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TOPOLOGY ON REGULATORS OF LATTICE
ORDERED GROUPS
II. COMPLETELY REGULAR REGULATORS

FRANTISEK SIK

In the present paper we continue investigating mutual relations between the
properties of an [-group G and the induced topological space (R, G) [6]. The main
attention is paid to completely regular regulators (R, ). These regulators are
characterized as regulators formed by minimal prime subgroups of G (1.2 and 1.4).
The mappings Z and ¥ are (mutually inverse) dual isomorphisms between the
lattice of clopen sets of (R, G) and the lattice I'(R, G) of all the so-called
ambiguous polars of G (2.2; a polar K is said to be ambiguous with respect to
&R, ) if no Ux(xeR) contains both K and K'). If (R, J) is a standard
%-regulator (= every solid subgroup of G is the meet of some family of | Jx), then
'R, G) is the set of all direct factors of G (3.4). There are defined the equality,
similarity and equivalence of regulators and it is examined which of these relations
carry the property of the complete regularity or reducibility. The connection of
regulators with the most comprehensive reduced and completely regular regulator,
the IT'-regulator, is investigated.

The paper is a continuation of [6] where the reader can find all less frequent
notions or new ones used (as a rule without any reference) in this second part. For
the terminology and denotations concerning the general theory of I-groups cf. [1]
and [2].

1. Completely regular elements

1.1 Definition. Let G be an [-group and (R, ) a regulator of G. An element
feG is said to be completely regular with respect to (R, ) if to an arbitrary
x € Z(f) there exists g € G such that x e R\Z(g) = Z(f), [5] 2.1. If every element
of G is completely regular with respect to (R, U), the regulator (R, ) is called
completely regular, [4] II 3; [6] I 1.6. Note that the condition x e R\Z(g) = Z(f)
can be replaced by the following one: fég and x € Z(g) ([6] 2.15).
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In the definition of the induced topology on R one supposes that the regulator is
standard, [6] 1.2. In all the following assertions in which the topological space
(R, G) occurs and the regulator (R, | ) is not specified, we often assume tacitly
that (R, ) is standard (and so G+ {0})."

1.2 Theorem. Let (R, |J) be a standard regulator of an l-group G. The
following conditions are equivalent.
1. f is completely regular with respect to (R, J).
2. Z(f) is an open set of the topological space (R, G).
3. Z(f")=R\Z(f).
4. There holds:
(@ ZU")nZ(f)=0

and one of the following equivalent conditions (b), (c)

and (d):
(b) geG, f'=g" > Z(f)=Z(9);
© Z()=Z("); '

@) Z()eM@R, G).
(5) f'¢Ux for every-x eR with fe Jx.

Proof. (Cf.[5]2.1) 1 = 2. From the difinition 1.1 it is clear that x € Z(f) is an
inner point of the set Z(f).

2 > 3. By [6] 2.15 we have gef' = Z(g)2R\Z(f). Hence by [6] 2.2,
Z(f")=M{Z(9): gef'y=M{Z(9): Z(g9) 2 RMZ(f)} =R\Z(f) =R\Z(f).

3 2 4(d). Z(f)=R\Z(f') is a clopen set, hence 4(d).

d) = (€). Z{)eMR, G) > K=WZ(f)eI'(G) ([6] 2.18) > feK ([6] 2.4)
> "< K> Z(f") 2 Z(K) = Z¥YZ(f) = Z(f) ([6] 2.4). The converse inclusion
is clear.

(c) => (b) is evident.

(b) > (d). If gef”, then (Ig|vIfl)'=g"vf"=f", hence Z(g) = Z(|glvIfl)=
Z(f). Finally Z(f")=({Z(g): : g €f"} 2 Z(f). Evidently Z(f)2 Z(f"), whence
Z(f) = Z(f") € MR, G), [6] 2.18. :

3 = 4(a). There holds Z(f") n Z(f') < Z(f) n Z(f') = Z(f) N (R\Z(f)) =0.

4 => 5. Pick xe€Z(f). Then xeZ(f) = R\Z(") = R\ {Z(g):g¢f'}
= J{R\Z(g): gef'}. It follows that there exists g € f' with x e R\Z(g), i.e.
g eUJx, whence f'¢& Jx. i

5 = 1. Fix x € Z(f). By assumption there exists g € f'\|x, thus x € Z(g) and
fég, whence 1.

1.3 Definition. Denote by ?(G) or m?(G) the set of all prime or minimal
prime subgroups of G, respectively.

1.4 Theorem. Let (R,|J) be a standard regulator of an I-group G. The
following conditions are equivalent.
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. R, ) is completely regular.

2. Z(f) is an open set of the topological space (R, G) for every

feG.

Z(f'Y=R\Z(f) for every feG.

Ux is a minimal prime subgroup of G for every x eR.

