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ON THE HSU CONDITION
IN A REPLICATED REGRESSION MODEL

LUBOMIR KUBACEK
Introduction

In a regression model Y = Xp + ¢ where Y is an n-dimensional random
vector, X is a given n x k matrix with the rank R(X) = k < n, pe #* (k-dimen-
sional Euclidean space) is an unknown parameter, the error vector ¢is supposed
to have the mean value E(g) = 0 and the covariance matrix Var(g) = o”l,
where 1 is the n x n identical matrix and o€ (0, ).

If £ is normally distributed, then Y'MY/(n — k), where M = | — X(X’X)~'X’,
is an estimator of the parameter o’ with the following properties. Its realization
does not depend on the parameter fe Z* (i.e. it is invariant with respect to f)
and its variance, depending on ¢?, is minimal in the class of all the quadratic
unbiased and invariant estimators at each o?€ (0, o0) (i.e. it is the uniformly
— with respect to o’ — minimum variance quadratic unbiased and invariant
— with respect to f— estimator of ¢?). The notation UMVQUIE is used for
an estimator with such properties.

If £ is not normally distributed, then two cases are investigated: a) the
components g, ..., &, are stochastically independent, b) they are i.i.d. (indepen-
dent identically distributed). Neither in the case a), nor in the case b) the
mentioned estimator is in general the UMVQUIE. It is caused by the fact that
the variance of an quadratic estimator depends not only on o?, but also on the
parameters ¥, = [E(¢)/c*] — 3, i =1, ..., n. Thus only the y,-locally best qua-
dratic invariant unbiased estimator can be constructed (i.e. its variance is
minimal in the class of all the quadratic invariant unbiased estimators under
the condition that the vector y belonging to the error vector € is equal to ¥, =
= (Yo1» ---» Yon); for other values of the vector (7, ..., 7,)’ the considered
estimator need not have the minimal variance).

P. L. Hsu (1938) [2] gave the necessary and sufficient condition for the
estimator Y'MY/(n — k) to be the y,-locally best quadratic invariant unbiased
estimator (case a) and the UMVQUIE (case b) in the class of all probability
distributions with finite values ¥ (i.e. uniformly with respect to o2 and 7).
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H. Drygas and G. Hupet (1977) [1] gave a new proof of the Hsu statement
and J. Kleffe (1979) [3] analysed this condition within the multivariate reg-
ression.

The aim of the paper is to comment the Hsu condition within a replicated
regression model Y= (i@ X)p+ ¢, & = (¢}, ..., &), Var(g) =1, ® o’l,,, i =
=(1,, ..., 1), ¥, ..., ¥,areiid. vectors. Components ¢; ;, j = I, ..., n, of the
vector &, i = 1, ..., m, are independent (case a)) or they are i.i.d. (case b)).

1. Definitions and auxiliary statements

The following notations are used:

Y =El(£) @ (g¢)), i=1, ..., m (the symbol ® denotes the tensor
product),

Y, = E(gpgy8¢),i=1,....mk,I=1, ...,n,

¥ = E[(e£') ® (££')], ‘

Tij = E[({;‘ig;) ® (8_8’)]v Lj=1,..,m,

Vo ,= E(gug88), i, j=1,....,m; k,[=1, ..., n,

diag(A) = (ay, ay, --., a,)’, A is an nxn matrix with entries {A},,; = a
i,j=1, ...,n-

iy
a,, 0 .., 0

0, 0, .. a,

Lemma 1.1. Let ¢, ..., g, be n-dimensional i.i.d. random vectors with the zero
mean value and the covariance matrix Var(g) =X, i= 1, ..., m. Then

?ll’ AR \flm \Pil.jla ‘l’il.jZ’ RERE] ‘Pilvjn
b 2 R ,
Tml ’ cey Tmm ‘l’in_jl ’ \Pin,jZ’ ceey ‘Pm, Jjn

_ {Gk/(l ® L)+ e"e™ ® (¥, — o,E), i =,
ik, jl — g . . .
e"e™ ® 6,0, + "6 ® 6,0, , i #],

Lj=1,...,m;k,l=1,.., n Here o, = {E}, o, is the kth column of the matrix
X, 0, is the lth row of the matrix £ and €™ = (0,, ..., 0,_,, 1,,0,,,, ..., 0,),
i=1, .., mIfLX=d’l then

{o“l + (20" + o) ee!, k =,
K= . .
o'(ele"” + e &), k # 1,

k,l=1, ..., n Here y,=[E(g})/c*] =3, k=1,..,ni=1, .. m.
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Proof. It follows from the assumption on the vectors ¢, ..., &, and from
the definition of the matrices ¥, ¥, ¥, ;, and '¥,,.

