1.4, Z(f") = Z(f) for every / e G, 
which is equivalent to: fe [Jx -=> /" cz [Jx for every xedi. 

1.6 Now we call attention to relations between the completely regular regulators 
and the set Q(% G). 

The elements of the set Q(di, G) are called di-subgroups (of G). We define 
&Q(dl, G) = Q(% G)) n SP(G) the set of all prime di-subgroups of G. The 
system of all minimal elements of the set SPQ(di, G) will be denoted by 
mSPQOSi, G) (minimal prime di-subgroups of G). From the Zorn Lemma it follows 
that every prime 9t-subgroup of G contains a minimal prime Si-subgroup of G 
because by [6] 2.11 and 2.3, there holds G e SPQQJi, G) and by [6] 2.13 the meet of 
an arbitrary chain in &Q(% G) belongs to Q(% G) and by [4| II 2.3 this meet 
belongs to SP(G). 

1.7 Theorem. Let (9t, U ) be a completely regular regulator of an I gioup G 
(±{0}). Then 

{\Jx:xedl} = {JemSP(G):Z(J)^0}=mSPQ(% G). 

Consequently, minimal prime di-subgroups of G are minimal prime subgroups of 
G, i.e. mSPQ(di, G) cz m ^ ( G ) . 

Proof. The first equality follows from 1.4 (1 = 6 ) . From this equality it follows 
that every J e m ^ ( G ) with Z(J) + 0 is equal to a prime 3i-subgroup U x (= ^(x)) 
for some jce3t and hence U * is evidently a minimal prime 9t-subgroup. 
Consequently, {JemSP(G): Z(J)±Q} cz mSPQ($i, G). 

Conversely, fix J0emSPQ(% G). Z(J0)±Q holds, because of Z(J0) = 0 => J0 

= VZ(J0) = ^ ( 0 ) = G^\Jxior every xedi. Since U * ( = l f (*)) is a prime 
5l-subgroup, we have (G = ) J0= [Jx, in contradiction with the standardness of 
Oft> U ) (1-5). The prime subgroup J0 contains a minimal prime subgroup, say J, 
J czJ o .Thus0^Z(J o ) cz Z(J). For JC e Z ( J ) we have by 1.4 J = U * ( = V(x))\ then 
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.J is a prime 9t-subgroup, hence J0 = J. It follows that { .Jem^G): Z(.J)=£0} ^ 
m$PQ(dl, G), completing the proof of the theorem. 

1.8 Corollary. For the W-regulator 9tn of G there holds 

[)Jx:x e9ln.} =m2PQ(mn>, G) = m^(G) . 

Proof. The JT-regulator is completely regular (1.5) and {\Jx: xed\n} 
= m0>(G), [4] III 7.2; [1] 3.4.15. Now the assertion follows from 1.7. 

Problems. 1. Does the equality {JemSP(G): Z(J)±0} = m0>>Q(9t, G) or 
m^(G) = m2PQ(di, G) characterize the completely regular regulators or the 
JJ'-regulator, respectively? 

2. Does the equality (U* : *e9t} = m&Q(% G) characterize the JJ'-regu­
lator in the class of reduced regulators? 

1.9 Lemma. Let A cz 9t be a clopen and compact set of the space (9t, G). Then 
9t\A = Z(f) for some / e G , completely regular with respect to (9t, \J), and 
W(m\A) = f", W(A) = f. 

Proof. Let the dash denote the complement in 3JJ and JH. The set A' = 9t\A is 
closed (see [6] 2.21), hence A' = ZW(A') = C\{Z(g): g e W(A')}, [6] 2.2 and 
2.3. The compact set A =9t\A' = \J{$l\Z(g): g e W(A')} is covered by open 
sets $l\Z(g) (g e W(A')); thus there exists a finite number of elements gt e W(A') 

suchthatA=UOt\Z(^)). Then A' = C\Z(Qi) = r[Z(\Qi\) = z(\/l0.l).By 
i i i \ i / 

1.2 the element / = VI ^ I is completely regular with respect to (9t, U )> because the 
i 

set Z(f) = A' is open. By 1.2 again there holds W(A') = ^(9t\A) = WZ(f) 

= wz(n = f", w(A) = w(m\z(f)) = wz(f) = /'. 
1.10 Definition. The set of all clopen sets of the space (9t, G) is denoted by 