. For every (minimal) prime subgroup J of G and for every x € Z(J) we have

J=Ux. :

. {Ux: x e R} is the set of all minimal prime subgroups J of G with Z(J) # 0.
7. (@) Z(f")nZ(f')=0 for every fe G
holds and simultaneously one of the following equivalent conditions (b), (c) and
(d):
(®) f,9€G, f'=9" > Z(f)=2(9);
() Z(f)=Z(f") for every fe G;
(@) Z(f)e(R, G) for every feG.
8. Z maps IT' onto §' ={R\Z(f): fe G}.
9. Zmaps ITonto § = {Z(f): fe G} and Z(f')nZ(f") = @ for every feG.

Proof. (Cf. [4] IV 8.10). The equivalence of 1, 2, 3 and 7 and the equivalence
of b, c and d in the condition 7 follow from 1.2 ; 1=4 follows from 1.2 (1=5), too,
since the condition fe Ux = f'¢ Ux for every fe G characterizes | Jx as
a minimal prime among all prime subgroups, [4] II1 7.6; [1] 3.4.13.

4 = 5. Let J be a prime subgroup of G and Z(J)#0. Then xe Z(J) > Ux
= Y(x) 2 WZ(J)=J, [6] 2.3 and 2.4. By supposition | Jx is a minimal prime
subgroup of G, thus (Jx=1J.

5 > 6. Fix x eR. A minimal prime subgroup J of G exists with | Jx 2J. Hence
xeZ¥(x) = Z(Ux) = Z(J)and by 5, x =J. There is proved {| Jx: xeR} <
{JemP(G): Z(J) +0}. Conversely, if JemP(G), x € Z(J), then (by 5) J=Jx,
hence 2.

6 = 1 holds since 4 = 1 is true.

7 => 8. Pick fe G. By 7(a), (c), there holds = Z(f') n Z(f") = Z(f') n Z(f).
Since f'6f", we have R=Z(f') u Z(f") = Z(f') v Z(f) ([6] 2.15), and so Z(f')
= R\Z(f). Consequently, Z maps IT' onto F'.

8 = 2. For fe G there exists he G with Z(h') = R\Z(f). Therefore Z(f)
= R\Z(h') is an open set.

7 = 9. By 7(c), Z maps II onto §. The remainder of the condition 9 is 7(a).

9 = 7. For f € G there exists h € G with Z(f) = Z(h"), whence Z(f) e (R, G)
for every fe G. Hence 7(d) is true.

bW

[=))

Note. The condition 9 is a transparent transcription of the condition 7. It is
introduced to be shown that it is not possible “to omit the dash” (over IT and %)
in 8.

1.5 Corollary. 1. The IT'-regulator is standard, completely regular and re-
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duced. Moreover, Z(J)+0 for every J e mP(G). Consequently, every [-group
G+ {0} possesses a regulator which is completely regular and reduced (and thus
standard).

2. Every completely regular regulator is standard and its simplification is
reduced.

3. Every minimal prime subgroup is a z-subgroup.

Proof. 1. Jx is a minimal prime subgroup for every x € 11(IT"), [4] 111 7.2.
Thus Ry is completely regular by 1.4 (see also [4] I1 4.16) and standard. $tn is
reduced because different minimal prime subgroups are incomparable sets.

2. 1f R, ) is completely regular and f=0, then x € Z(f) for every x eR.
Hence for every x € R there exists g € G with g € | x. The latter part of 2 is proved
by a similar argument to that in 1.

3. This well-known result is an immediate consequence of 1 and 1.4. Indeed, the
IT -regulator Ry, is completely regular by 1 and {{Jx: xeRn} is the set of all
minimal prime subgroups by 1 and 1.4. Againby 1.4, Z(f") = Z(f) forevery fe G,
which is equivalent to: fe | Jx = " < Ux for every xeR.

1.6 Now we call attention to relations between the completely regular regulators
and the set Q(R, G).

The elements of the set Q(R, G) are called R-subgroups (of G). We define
PR, G) = QA, G)) n P(G) the set of all prime R-subgroups of G. The
system of all minimal elements of the set PQ(R, G) will be denoted by
mPL (R, G) (minimal prime R-subgroups of G). From the Zorn Lemma it follows
that every prime R-subgroup of G contains a minimal prime R-subgroup of G
because by [6] 2.11 and 2.3, there holds G € ZQ(R, G) and by [6] 2.13 the meet of
an arbitrary chain in PQ(R, G) belongs to (R, G) and by [4] I 2.3 this meet
belongs to 2(G).

1.7 Theorem. Let (R, |J) be a completely regular regulator of an | group G
(#{0}). Then

{(Ux: xeR}={JemP(G): Z())+# 8} =mPQ(R, G).

Consequently, minimal prime R-subgroups of G are minimal prime subgroups of
G, i.e. mPQR, G) = mP(G).