Lemma 1.2 (Kleffe — Volaufova). Let E(Y) = (i® X)ﬂ Var(Y) =1 ® X be
the replication of the model E(Y) = Xf, Var(Y) =X = Z 3.V;; the symmetric

matrices V,, ..., V, are given, the vector 8 = (9, ..., 3,)" is unknown If a function
v(9) = F 3 (Fe R’ is a given vector), $e§ (a parametrtc space with an unempty
interior) = R, is unbiasedly estimated, then for every unbiased estimator Y'TY
(T is a symmetric (mn) x (mn) matrix) of the function y(-) there exists an estimator
YM,®@T, +P,®T,)Y (=(m—1) Tr(ST,) + mY'T,Y) with the property
V{Be R}V {IeB} Var(Y'TY|B, 3) > Var{[(m - 1) Tr(ST,) + m)"’T VIIﬂ 9.

Here P,,,—(l/m)ii’ i=, .., 1,), (1/m)z

= [l/tm = 1)] Z (Y= V(Y-

Proof. See [4] or Theorem 5.6.11 in [5].

Lemma 1.3 (Hsu). Let E(Y) = XB, Var(Y) = d’l, Y, ..., Y, be independent
components of the vector Y and let the rank of the nx k matrix X be R(X) =
=k <n Let M =1—XXX)"'X,{M}; =my,i,j=1, ..., n and y the diagonal
matrix with the diagonal (y,, ..., 7,).

a) The estimator YMY/Tr(M) is the y-LMVQUIE (locally minimum va-
riance quadratic invariant estimator) of the parameter o’ in the class of all
probability distributions if and only if

(M x M) diag (M) = {[diag (M)]’ y diag(M)/Tr (M)} diag (M)

(here * denotes the Hadamard multiplication of matrices; {A x B}; = {A};{B};,

Lj=1,...,n).
b) Ife, ..., &, arei.i.d. random variables, then Y'M Y/Tr (M) is the UMVQUIE
of the parameter c* in the class of all probability distributions iff

(M x M) diag (M) = {[diag (M)]’ diag (M)/Tr (M)} diag (M).
Proof. See [2].

1]’

2. The Hsu condition and estimators in a replicated
regression model

In this section the symbol y denotes the diagonal matrix with the diagonal
(y], AR ] y}l)’ 7’\ = [E(glt)/o-4] - 3’ k = 1’ ety n; i= l’ A m, _8/ = (81’ b 8”")’
&, ..., &, are i.i.d. vectors, ¢, ..., &, are stochastically independent random
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variables, i = 1, ..., m, Var(g) = o’l,, i =1, ..., m, and T,, T, are symmetric
n x n matrices.
Theorem 2.1. In a replicated model Y = (i® X) p+ &, Var(g) = 1, ® o’l,:
a) If y# yl, then YMY/Tr(M) =[(m — 1) Tr(S) + mY'MY]/[n — k +
+ n(m — 1)]is the y-LMVQUIE of the parameter o* in the class of all probability
distributions iff

Yim — D1+ (M xM)]i = di,

where d = [(m — 1) i + diag (M)] y[(m — 1) i 4+ diag(M)]/[n — k + n(m — 1)).
b) Ify = y\, then Y'MY/Tr (M) is the UMVQUIE of the parameter o’ in the
class of all probability distributions iff

(M *M)i=[(n— k)n]i.
Here M =1,®1, — (i@ X)[(i'® X)(i®X)] ' (i’ ®X).