<9(9t, G) (briefly Om or 0 only). By JJ(9t, G) (briefly nm) there will be denoted the 
set of all principal polars /" of G, where the element / is completely regular with 
respect to (9t, U)-

1.11 Theorem. Let (9t, U ) be a standard regulator of an l-group G and (9t, G) 
a compact space. Then W and Z are (mutually inverse) dual isomorphisms between 
the lattices <?(9t, G) and JJ(9t, G) and 

JI(9t, G)ezJI(G)nJT(G) 

holds. 
Proof. B e (?(9t, G) ^> A = 9t\B is clopen and hence compact --> by 1.9 there 

exists feG which is completely regular with respect to (9t, U ) s u c h that 9t\A = % 
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Z(f) and W(B) = W(dl\A) = f. It follows that W(0,{) cz FLm. Since B is clopen and 
hence compact, there exists geG such that W(B) = g' (1.9). It follows that W(0,n) 
cz n(G)r\IT(G). The Z-image of the polar /", where f"e U((9t, G), is clopen in 
(9t, G), because the set Z(f") = Z(f) is open by 1.2. It follows that Z(n*) cz 0* 
Since Z and W are mutually inverse isomorphisms between the lattices V and sJJi 
([61 2.18) and we have proved W(Om)^n)n and Z(TIm)^0)n, there follows the 
required dual isomorphism between Om and n)H. 

1.12 Corollary. Let (9t, [_}) be a completely regular regulator of an l-group 
G and the space (9t, G) compact. Then W and Z are (mutually inverse) dual 
isomorphisms between the lattices TI(G) and (?(9t, G), and there holds 

n(9t, G) = n(G) = n'(G). 

From the complete regularity of (9t, U ) it follows that !7(9t, G) = 27(G) and 
from 1.11 we have II(9t, G) cz JT(G). Hence I7(G) = n ' (G) . 

Problems. 3. Which G fulfil fl{n(9t, G): (9t, U ) a standard regulator of 
G} = 0 or U(H(9t, G): (9t, U ) a standard regulator of G} = n(G)nn'(G)l 

4. Which G fulfil I7(9t, G) = n(G)nn'(G)? (This is fulfilled, e.g., under the 
assumptions of 1.12.) 

2. Ambiguous polars 

2.1 Definition. Let (9t, U ) De a regulator of an /-group G and K 6 T(G). The 
polar K is called ambiguous with respect to (9t, U ) -f f° r a n arbitrary JC e9t there 
holds KczU* ^ K' c£ U*- The set of all ambiguous polars of G with respect to 
(9t, U ) will be denoted by T(9t, G) (briefly rm), [5] 2.4. Evidently KeT(9t, G) 
--> K'e;r(9t, G). 

2.2 llieorem. Let (9t, U ) be a standard regulator of an l-group G. T/ien W and 
Z are (mutually inverse) dual isomorphisms between the lattices <?(9t, G) and 
T(9t, G). Hence T(9t, G) is a subalgebra of the Boolean algebra T(G). 

Proof. Since W and Z are (mutually inverse) dual isomorphisms between the 
lattices T(G) and TO(9t, G) and T(9t, G) c T(G), <?(9t, G) cz 3W(9t, G), it 
suffices to prove that 

(*) a polar KeT(G) is ambiguous with respect to (9t, U ) iff Z(K) is open in 
(9t, G). 

Pick JC e9t and g e G. Then by [6] 2.15, g e K' =9t\Z(g) c Z(K), hence (*). 
Recall that (9t, U) is called a z-regulator if U ^ is a Z"subgroup for every JC e 9t, 

[6] 2.23. 
It is evident that U * is a z-subgroup iff Z(/") = Z(f) for every / e U^-
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2.2a Lemma. A regulator (9t, U ) IS a z-regulator iff Z(f") = Z(f) for every 
/eU{LU:*e9t} . 

A standard regulator (9t, U ) I S a z-regulator iff Z(f") = Z(f) for every feG. 
Indeed, sufficiency is clear. If (9t, U ) is a z-regulator, then Z(f") = Z(f) for 

every / e U { U * - * e 9 t } . Moreover, if (9t, U ) is standard and fe \Jx for every 
x e 9ft, then on the one hand x e Z(f) for every x e 9t, i.e. Z(f) = 0 and on the other 
hand f c U { n * : * e 9 t } = {0}, hence f" = G and thus Z(f") = 0, [6] 2.3. 
Consequently again Z(f") = Z(f). 