Proof. The first equality follows from 1.4 (1=6). From this equality it follows
that every J e mP(G) with Z(J) # 0 is equal to a prime R-subgroup | Jx (= ¥(x))
for some xeNR and hence |Jx is evidently a minimal prime R-subgroup.
Consequently, {Jem®P(G): Z(J)#0} < mPQER, G).

Conversely, fix Joe mPQ(R, G). Z(J,) # 9 holds, because of Z(J,) = 8 = J,
= WYZ(J,) = W@ = G2UUx for every x eR. Since [Jx (= W(x)) is a prime
R-subgroup, we have (G =) J,=Jx, in contradiction with the standardness of
R, 1)) (1.5). The prime subgroup J, contains a minimal prime subgroup, say J,
JcJo. Thus @+ Z(Jo) € Z(J).For x € Z(J)we have by 1.4 J = Jx (= W(x)); then
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J is a prime R-subgroup, hence J,=J. It follows that {J e mP(G): Z(J)#0)} 2
mPQ (R, G), completing the proof of the theorem.

1.8 Corollary. For the IT'-regulator Ry of G there holds
IUx:x eRn) =mPQRn, G)=mP(G).

Proof. The IT'-regulator is completely regular (1.5) and {{Jx: xeRny)
= mP(G), [4] 11 7.2; [1] 3.4.15. Now the assertion follows from 1.7.

Problems. 1. Does the equality {JemP(G): Z(J)#0} = mPQ(R, G) or
mP?(G) = mPQ(R, G) characterize the completely regular regulators or the
IT'-regulator, respectively?

2. Does the equality {Ux: x eR} = mPQ(R, G) characterize the IT’'-regu-
lator in the class of reduced regulators?

19 Lemma. Let A <R be a clopen and compact set of the space (R, G). Then
MA = Z(f) for some fe G, completely regular with respect to (R, ), and
YER\A)=f", W(A)=f".

Proof. Let the dash denote the complement in % and I'. The set A’ =R\A is
closed (see [6] 2.21), hence A’ = ZW(A') = [{Z(g): ge W(A")}, [6] 2.2 and
2.3. The compact set A=R\A’ = [J{R\Z(g): ge W(A"))} is covered by open
sets R\Z(g) (g € W(A')); thus there exists a finite number of elements g; € W(A')

such that A =LI_J(ER\Z(g,~)). Then A’ = OZ(g.-) = OZ(|Q.-|) = Z(\i/lg.»l). By

1.2 the element f = \/|g;| is completely regular with respect to (), |J), because the

set Z(f)=A" is open. By 1.2 again there holds W(A') = WY(R\A) = WZ(f)
= WZ(f") = f', ¥(A) = YR\Z(f)) = YZ(f') = f'.

1.10 Definition. The set of all clopen sets of the space (R, G) is denoted by
O(R, G) (briefly Oy or O only). By IT(R, G) (briefly ITz) there will be denoted the

set of all principal polars f” of G, where the element f is completely regular with
respect to (R, ).

1.11 Theorem. Let (R, | J) be a standard regulator of an l-group G and (R, G)
a compact space. Then W and Z are (mutually inverse) dual isomorphisms between
the lattices O(R, G) and II(R, G) and

I®, G)c I(G)NIT'(G)

holds.
Proof. BeO(R, G) > A = R\B is clopen and hence compact = by 1.9 there
exists f € G which is completely regular with respect to (R, |J) such that R\A ="
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Z(f) and W(B)=WR\A) =f". It follows that ¥(Ow) < ITy. Since B is clopen and
hence compact, there exists g € G such that ¥(B) =g’ (1.9). It follows that ¥(0)
c II(G)nIT'(G). The Z-image of the polar f”, where f" e IT((R, G), is clopen in
(R, G), because the set Z(f") = Z(f) is open by 1.2. It follows that Z(I1y) < O«
Since Z and W are mutually inverse isomorphisms between the lattices I and R
([6] 2.18) and we have proved W(0y)c Iy and Z(I1y) < Oy, there follows the
required dual isomorphism between Oy and ITy.

1.12 Corollary. Let (R, | ) be a completely regular regulator of an l-group
G and the space (R, G) compact. Then ¥ and Z are (mutually inverse) dual
isomorphisms between the lattices II(G) and O(R, G), and there holds

II(R, G)=I1(G)=IT'(G).

From the complete regularity of (R, |J) it follows that IT(R, G) = I1(G) and
from 1.11 we have II(R, G) = IT'(G). Hence II(G)=IT'(G).

Problems. 3. Which G fulfil ({IT(R, G): (R, U) a standard regulator of
G)=0 or U{IIR, G): (R, 1Y) a standard regulator of G} = IT(G)nIT'(G)?

4. Which G fulfil IR, G) = I[1(G)~IT'(G)? (This is fulfilled, ¢.g., under the
assumptions of 1.12.)

2. Ambiguous polars

2.1 Definition. Let (R, ) be a regulator of an I-group G and K € ['(G). The
polar K is called ambiguous with respect to (R, ) if for an arbitrary x e R there
holds K< | Jx = K'& |Jx. The set of all ambiguous polars of G with respect to
(R, ) will be denoted by I'(R, G) (briefly I'y), [5] 2.4. Evidently K e 'R, G)
> K'eI'R, G).