Proof. With respect to Lemma 1.3 the assertion a) is valid if and only if
(+) (M= M) (1 ® v) diag(M) = d diag (M),

where d = [diag(M)]' (I ® y) diag (M)/Tr (M).
AAsM=M,®!+P,®M,

diag (M) = i® (1/m)[(m — 1) i + diag (M)],

(M+M) =M, ® (1/m)[2Diag(M) + (m — 2)1] +
+ P, ® (I/m)[(m — 1)1 + M x M],

M,i=0, P,i=i, Tr(M)=n—k+nm-—1)
and
(m—1)i+diagM) =[(m— DI+ MxM]i (=M =M),

the Lh.s. of (%) can be rewritten as
i (I/mH){[(m— 11+ MxM]ly[(m — DI+ M«M]i
and the r.h.s. of (%) as

i® (1/m?){[(m — 1) i+ diag (M)] y[(m — 1) i + diag (M))/
/In —k + nim— D]} [(m—- 11+ M=+M]i.

Thus (*) is equivalent to

[(m— 1)1+ M«M]y[(m — )| + M+M]i=
=d[(m— 1)l + M+M]i<qy[[m— )l + M«M]i=di.

b) If in the last relationship y = 71, then
(m— l)i+(M*M)i={[(m— 1)’n 4 2(m — 1)(n — k) +

108



+ Z”: m,.f]/[n —k + n(m — 1)]} i=diag(M) =(Mx+M)i=

- {[(m NI m,.g]/[n —k+ n(m — 1)]} i
i=1
As
Tr(M) = i’diag(M) =n—k =n|:(m — D —k)+

+ 3 mi | tn = k4 non = 1)

we obtain the condition (*) in the following equivalent form
(M«M)i=[(n—k)n]i.
Remark. In the case a) the condition (x) changes with respect to m: in
the case b) the condition (x) is invariant with respect to m.
Lemma 2.1. The variance of the random variable £(M,,® T, + P, ® T) £ is
Var[¢(M,,® T, + P, ® T)) &] = 20*[(m — 1) Tr(T}) + Tr(T})] +
+ o*{(m — 1)[diag (T))] (y/m) diag(T,) + 2(m — 1)[diag(T,)] -
-(y/m) diag (T,) + [diag (T,)]' (y/m) diag (T,).

Proof. In Lemma 1.1 let £ = &?l. Then

lm ® OA'n + ei('n)ei(my ® (20’4 + 0-471() elin)elf'")" l =J’ k = 1’
VYiu=<e"e" ®d'ee” +e"e™), i=j k#I1
ei('")ej(m)' ® 0-4elsn)el(n)' + ej(m)ei(m)' ® O.4el(n)elin)', i 7&],
k,I=1,...,n;i,j=1, ..., m For an arbitrary symmetric (mn) x (mn) matrix A
there holds
Var (£Ag) = Tr[(A® A) Y] — o'[Tr (A)
IfA=M,Q®T, + P, ®T,, then with respect to the assumption £ = ¢’ and
with respect to Lemma 1.1 the assertion follows from the expression for
Var (¢'Ag).
Theorem 2.2. In a replicated regression model Y = (i® X) B+ ¢ Var(Y) =
= 1 ® o with the matrix y the y-LMVQUIE of the parameter o? is
F=YM,®T, +P,®T)Y=(m—1)Tr(ST) + mVT,Y,
where
diag (T,) = (1/c) {1 + (1/2) (y/m) [(m — D1 + M+ M]} 71},
¢ =[(m— 1) i+ diag(M))' {l + (1/2) (y/m)[(m — 1)1 + M« M]}"',
T, = diag(T,), T,=MT M.
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Proof. With respect to Lemma 1.2 it is sufficient to consider an estimator
of the form Y'(M,,® T, + P,,® T,) Y, where T,X = 0 (invariance) and

TT(M, T, +P,®T,)=(m—1) Tr(T) + Tr(T) =1

(unbiasedness). In what follows the Lagrange procedure with indefinite multi-
pliers is used; with respect to Lemma 2.1 the auxiliary Lagrange function is

O(T,, T,)) =2(m — 1) Tr(T}) + Tr(T3) + (m — 1)*[diag(T,)] (y/m) diag(T,) +
+ 2(m — 1) [diag (T))] (y/m) diag(T,) + [diag (T,)]’ (y/m) diag(T,) —
— Al(m — 1) Tr(T)) + Tr(T,) — 1] — Tr (xT,X),

where A is a Lagrange multiplier » is a matrix of Lagrange multipliers.
ad)(Tl, Tz)/aT‘ = 0 =

T, — (1/2) Diag(T,) + (1/4) (m — 1)(y/m) Diag(T,) +
+ (1/4)(v/m) Diag(T,) = (4/8)1,
dD(T,, T,)/0T,=0=

T, — (1/2) Diag(T,) + (1/4) (m — 1) (y/m) Diag(T,) + )
+ (1/4) (y/m) Diag(T,) — (1/8)[Xx% + »’X’ — Diag(X=)] = 0.