23 Corollary. 1. If feG is completely regular with respect to (9t, \J), then 
f"er(%G). 

2. Pick feG and suppose \Jx to be a z-subgroup for every xeZ(f). Then 
there holds the converse implication in 1. Hence if (9t, U ) 1 S a z-regulator9 then 
n(9t, G) 3 n(G)nr(9t, G). 

3. A regulator (9t, U ) is completely regular iff 11(G) = JT(9t, G) and Z(f") = 
Z(f) for every fe\J{\Jx: x efR} (or every f e G). 

4. A z-regulator (9t, U ) is completely regular iff 17(G) c T(9t, G). 
Proof. 1. Let / e G be completely regular with respect to (9t, \J), xedi and 

f c U* . Then / e U * and by 1.2 f £ \Jx. Hence f eJT(9t, G). 
2. Suppose f eT(9t, G). If fe\Jx for some xe9t, then f c l j j c and so 

f s£ \Jx. Hence / is completely regular with respect to (9t, U ) by 1.2. 
3. If (9t, U ) is completely regular, then 11(G) = H(9t, G) c T(9t, G) by 1 

and Z(f") = Z(f) for every fe G by 1.4. Conversely, let the condition of 3 be 
fulfilled, fe\J{\Jx:xedi} and xe9t. From Z(f") = Z(f) it follows that 
fe \Jx --> f c \Jx and from f er(9t, G) it follows that f" c:\Jx ^> f'£\Jx. 
By 1.2, (9t, U ) i s completely regular. 

4. follows immediately from 3 and 2.2a. 

Note. Since evidently Ker(9t , G) = K' eT(9t, G), then 

n(G)cr(9t, G)=n'(G)cr(9t, G). 

2.4 Corollary. 1. Let (9t, U ) be a standard regulator of an l-group G and let 
the space (9t, G) be compact. Then T(9t, G) = n(9t, G) c n(G)nJT(G). 

2. Let (9t, U) be a completely regular regulator of G and let the space (9t, U ) 
be compact. Then T(9t, G) = II((9t, G) = 11(G) = IT(G). 

1. follows from 1.11 and 2.2. 2. The first equality follows from 1, the others 
according to 1.12. 

In the theorem 2.23 [6], conditions characterizing the extremal disconnectedness 
of the space (9t, G) are given. The above results on JT(9t, G) and 0(9t, G) enable 
us to describe some additional conditions. 
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2.5 Theorem. Let (9t, \^}) be a standard regulator of an l-gioup G. The 
following conditions are equivalent 
1. The space (9t, G) is extremally disconnected. 
2. 6(m, G) = TO(9t, G). 
3. r(9t, G) = r(G). 
4. The lattice 2Jc(9t, G) is a subiattice of the lattice 9x(3t, G). 
5. The lattice T(G) is a subiattice of the lattice Q(% G). 
6. W[6(m, G)] = T(G). 
7. z[r(G)]=o(m, G). 

If a standard z-regulator (9t, (J) °f G fuifiis one of the above conditions, then 
(St? U) 1S completely regular. 

Proof. The equivalences 1 = 3 = 4 are proved in [6] 2.23, 1=2 is evident and 
4 = 5 follows from [6] 2.11 and 2.18 (W is a dual isomorphism which maps 9?^ on 
Qm and Wlm on F). 

7 => 2. Z(r) = mmby [6] 2.18. 
2 => 6. W(Wlm) = T using [6] 2.18. 
6 => 7. *F and Z are mutually inverse mappings by [6] 2.18. The last assertion 

follows from 2.3(4) because by 3 F(3t, G) = T(G)=> 11(G). 

2.6 Theorem. For the II'-regulator 9tn> of an l-group G the following condi­
tions are equivalent 
(i) The space (3trr, G) is compact 

(ii) 17(G) = IT(G). 
(iii) ^ and Z are (mutuaiiy inverse) dual isomorphisms between the lattice i7(G) 
and the lattice 0c(9ftrr, G) of aii compact ciopen sets of the space (9tn , G) 
(iv) ©X'Dftn', G) = Oc(dtn.> G) the family of all compact ciopen sets of the space 
(Stir, G). 