2.2 Theorem. Let (R, |J) be a standard regulator of an I-group G. Then ¥ and
Z are (mutually inverse) dual isomorphisms between the lattices (R, G) and
'R, G). Hence I'(R, G) is a subalgebra of the Boolean algebra I'(G).

Proof. Since ¥ and Z are (mutually inverse) dual isomorphisms between the
lattices I'(G) and M(R, G) and 'R, G) < I'(G), OR, G) = MR, G), it
suffices to prove that

(*) a polar K e I'(G) is ambiguous with respect to (R, IJ) iff Z(K) is open in
&, G).

Pick x e R and g € G. Then by [6] 2.15, g € K' =R\Z(9) < Z(K), hence (*).

Recall that (R, ) is called a z-regulator if | Jx is a z-subgroup for every x e R,
(6] 2.23.

It is evident that | Jx is a z-subgroup iff Z(f") = Z(f) for every fe | Jx.
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2.2a Lemma. A regulator (R, ) is a z-regulator iff Z(f") = Z(f) for every
fe U{Ux: xeR}.

A standard regulator (R, ) is a z-regulator iff Z(f") = Z(f) foreveryfe G.

Indeed, sufficiency is clear. If (R, ) is a z-regulator, then Z(f")=Z(f) for
every fe J{Ux: x eR}. Moreover, if (R, |J) is standard and fe Ux for every
x € R, then on the one hand x € Z(f) for every x e R, i.e. Z(f) =0 and on the other
hand f'cU{(MNx:xeR} = {0}, hence f'=G and thus Z(f")=0, [6] 2.3.
Consequently again Z(f") = Z(f).

23 Corollary. 1. If fe G is completely regular with respect to (R, |J), then
f"eI’'R, G).

2. Pick fe G and suppose | Jx to be a z-subgroup for every x € Z(f). Then
there holds the converse implication in 1. Hence if (R, ) is a z-regulator, then
IR, G) o II(G)nI'R, G).

3. A regulator (R, ) is completely regular iff I[1(G)cI'(R, G) and Z(f")=
Z(f) for every fe U{Ux: x eR} (or every fe G).

4. A z-regulator (R, |)) is completely regular iff I1(G) < I'(R, G).

Proof. 1. Let fe G be completely regular with respect to (R, |J), x e R and
f"eUx. Then fe Ux and by 1.2 f'¢ | Jx. Hence f"e 'R, G).

2. Suppose f'eI'R, G). If fe Ux for some xeR, then f'c|Jx and so
f'¢ Ux. Hence f is completely regular with respect to (R, | J) by 1.2.

3. If R, ) is completely regular, then IT(G) = II(R, G) <« 'R, G) by 1
and Z(f") = Z(f) for every fe G by 1.4. Conversely, let the condition of 3 be
fulfilled, fe Y{Ux:xeR} and xeR. From Z(f")=Z(f) it follows that
feUx 2 f"eUx and from f"e 'R, G) it follows that f" < Ux > f'¢ Ux.
By 1.2, (R, UJ) is completely regular.

4. follows immediately from 3 and 2.2a.

Note. Since evidently K e I'(R, G)=K' e I'(R, G), then

n(G)sr@®, G)=Ir'G)cr@®, G).

2.4 Corollary. 1. Let (R, ) be a standard regulator of an I-group G and let
the space (R, G) be compact. Then 'R, G) = II(R, G) c II(G)nII'(G).

2. Let R, ) be a completely regular regulator of G and Iet the space (R, U)
be compact. Then 'R, G) = II((R, G) = II(G) = II'(G).

1. follows from 1.11 and 2.2. 2. The first equality follows from 1, the others
according to 1.12.

In the theorem 2.23 [6], conditions characterizing the extremal disconnectedness
of the space (R, G) are given. The above results on I'(R, G) and O(R, G) enable
us to describe some additional conditions.
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2.5 Theorem. Let (R, J) be a standard regulator of an [-gtoup G. The
following conditions are equivalent.
The space (R, G) is extremally disconnected.
OR, G)=T(R, G).
&R, G)=TI(G).
The lattice IN(R, G) is a sublattice of the lattice N(R, G).
The lattice I'(G) is a sublattice of the lattice Q(R, G).
YO(R, G)|=T(G).
Z[I'(G)]=0(R, G).
If a standard z-regulator (R, | J) of G fulfils one of the above conditions, then
R, U) is completely regular.
Proof. The equivalences 1=3=4 are proved in [6] 2.23, 1=2 is evident and
4 =5 follows from [6] 2.11 and 2.18 (¥ is a dual isomorphism which maps ¢, on
Qg and My on IN).
7> 2. Z(I' =My, by [6] 2.18.
2 > 6. ¥(IMNy) =T using [6] 2.18.
6 > 7. ¥ and Z are mutually inverse mappings by [6] 2.18. The last assertion
follows from 2.3(4) because by 3 'R, G) = I'(G)=2I1(G).