Diag(2) + (2) (the operation Diag is applied to the equation (2) and added
to (2)) =

)

T, + (1/2)(m — 1) (y/m) Diag(T,) + (1/2) (y/m) Diag(T,) — 2)
— (1/8) (Xx + »'X") = (A/4) 1.

(1) implies T, = Diag(T,), thus

T+ (1/2)(m = 1) (y/m) T, + (1/2) (y/m) Diag(T,) = (4/4)1. (1)
Comparing M(1’)M and M(2')M and taking into account the relations
MT,M =T, («<=T,X=0) and MX =0 we get T, = MT, M, i.e. diag(T,) =
= (M = M) diag(T)).

diag (1) =
{14+ (172 (y/m)[(m — D1 + M+« M]} diag (T)) = (4/4) .
As
[(m — 1) Tr(T) + Tr(T,) =] 1 = i'[(m — 1) diag(T)) + diag(T,)]
and (M x M) i = diag(M), we have 1/4 = 1/c.
Corollary. As MY =Y — X = ¥, where f§ = (X' X)"'X"Y, the estimator &*
from Theorem 2.2 can be expressed in the form

- -

6% = (1/c) i'{l + (1/2)[(m — D1 + M« M]y/m}~" diagl(m — 1)S + mwv’].
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Ify=0, thenc=n—k+n(m-—1)and

g == s 4m ¥ | flen= 10+ 0=k = Yy,

Lemma 2.2. Let V, U be m x m and n x n matrices, respectively, satisfying the
condition VN @ U)(i® X) = 0. Then

[ =]

1=

Var(Y'(V® U)Y) = 26* Tr(V? Tr(U?) + o* i 2y vU;.
i=1 j=1

Proof. It is an analogy of the proof of Lemma 2.1.

Theorem 2.3. Consider a replicated regression model Y = (i® X)p+ lg:,
Var (Y) = | ® &?l. The following assertions are valid:
1. If

U, = (1[{(m = 1) Tr[( + (1/2) (n — D) y/m)~"TH 1 + (1/2) (m — 1) y/m]~',
then

6 =Y'M,®U)Y=(m-1)Tr(SU) =
= {1/_2l [2 + (y;/m) (m — 1)]—'} -i. S,.,./[2 + (;/m) (m — 1)]

is the y-LMVQUIE in the class of estimators{Y'(M,, @ T)Y:T,=T,(m —1)-
- Tr(T,) = 1} and for m —» ©

Var (6217) = [1/(m — 1)) a‘/ 3. 12+ (fm) (m = DI 0.

2. If
diag (U,) = (1/{i"[l + (1/2) (M * M)y/m]™" diag (M)})-
. [+ (1/2) (y/m) (M + M)]~' diag (M)
an
U, = (/"D + (1/2) (M« M) y/m]~" diag (M)})-
M — (1/2) M(y/m) Diag(U,) M,
then 62 =

Y'(P,®U,)Y=mY'U,Yis the y-LMVQUIE in the class of estima-
tors {Y'(P,@T)Y: T,=T5, Tr(T,)) =1, T,X =0} and U, - [1/(n — k)] M,

Var (631y) = 26* Tr(U3) + o* ¥ (1,/m) U3 ;- 20*/(n — k),
for m - o0. =

3. 61 =Y'MYTr(M) = [(m ~1) Z S, + m|7’|7]/[(m —Dn+n—k=
= Var(6317) = {26*/[(m — V)n + n — kJ} + {0*/[(m — 1)n + n — kP}-
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.{(m — 1y i (y;/m) +2(m — 1) i (y,/m)m; + i (yi/m)ml.f} -0,
i=1 '

i=1 i=1

for m— 0.