Proof, i => iii follows from 1.12, because the JT'-regulator is completely-
regular (1.5). 

iii --> ii. For every g e G the set A = Z(g") is ciopen and compact in (5Kn , G), 
thus A' = SftnAA = Z(f) for some / e G and ^ (A ' ) = /" by 1.9. There holds W(A) 
= WZ(g") = g" ([6] 2.18), hence g' = [^(A)]' = W(A') = f" by [6] 2.19. We 
have proved n ' ( G ) c n ( G ) . The equality II'(G) = n(G) follows immediately. 

ii => i follows from [6] 1.9. 
i -> iv. Closed sets of a compact space are compact. 

iv => i is evident. 

2.7 Corollary. Let (% (J) be a compieteiy regular relator of an l-group G and 
let the space (Ut, G) be compact. Then (5trr, G) is compact, where 9trr means the 
TT-regulator of G. 

Proof. By 2.4 11(G) = II'(G). Then the assertion follows from 2.6. 
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3. ^-regulator 

In accordance with [1] 2.2 and [2] 1.1 we denote the lattice of all solid subgroups 

of an/-group G by ^(G). In this lattice there holds A Ca = f]Ca,\/Ca = [IJC„] 
a a a a 

for {Cu} e €(G), where N J C is the subgroup of the group G generated by the 

se tUC a ([1] 2.2.7; [2] 1.4). 
a 

3.1 Definition. A regulator (9t, U) °f G is called a ^-regulator if for every 
Cec€(G) there exists 0 c A cz3t such that C= H { U * : xeA}, in other words if 
«(G) = Q(di,G) ([6] 2.11). 

3.2 An example of a standard ^-regulator. For 0 =,-= a e G let Ha be the set of all 
values of a. Let 9t denote the union of all Ha(0±aeG) and U ^ e identical 
mapping of fft. Then (di, U) *s a standard ^-regulator. 

3.3 Definition. Denote by A(G) the set of all direct factors of G. A(G) is 
a subalgebra of the Boolean algebra T(G) and a sublattice of the lattice ^(G), [1] 
3.5.12. 

3.4 Theorem. Let (9t, U) be a standard ^-regulator of G. Then A(G) = 
r(9t, G) and f and Z are (mutually inverse) dual isomorphisms of the lattice 
A(G) andO(m, G). 

Proof. The second assertion follows immediately from the first one by 2.2. Fix 
KeA(G). If \JX^KKJK' for some xe% then \Jx^K + K' = G, a contradic­
tion. Thus A(G) c r(9t, G). The converse inclusion: If A 6©(3ft, G), then 
A'=3t\AE<5(3ft, G). Since A, A'e3l(% G) and the operations in the lattice 
9c(9t, G) are n and u : A A * A ' = AnA' = 0, Av* A' = AuA'=9 t , thus 
V(A)v 0 y (A ' ) = G, y ( A ) n y ( A ' ) = W(A)AV W(A') = {0}. Since the sub­
groups ^ (A) and ^ (A ' ) are disjoint and thus permutable and ^(G) = £2(9t, G), 
we have G = W(A)v* V(A') = [V(A)uV(A')] = W(A)+ W(A'). Therefore 
^ (A) is a direct factor of G. 

3.5 Theorem. Let (9t, U) ^e a standard ^-regulator of G. Then G is strongly 
projectable iff one of the conditions of Theorem 2.5 is true. 

Proof. By 3.4, A(G) = T(G) (the strong projectability) holds iff the condition 
2.5(6) is fulfilled. 

Theorem 3.5 is a generalization of [4] II 5.8. 

4. Similar and equivalent regulators 

4.1 Definition. Let (3t£, U«) be a regulator of an /-group Gt (i = l, 2). The 
regulator (9t2, U2) is said to be 
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a) similar to the regulator (911, Ui) ° r 

b) equivalent to the regulator (911, Ui) 
if there exists an /-isomorphism a: Gx onto G2 and a) a surjection or b) a bijection 
|3: 9t2 onto 9t,, respectively, such that for every fe Gx and every x effi2 

(a) fe\Jlpx--afe\J2x. 

Equivaleotly 

(P) a Ui/3^ = U2* for every xeffi2. 

If we denote by Z^. the mapping Z corresponding to the regulator (91,, U.) 
(i = 1, 2), then (a) has clearly the following equivalent form 

(y) p-1(Z-l(f)) = Zat2(af) for every / G G , 

4.2 Lemma. In case a) j3 is a continuous, open and closed mapping of the 
topological space (ffi2, G2) onto (911, Gi), in case b) a homeomorphism of these 
spaces. 