NowunkwLn=

2.6 Theorem. For the II'-regulator R of an I-group G the following condi-
tions are equivalent.

(i) The space (Rn-, G) is compact.

(i) II(G)=1II'(G).
(iii) W and Z are (mutually inverse) dual isomorphisms between the lattice I1(G)
and the lattice 0. (R, G) of all compact clopen sets of the space (Rn-, G)
(iv) ORn, G) = 0.(Rnu, G) the family of all compact clopen sets of the space
Ru, G).

Proof. i = iii follows from 1.12, because the IT'-regulator is completely
regular (1.5).

iii = ii. For every g € G the set A = Z(g") is clopen and compact in (R, G),
thus A' =Rn\A = Z(f) forsome f e G and ¥(A') =f" by 1.9. There holds W(A)
= YZ(g")=g" (|6] 2.18), hence g’ = [W(A)] = W(A')=f" by [6] 2.19. We
have proved IT'(G)c< I1(G). The equality IT'(G) = II(G) follows immediately.

ii > i follows from [6] 1.9.

i = iv. Closed sets of a compact space are compact.

iv > i is evident.

2.7 Corollary. Let (R, ) be a completely regular relator of an l-group G and
let the space (R, G) be compact. Then (Rn, G) is compact, where R, means the
II'-regulator of G.

Proof. By 2.4 ITI(G) =1II'(G). Then the assertion follows from 2.6.
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3. %é-regulator

In accordance with [1] 2.2 and [2] 1.1 we denote the lattice of all solid subgroups
of an [-group G by €(G). In this lattice there holds AC. = [1C,, VC. = [UC.]

for {C,} =6(G), where [U C,,] is the subgroup of the group G generated by the

set JC, ([1] 2.2.7; [2] 1.4).

3.1 Definition. A regulator (R, J) of G is called a 6-regulator if for every
C € ¢(G) there exists fc A = R such that C=[{Ux: x € A}, in other words if
€(G) = QER, G) ([6] 2.11).

3.2 Anexample of a standard 6-regulator. For 0+ a € G let H, be the set of all
values of a. Let R denote the union of all H,(0#ae G) and |J the identical
mapping of R. Then (R, J) is a standard €-regulator.

3.3 Definition. Denote by A(G) the set of all direct factors of G. A(G) is
a subalgebra of the Boolean algebra I'(G) and a sublattice of the lattice 6(G), [1]
3.5.12.

3.4 Theorem. Let (R, J) be a standard 6-regulator of G. Then A(G)=
'R, G) and ¥ and Z are (mutually inverse) dual isomorphisms of the lattice
A(G) and O(R, G).

Proof. The second assertion follows immediately from the first one by 2.2. Fix
KeA(G). If x2KuUK' for some x eR, then | Jx 2K + K' =G, a contradic-
tion. Thus A(G) = I'(R, G). The converse inclusion: If A e O(R, G), then
A'=R\A eOR, G). Since A, A'eN(R, G) and the operations in the lattice
NER, G) are n and U: AApA’ = ANA'=0, Ava A’ = AUA'=R, thus
Y(A)vg P(A')=G, Y(A)NYP(A') = W(A)An P(A')={0}. Since the sub-
groups W(A) and W(A') are disjoint and thus permutable and €(G) = Q(R, G),
we have G=W(A)ve P(A') = [P(A)UP(A")] = W(A)+ WP(A'). Therefore
W(A) is a direct factor of G.

3.5 Theorem. Let (R, ) be a standard 6-regulator of G. Then G is strongly
projectable iff one of the conditions of Theorem 2.5 is true.

Proof. By 3.4, A(G)=TI(G) (the strong projectability) holds iff the condition
2.5(6) is fulfilled.

Theorem 3.5 is a generalization of [4] 1I 5.8.

4. Similar and equivalent regulators

4.1 Definition. Let (R, [ J:) be a regulator of an I-group G; (i=1, 2). The
regulator (R,, LJ>) is said to be
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a) similar to the regulator (R, J,) or

b) equivalent to the regulator (R,, ;)
if there exists an [-isomorphism a: G, onto G, and a) a surjection or b) a bijection
B: R, onto R,, respectively, such that for every fe G, and every x e R,

(o) feUBx=afelU:x.
Equivalently
(8] alUipx=x forevery xefR,.

If we denote by Zy, the mapping Z corresponding to the regulator (R,, UJ,)
(i=1, 2), then (a) has clearly the following equivalent form

) B7(Zx,(f)) = Zn,(af) forevery feG;.

4.2 Lemma. In case a) f is a continuous, open and closed mapping of the
topological space (R,, G,) onto (R,, G,), in case b) a homeomorphism of these
spaces.