4. 62=Y' (M, ® {1/[n(m— DY = (1/n) Z S, =

i=1
= Var (37 |Y) = 20*/[n(m — D]} + (c*/n?) i yi/m— 0,
i=1

for m — .
5. &= YR, O/~ IMY = mPMTj(n — k)=
= Var (6311) = [20%(n — )] + [0%/(n — K 3 m2y,m — 20%(n — k),

i=1

for m - 0.
Proof. With respect to Lemma 2.2

I Var[Y’ (M, ® U) Y|7] = 20%(m — 1) Tr(U}) + o*(m — 1) Y U2 ,7,/m
=y
and

2. Var[Y'(P, ® U,) Y|7] = 20* Tr(U) + o* ‘Zl Uz yilm.
J=

In the first case the quantity Var[Y’'(M,, ® U,) Y] has to be minimized by a
proper choice of the symmetric matrix U, satisfying the condition (m — 1)-
-Tr(U,) = 1 (unbiasedness); the invariance is guaranteed by the form of the
estimator considered because of (M,,® U,)(i® X) = 0. In the second case
the matrix U, has to satisfy the conditions Tr(U,) = 1 (unbiasedness) and
U,X = 0 (invariance). Further we continue similarly as in the proof of Theo-
rem 2.2. The assertions 3, 4 and 5 follows from Lemma 2.2.

Corollary. If Yy, ..., Y, are i.i.d. random variables with y, = E{[Y, — E(Y))]'}/
JE{LY, — E(RFY =3, =1, ..., m, then E{[Y, — E(DI}(E{(Y, — E(D)})’ -

— 3 = y,/m, where Y, = (1/m) Z Y,. Thus it can be expected that the estimators
j=1

63, 6% and 6 used in the case of normality of the vector Y deviate unsubstantially
for sufficiently large m from the estimators 6> (Theorem 2.2), 6} and 62. Therefore
the estimator &* can be replaced by the estimator 63.

In consequence of the statements 4 and 5 of Theorem 2.3 the contribution of the
term mv’'v/[(n — k) + n(m — 1)] to the quality of the estimator 33 is negligible,
thus for a sufficiently large m the estimator G} can be replaced by the estimator
G2 It is a good approximation of the UMVQUIE regardless of the Hsu condition
being fulfilled or not.

If v = y\, then obviously 6% = 6% and
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Var (62) = {26%/[n(m — )]} + o*y/(nm).

REFERENCES

[1] DRYGAS, H—HUPET, G.: New proof of Hsu’s theorem in regression analysis — a coordinate
free approach. Math. Operationforsch. Statist. Ser. Statist. 8, 1977, 333—335.

[2] HSU, P. L.: On the best unbiased estimate of variance. Statist. Res. Mem. 2, 1938, 61—104.

[3] KLEFFE, J.: On Hsu’s theorem in multivariate regression. J. Multivariate Anal. 9, 1979,
442—451.

[4] KLEFFE, J.—VOLAUFOVA, J.: Optimality of the sample variance-covariance matrix in
repeated measurement designs. Sankhya 47, Series A, 1985, 90—99.

[5] KUBACEK, L.: Foundations of Estimation Theory. Elsevier, Amsterdam 1988.

Reccived October 10, 1987 v Matematicky tstav SAV
Obrancov mieru 49
814 73 Bratislava

OB YCJIOBUU XCV B NIOBTOPEHHO PETPECCMOHHON MOJEJIN
Lubomir Kubacek
Pe3ome
Ycnosue Xcy, paccMaTpHBaHHOE B m-pa3a MOBTOPEHHOM OCHOBHOW PErpecCHOHHON MOJeIH,
BbIPaXXEHO IKBHBAJICHTHO B TEPMHHAX OCHOBHOM MoJesin. B obieM ciiyyae 3TO yCJIOBHE 3aBUCHT
OT YMC/1a MOBTOPEHHI m. [lasee noka3aHo, YTO €M yCJIoBHE XCy HE BBINOJIHEHO, TO IS JOCTATOY-

HO Oouibliiero »m oObIKHOBEHHAs OLEHKA BapHalMi HE3HAYHUTECIIbBHO OTKJIOHACTCA OT Hannqueﬁ
OUCHKH.
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