[4] IV 8.2. 
Let H be a solid subgroup of an /-group G and GIH the (say left coset) 

decomposition of G modulo H. Then GIH is a distributive lattice with respect to 
the canonical ordering. Given feG denote by f(H) the class of the decomposition 
GIH containing /. If (ffi, U) is a regulator of G and H=[Jx,we write f(x) instead 
of f([Jx). By the symbol f(x) =10 we replace the more extensive one f(x) ^ 0(x). 

4.3 Theorem. Let a regulator (ffi2, U2) of an l-group G2 be similar to 
a regulator (9ti, Ui) of an l-group d . Then for every x effi2 the binary relation 

Rx = {(f(Px),(af)(x)):feGl} 

is an isomorphism of the canonically (linearly) ordered sets GJ Uif* and G2I {J2x. 
if (9ti, U«) (i= 1> 2 ) a r e realizers, then the relation Rx is an l-isomorphism of the 

l-groups GJU^x and G2l\J2x (xe9t2). 
The proof coincides essentially with the proof of Theorem 8.3 [4] IV. 

4.4 Theorem. 1. Every regulator is similar to its simplification. 
2. Let (ffi2, U2) be similar to (3ft,., U0- H (9*2, U2) is (a) standard, (b) reduced, 

(c) completely regular, so is (9t,, Ui)-
3. Eqoivaient regulators are standard, reduced or completely regular simul­

taneously. 
Proof. 1. Tlie defining mappings are a =idG and |3 = the projection of 9t2 onto 

ffi2, where ffi2 is the partition on 9t2 corresponding to the mapping U2. 
2. For x effi2 there holds Ui0* = a - 1 ^ * ^ Gi or e m^(G) (in case (a) or (c), 

respectively). Then the assertion concerning the complete regularity follows 
from 1.4. If (9t2, U2) is reduced, then the mapping |3 is one-to-one, because 
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|3ac = j3y for some x, ye 9t2 implies U2^ = a\Jif$x = aUiftv = U2y, hence x = y. 
(9ti, Ui) is evidently reduced (and the similarity is an equivalence). 

3. follows from 2. 

4.5 Definition. Two regulators of G, (9ti, Ui) and (9t2 U2) are said to be 
equal, in symbols (9ti, Ui) = (9̂ 2, U2)? if there exists a bijection y of 9t2 onto 9ti 
such that UiYx = U2X for every x e9t2. 

The equality is then an equivalence of two regulators of the same /-group related 
to the mappings a = idG and |3 = y. 

4.6 Lemma. Let (9t2,U2) be a regulator of an l-group G=£ {0}. The following 
conditions are equivalent. 
1. The regulator (9t2, U2) is similar to the IT-regulator of G. 
2. {U2Jc:xe9t2} = m^(G). 
3. The simplification of the regulator (9t2, U2) is equal to the nf-regulator of G. 

Proof. Denote by (9ti, Ui) the IT-regulator of G and use the notation of 4.1. 
1 --> 2. Suppose the similarity of (9t2, U2) to (9ti, Ui)- Since {Uiy: y e 9 t j 

= m&(G) ([4] III7.2; [1] 3.4.15), {U2:*e9t2} = {aUifa: xe9t2} 
= {<*Uiy- ye9ti} = m^(G), because the /-automorphism a carries m^(G) 
onto m^(G). 

2 =-> 3. Let a be the identical mapping of G. Denote by (Jft2, U2) the simplifica­
tion of the regulator (9t2, U2) and for x edt2 denote by /3JC the element y e9ti for 
which Uiy = U2*. 0 is a bijection of SH2 onto 9ti and U-0* = U2* holds. Hence 3. 

3 --> 1. Use the notation of the definition 4.5, where (9ti, Ui) is the I T -
regulator of G and instead of (9t2, U2) put the simplification (SR2, U2) of (9t2, U2)-
Then the similarity is established via the identical /-automorphism a of the /-group 
G and the bijection j3: 9t2 onto 9ti defined as follows: j3 = y;r, where it is the 
projection of 9t2 onto Sft2. Then for Jte9t2 we have Ui#* = UiYnx = UiY* 
= U2* = U2-** = U**' 

4.7 Corollary. Let (9t2, U2) be a reduced regulator oVG. Then (9t2, U2) is 
similar to the IT-regulator 9tn« of G iff (9t2, U2) is equal to fR„.. 