[4] IV 8.2.

Let H be a solid subgroup of an [-group G and G/H the (say left coset)
decomposition of G modulo H. Then G/H is a distributive lattice with respect to
the canonical ordering. Given f € G denote by f(H) the class of the decomposition
G/H containing f. If (R, |)) is a regulator of G and H = | J x, we write f(x) instead
of f(LUx). By the symbol f(x) =0 we replace the more extensive one f(x)=0(x).

4.3 Theorem. Let a regulator (R,,|J),) of an Il-group G, be similar to
aregulator (R, U1) of an l-group G,. Then for every x € R, the binary relation

R, ={(f(Bx), (af) (x)): fe Gi}

is an isomorphism of the canonically (linearly) ordered sets G,/| J.fx and G,/| J.x.
If R, U (i =1, 2) are realizers, then the relation R, is an l-isomorphism of the
I-groups G,/UJ:Bx and G,/|Ux (x eRy).
The proof coincides essentially with the proof of Theorem 8.3 [4] IV.

4.4 Theorem. 1. Every regulator is similar to its simplification.

2. Let (R,, ) be similar to (R,, U,). If (R, L)) is (a) standard, (b) reduced,
(c) completely regular, so is (%, ).

3. Equivalent regulators are standard, reduced or completely regular simul-
taneously.

Proof. 1. The defining mappings are a =ids and f = the projection of i}, onto
R,, where R, is the partition on R, corresponding to the mapping ..

2. For x eR, there holds U:Bx = o '|UJ.x# G, or emP(G) (in case (a) or (c),
respectively). Then the assertion concerning the complete regularity follows
from 1.4. If (R., J.) is reduced, then the mapping B is one-to-one, because
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Bx = By for some x, y e R, implies | J.x = aU,8x = alU:fy = U.y,hence x =y.
(R, U) is evidently reduced (and the similarity is an equivalence).
3. follows from 2.

4.5 Definition. Two regulators of G, (R, J:) and (R, J.) are said to be
equal, in symbols (R,, ;) = R,, ), if there exists a bijection y of R, onto R,
such that [ J;yx=J.x for every x eR..

The equality is then an equivalence of two regulators of the same /-group related
to the mappings o =ids and =Y.

4.6 Lemma. Let (R,,|J,) be a regulator of an l-group G+ {0}. The following

conditions are equivalent.

1. The regulator (R, ),) is similar to the IT'-regulator of G.

2. {U:x: xeR,} =mP(G).

3. The simplification of the regulator (R., |).) is equal to the I1'-regulator of G.

Proof. Denote by (R,, | ;) the IT’'-regulator of G and use the notation of 4.1.

1 = 2. Suppose the similarity of (R., U.) to (R,, U)). Since {Uy: yeR,}
= m®?(G) (4] M 7.2; [1] 3.4.15), {U.:xeR.} = {alUBx: xeR,}

= {alUiy: yeR,} = mP(G), because the l-automorphism a carries m?(G)
onto m?(G).

2 = 3. Let a be the identical mapping of G. Denote by (R., |J,) the simplifica-
tion of the regulator (R,, | J,) and for ¥ e R, denote by Bx the element y e R, for
which Uy =J.%. B is a bijection of R, onto R, and | J,Bx = J.x holds. Hence 3.

3 = 1. Use the notation of the definition 4.5, where (Ri, J,) is the IT' —
regulator of G and instead of (R., |J,) put the simplification (R., |.) of (R., U>).
Then the similarity is established via the identical [-automorphism o« of the I-group
G and the bijection B: R, onto R, defined as follows: = yn, where 7 is the
projection of R, onto R,. Then for x eR, we have Uifx = Uiynx = Uyx

= it = Uix = Uax.

4.7 Corollary. Let (R, J;) be a reduced regulator of*G. Then (R,, W) is
similar to the IT'-regulator Ry of G iff (R,, ) is equal to Ry

4.8 Lemma. The II'-regulator of G is similar to a regulator of G iff the former
is equal to the latter.

Proof. Let (R,, J,) be the IT'-regulator of G and (R,, |J:) a regulator of G.
Suppose the similarity and notation as in the definition 4.1. We shall show that |_J,
is one-to-one. Pick x;, y,eR, with x,#y, and U:x; = U.y:. Then there exist
X2, y2€Ra, x2#y, such that x,=Bx,, y,=py: and U.x, = alUfx. = alUwx,
= alUiy: = alUiBy: = U.y: a contradiction, because the IT’-regulator is
reduced and thus | J, is one-to-one. Evidently {LU.y: yeR:} = {U.x: xeR,)
= mP(G) (because a carries mP(G) onto itself). Define y (definition 4.5) as
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a mapping which maps x e R, onto the element y e R, fulfilling U,y ={J.x. This
mapping is a bijection and establishes the equality of both regulators.