4.8 Lemma. The IT'-regulator of G is similar to a regulator of G iff the former 
is equal to the latter. 

Proof. Let (9t2, U2) be the Il'-regulator of G and (9ti, UO a regulator of G. 
Suppose the similarity and notation as in the definition 4.1. We shall show that Ui 
is one-to-one. Pick xu yie9ti with JCi-Z-y! and Ui*i = Uiyi- Then there exist 
*2, y2e9t2, x2±y2 such that *I = J3JC2, yi = j3y2 and \J2x2 = a l j i f e = al j i^i 
= aUiyi = «Uij3y2 = U2yz, a contradiction, because the Il'-regulator is 
reduced and thus U2 is one-to-one. Evidently (Uiy- ye9ti} = {U2*: xe9t2} 
= m!3>(G) (because a carries m^(G) onto itself). Define y (definition 4.5) as 
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a mapping which maps JC esJt2 onto the element y effti fulfilling U.y = U2*« This 
mapping is a bijection and establishes the equality of both regulators. 

From theorem 1.4 it follows that U * (xedi) is a minimal prime subgroup 
whenever a regulator (9t, U ) is completely regular and from [4] HI 7.2 or [1] 
3.4.15 that the set { U * : * eStn-} is formed by all the minimal prime subgroups 
of G. Thus the I7'-regulator has a special position among the completely regular 
regulators. In what follows we shall study relationships of the completely regular 
regulators to their distinguished representative 9 t n . 

4.9 Lemma. Let (9t, U ) be a regulator of G* {0}, 0=£9tic=9t and U i = U k 
Then (St-., U 0 is a regulator of G iff 9tx is a dense subset of the space (9t, G). 

Proof. "Only if". It suffices to prove that n{Ui* .*ef f i i} = {0}. If feG 
belongs to the above meet, then xeZMl(f) for every JteSti, hence 9ti = ZMl(f) 
= Zw^nW! , whence Z»( / )2 SRi. Then » 2 Z « ( f ) = cl(m, G)ZM(f) => cl(* G)9t = 5t 
Hence 2:*(/) = 9t, / = 0 , [6] 2.3. 

"If". By supposition n {Ui* '•x e 9ti} = {0}. Then for an arbitrary 0 ^ feG there 
exists *!eSti such that xxeZn(f). For an arbitrary xedi there exists geG such 
that xeZ^(g). Since Z( | / | v | f l | ) = Z(f)nZ(g), there holds 
x9xlem\Z^(\f\v\g\). 

4.10 Theorem. Let (3ti, Ui ) be the W-regulator of an l-group G and (3t2, U2) 
a regulator of G. Then (9t2, U2) is completely regular (completely regular and 
reduced) iff a dense subset 9t3 of the space (9ti, G) exists such that the regulator 
(9t2, U2) is similar (equivalent) to the regulator (9t3, U i k ) -

Proof. Let the mapping Z , concerning the regulator (3t.,U«) (- = 1,2), be 
denoted by the symbol Z, and let U3 = U i k - L e t (^2, U2) be similar to (9t3, U3). 
Let a be an /-automorphism of G and (3:9t2 onto 3t3 a mapping fulfilling 
a\^Jifix={J2x for every jce9t2. Since 9t3cz9ti and for every xe<3\3lJ3x = 
\Jxx em®(G), there also holds U2* emSP(G) for every x e9t2. Thus by 1.4 the 
regulator (9t2, U2) is completely regular. 

Conversely, let (9t2, U2) be completely regular. By 1.4 {Ui*: JC eSRi} = m ^ ( G ) 
2 {U2);: y e3t2}. For an arbitrary y e9t2 there exists exactly one x e3ti such that 
^ y ^ U i * . We define a mapping /3:9t2 into 9ti by the rule fiy = x. Denote 
3ft3 = /33fi:2(cz3fti). We shall prove that 3t3 is a dense set of the space (9ti, G), i.e. 
c W G)9t3 = 9ti. clcRj.oSta is the meet of all ZX(J) (feG) which contain 3t3. Thus let 
Zi(jf)3 9ft3 hold for some feG. Then / e n {Q2y: y e9t2} = {0}, whence / = 0 and 
C1GR„ 0 )^=911 . The similarity of (9ft2, U2) to the regulator (9t3, U3) -s given by 
means of the mappings a = idG and j3 defined above. In fact, for an arbitrary y e 9t2, 
aU3j3y = U/3y = U0y = U2y. 