From theorem 1.4 it follows that | Jx (x €R) is a minimal prime subgroup
whenever a regulator (R, | J) is completely regular and from [4] IIT 7.2 or [1]
3.4.15 that the set {{Jx: x eRn} is formed by all the minimal prime subgroups
of G. Thus the IT'-regulator has a special position among the completely regular
regulators. In what follows we shall study relationships of the completely regular
regulators to their distinguished representative Ry..

4.9 Lemma. Let (R, ) be a regulator of G# {0}, 8+ R, <R and U, =]+,
Then (R, \U,) is a regulator of G iff R, is a dense subset of the space (R, G).

Proof. “Only if”. It suffices to prove that n{{UJix:xeR,}={0). If feG
belongs to the above meet, then x € Zy (f) for every x ey, hence R, = Z,,(f)
= Zu(f)nR,, whence Zz(f) 2 Ri. Then R 2 Zux(f) = clw 6:Zx(f) 2 clw 6y =R
Hence Zx(f)=9R, f=0, [6] 2.3.

“If””. By supposition n {{J,x: x e R,} = {0}. Then for an arbitrary 0 # f € G there
exists x; € R, such that x, € Zx(f). For an arbitrary x € R there exists g € G such
that xé&Zw(g). Since Z(lflvlgl) = Z(f)nZ(g), there holds
x, x, €M\ Za(|f| vIg).

4.10 Theorem. Let (R,, U,) be the IT'-regulator of an I-group G and (R, )
a regulator of G. Then (R, ) is completely regular (completely regular and
reduced) iff a dense subset R; of the space (R,, G) exists such that the regulator
(R,, Us) is similar (equivalent) to the regulator (R, U |x,)-

Proof. Let the mapping Z, concerning the regulator (R, J.) (i=1,2), be
denoted by the symbol Z; and let |, =, |s.. Let (R, U.) be similar to (R, | s).
Let o be an l-automorphism of G and $::R, onto R, a mapping fulfilling
alU:Bx =,x for every xeR,. Since RN, and for every xeR,Jsx=
Uix emP(G), there also holds | J.x e mP(G) for every x eR,. Thus by 1.4 the
regulator (R,, |J.) is completely regular.

Conversely, let (R,, | ,) be completely regular. By 1.4 {| Jix: x eR,} = mP(G)
o {U:y: y eR,}. For an arbitrary y e R, there exists exactly one x € R, such that
Wy =UJix. We define a mapping B:R, into R, by the rule By =x. Denote
R = BR.(<= R,). We shall prove that R, is a dense set of the space (R, G), i.e.
cln,. oy =Ry clm,, 6)NR; is the meet of all Z,(f) (f € G) which contain R;. Thus let
Z,(f)2R; hold for some fe G. Then fe n {U.y: y eR,} = {0}, whence f =0 and
cler, oy, =N,. The similarity of (R, |J,) to the regulator (R;, | J;) is given by
means of the mappings a =idg and B defined above. In fact, for an arbitrary y e R,
alUBy = UsBy = UiBy = U.y.

Proof of the second assertion of the theorem. If (R,, ),) is equivalent to
(M3, Us), then by 4.4 the regulator (R, J.) is reduced because the regulator
(M5, Us) is reduced. Conversely, if the regulator (R, .) is completely regular and
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reduced, the mapping B defined in the previous paragraph is one-to-one, because
the mapping |, is one-to-one (indeed, if y,, y, € Rz, By, = By,, then Uy, = U.By:
= UiBy. = U.y», thus y,=y,).

4.11 Corollary. Every completely regular regulator of G is similar to a reduced
completely regular regulator of G.

Proof. Using the notation of the preceding theorem the completely regular
regulator (R,, ) is similar to the reduced completely regular regulator (Rs, )
(4.4(1)). In fact, (Rs, s) is reduced because the IT’-regulator is reduced and is
completely regular by 1.4.

4.12 Theorem. Let (R, |J) be a completely regular regulator of G. If (R, G) is
compact, then (R, J) is similar to the IT'-regulator. If, moreover, (R, ) is
reduced, then it is equal to the IT'-regulator.

Proof. Let (R, U1) be the IT’'-regulator of G. By 1.12, IT=IT' and by 2.6 the
space (R, G) is compact. By 4.10, there exists a dense subset R, of the space
(R., G) such that the regulator (R,|J) is similar (in the other case equivalent) to
the regulator (R, Us), where s = Ui |, By 4.2 the space (R,, G) is a continuous
image of a compact space, hence (Rs, G) is a compact subspace of a Hausdorff
space (R,, G). Then R, is a closed subset of (R,, G). Since R, is dense, R, =NR,.
Hence both assertions are valid.

REFERENCES

[1] BIGARD, A., KEIMEL, K., WOLFENSTEIN, S. : Groupes et Anneaux Réticulés. Berlin 1977.

[2] CONRAD, F.: Lattice ordered groups. The Tulane University. Lecture Notes 1970.