Proof of the second assertion of the theorem. If (9t2, U2) is equivalent to 
(9t3, U3), then by 4.4 the regulator (9t2, U2) is reduced because the regulator 
(9t3, Us) is reduced. Conversely, if the regulator (9t2, U2) is completely regular and 
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reduced, the mapping |3 defined in the previous paragraph is one-to-one, because 
the mapping U2 1s one-to-one (indeed, if yx, y2 e9t2, f}yt = |3y2, then U2yi = Ui^yi 
= Ui(3y2 = U2y2, thus yi = y2). 

4.11 Corollary. Every completely regular regulator of G is similar to a reduced 
completely regular regulator of G. 

Proof. Using the notation of the preceding theorem the completely regular 
regulator (3t2, U2) l s similar to the reduced completely regular regulator (3t3, Us) 
(4.4(1)). In fact, (9t3, Us) is reduced because the IT-regulator is reduced and is 
completely regular by 1.4. 

4.12 Theorem. Let (9t, U) be a completely regular regulator of G. If (9t, G) is 
compact, then (9t, U) -s similar to the TI'-regulator. If, moreover, (9t, U) iS 

reduced, then it is equal to the TI'-regulator. 
Proof. Let (9ti, UO be the IT-regulator of G. By 1.12,11 = 11' and by 2.6 the 

space (3ti, G) is compact. By 4.10, there exists a dense subset 9t3 of the space 
(9ti, G) such that the regulator (9t,U) is similar (in the other case equivalent) to 
the regulator (9t3, Us), where Us = Ui U-- By 4.2 the space (9t3, G) is a continuous 
image of a compact space, hence (9t3, G) is a compact subspace of a Hausdorff 
space (JJti, G). Then 3t3 is a closed subset of (Sti, G). Since 9t3 is dense, 3t3 = 9ti. 
Hence both assertions are valid. 
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ТОПОЛОГИИ НА РЕГУЛЯТОРАХ СТРУКТУРНО УПОРЯДОЧЕННЫХ ГРУПП 
П. ВПОЛНЕ РЕГУЛЯРНЫЕ РЕГУЛЯТОРЫ 

Франтишек Шик 

Резюме 

В работе продолжается изучение отношений между свойствами /-группы С и индуцированным 
на 91 топологическим пространством (91, О), кде (91, и ) — регулятор в С (см. часть I.). Главное 
внимание посвящено понятию вполне регулярного регулятора (91, Ц), который определен 
следующим образом: /еО , хе% }е\^х Ф существует д е С так, что д е Ц г , }6д (где /6д 
обозначает дизъюнктивность элементов / и д, то есть | Я л Ы = 0). Эти регуляторы харак­
теризованы как регуляторы, образованные минимальными простыми подгруппами в О и \^) = к!к 

(1.2 и 1.4). Отображения X и Ч* являются (взаимно обратными) дуальными изоморфизмами 
между структурой 0(91, С) открытых и замкнутых множеств в (91, С) и структурой Г(91, С) всех 
поляр К в С, обладающих следующим свойством: если х е 91, то ^ х не содержит одновременно 
К и К' (2.2). Если (91, \Л) — П'-регулятор, то компактность пространства (9*, О) эквивалентна 
тому, что 2, и Ч* являются дуальными изоморфизмами между структурой П(С) всех главных 
поляр в О и структурой 0С(91, С) всех компактных открытых и замкнутых множеств пространст­
ва (91, О); другие эквивалентные условия: 0(91, С) = 0С(91, С); П(С) = П'(С) (2.6). В части I. 
(2.22) приведенная серия условий, эквивалентных экстремальной несвязности пространства 
(91, О), дополняется здес напр. следующими условиями: 0(91, О) = ЯГС(91, О); и/[0(9 ,̂ С)] 
= Г(О) (2.5). Если (91, Ц) — стандартный ^-регулятор (---всякая выпуклая /-подгруппа в С 
является пересечением некоторой системы \^}х), тогда Г (91, О) — множество всех прямых 
факторов в С (3.4). Определены равенство, подобие и эквивалентность регуляторов и исследует­
ся вопрос, какое из этих отношений сохраняет полную регулярность или редуцированность. 
Особенно изучено отношение регуляторов к самому содержательному редуцированному 
и вполне регулярному регулятору, к П'-регулятору (абз. 4). 
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