[3] KELLEY, J. L.: General topology. Princeton 1957.

[4] SIK, F.: Struktur und Realisierungen von Verbandsgruppen. I—V. 1. Memorias Fac. Cie. Univ.
Habana, Vol. 1., No. 3, ser. mat., fasc. 2, 3, 1964, 1—11; II. ibidem 11—29; III. ibidem No. 4, fasc.
4,5,1966, 1—-20; IV. ibidem No. 7, 1968, 19—44; V. Math. Nachr. 33, 1967, 221—229 (I and II
Spanish, III—V German).

[5] SIK, F.: Closed and open sets in topologies induced by lattice ordered vector groups. Czechosl.
Math. J. 23(98), 1973, 139—150.

[6] SIK, F.: Topology on regulators of lattice ordered groups I. Math. Slovaca 32, 1982, 417—428.

Received November 23, 1979

Katedra algebra a geometrie
Prirodovédecké fakulty UJIEP
Janiackovo ndm. 2a
662 95 Brno

47



TOMOJOIMU HA PEIYJIATOPAX CTPYKTYPHO YIOPAAOYEHHBIX I'PYTIII
II. BITIOJHE PEIYJIAPHBIE PEIYJIATOPBI

®panTumek Muk

Pesome

B pa6oTe npofoskaeTcs M3y4eHUe OTHOIEHUI MeXy CBOMCTBAMH [-rpynmnbl G U HHIYLHMPOBAHHbIM
Ha R TononoruueckuM npocrpanctsoM (R, G), kae (R, | J) — perynstop B G (cM. vacTs 1.). ['naBHoE
BHUMaHHE MOCBSIUIEHO MOHSTUIO BMONHE peryispHoro peryistopa (R, ), kotopeiit onpepeneu
cnenyrompM obpasoM: feG, xeR, feUx D cymectsyer ge G Tak, uto g e\ Jx, f8g (rme f8g
0603HAYAET NUIBLIOHKTUBHOCThL 3J1eMEHTOB f u g, To ecthb |f|A|g|=0). DTu perynsropsl xapak-
TEPH30BAHBI KaK PETYIATOPBI, 00pa30BaHHbIE MUHMMAJILHBIMU IPOCTHIMA MOAIpymmaMu B G u |} =idy
(1.2 1 14). Orobpaxenus Z u ¥ sBnsiorcs (B3aMMHO OOPAaTHBIMM) NyaJlbHbIMH H30MOphUA3MaMH
Mexny crpyktypoit O(R, G) oTKpbIThIX ¥ 3aMKHYThIX MHOXeCTB B (R, G) u ctpyktypoit I'(R, G) Bcex
nonsp K B G, 061ajaroliux cIeyroImuM CBOHCTBOM : eciit x € R, To | x He conepXHUT OHOBPEMEHHO
K u K’ (2.2). Ecwa (R, ) — IT'-perynsTop, TO KOMIAKTHOCTb npocTpaHcTsa (R, G) 3KBUBaNeHTHa
TOMY, 4T0 Z ¥ ¥ SBASIOTCS AyaJbHbIMH M30MOpdU3MaMu MeXny CTPYKTypoit IT(G) Beex rilaBHbIX
nonsip B G u crpyktypoit 0, (R, G) Bcex KOMNAKTHBIX OTKPBIThIX H 3aMKHYThIX MHOXECTB IPOCTPAHCT-
Ba (R, G); npyrue sxsusaneHTHole yoiosus: O(R, G) = O.(R, G); I[I(G) =IT'(G) (2.6). B yactu 1.
(2.22) npuBeneHHas cepusl YCJIOBHMH, 3KBHBAJIEHTHBIX 3KCTPEMATBbHON HECBA3HOCTH MPOCTPAHCTBA
(R, G), nomonusercs 3mec Hamp. ciepyrouuMu ycaosusmu: O(R, G) = MR, G); Y[O(R, G)]
= I'(G) (2.5). Eciu (R, U) — cranpapraenit 6-perynsrop (=scsikas Bbmykias [-noarpynna B G
ABNSETC mepeceyeHueM HekoTopoit cucteMbl | Jx), Torma I'(R, G) — MHOXECTBO BceX NpSMbIX
¢akTopoB B G (3.4). Onpepenexs! paBeHCTBO, TOKOOUE U IKBUBAJIEHTHOCTh PETYJIATOPOB H HCCNIENYET-
csl BONPOC, KAKOE U3 3THX OTHOLUCHHH COXPAHAET MONHYIO PETYISPHOCTh WIM PERYUMPOBAHHOCTD.
OcoOEHHO M3YYE€HO OTHOLUEHHE PEryJsTOPOB K CaMOMY COAEPXKATEJIbHOMY PENyLMPOBAHHOMY
U BIIOJIHE PETYNSAPHOMY peryasTtopy, K IT'-perynsropy (a63. 4).
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