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MALCEV TYPE CONDITIONS FOR TWO VARIETIES

HILDA DRASKOVICOVA

Preliminaries. W. Taylor [5] suggests to consider the properties of n-tuples of
varieties which can be characterized via the existence of polynomial symbols
(terms). An example of such a situation.is the independence of varieties. The
varieties Ko, Ki, ..., K,_, (of the same type) of algebras are independent (cf. [2]) if
there is a polynomial symbol p such that for each i € {0,1, ..., n — 1} the identity
p(Xo, ..., X._1) =x; holds in K;. In the present note characterizations of this kind of
further properties are given for the case n=2 (see the theorems below). To
simplify notation we use the same symbol for the polynomial symbol and for its
induced polynomials. Let K,, K, be varieties of the same type. The smallest variety
K containing K, and K, will be denoted by K, v K. €() will denote the lattice of
all congruence relations on the algebra 2= (A ; F). Given elements a, b of an
algebra U, O(a, b) will denote the smallest congruence relation of U containing
(a, b).If A e K,v K, and a, b are elements of A, O'(a, b) (i =0,1) will denote the
smallest congruence relation @ of ¥ such that (a, b)e @ and A/DPeK,.

Statement of the results

Theorem 1. Let K, K, be varieties of the same type. The following conditions
are equivalent.
(1) For each Ne K,vK, and each B°, B'e €(N) such that A/B' e K, (i=0,1),
BB =B | .
" (2) - There is a ternary polynomial symbol p such that
(i) p(x, x, y)=y is an identity of K,,
(ii) p(x,y, ¥)=x is an identity of K,.
Remark 1. Let us observe that in the case K, = K, we get the known Malcev’s
result [3].

Theorem 2. Let K, K, be varieties of the same type. The following corditions
are equivalent.
(3) For each e K,v K, and each a, °, B' € €(N) such that A/B'eK, (i=0,1),
B°8'=B'6° and an(B°B")=(arB’) (arB’).
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(4) There is a ternary polynomial symbol q such that
(iii) q(x,x,y)=y=4q(y, x,y) hold in Ko,
(iv) q(x,y,y)=x=q(x, y, x) hold in K,.
Remark 2. In case K,=K, Theorem 2 yields the result of A.F. Pixley [4,

Lemma 2.3].

Theorem 3. Let K,,, K, be varieties of the same type. The following conditions
are equivalent.
(5) The variety K,A K, consists of one-element algebras only.
(6) There exist binary polynomial symbols pk, k=0, 1, ..., n such that
(v) po(x,y)=x and p,(x,y)=y,
(vi) pu(x, y)=pe.i(x, y) holds in K, for k even,
(vii) pu(x, y)=pi..(x, y) holds in K, for k odd.
As an application of Theorem 1 and Theorem 3 we get a simple proof of the
following theorem.

Theorem W [1, Theorem 1]. Let K, K, be varieties of the same type. K,, K, are
independent if and only if the conditions (1) and (5) hold.

Proofs of the theorems

The proofs of theorems 1 and 2 are similar to the known proofs of the special
case of the theorems K,= K.

Proof of Theorem 1. Let the condition (2) be satisfied. Let
A=(A; F)e K,vK,, B’ € €(A) be such that A/B’ € K, (i =0,1). It suffices to show
that B°B'=B'B°. Let a, be A, af°B'b. Then there exists c € A such that a°c and
¢B'b. 1t follows that af’ p(a, c, b), p(a, c, b)B°b, hence af'f°b and (1) holds.
Conversely, let the condition (1) be satisfied. Denote by & the free algebra over
K,v K, with three generators x, y, z. Take O°(x, y), ©'(y, z) e €(¥). Since
(x, 2) € O°(x, y)O'(y, 2)=O'(y, 2)6°(x, y) there exists p(x, y, z) in § such that
x0'(y, 2)p(x, y, z) and p(x, y, 2)O°(x, y)z. Since F/O°(x, y) (F/O'(y, z)) is the
free algebra over K,(K,) with two generators, we get the validity of (i) and (ii),
q.e.d.

Proof of Theorem 2. Let the condition (3) be satisfied. Let § be the free
algebra over K,v K, with three generators x, y, z. Take O(x, z), ©°(x, y),
O'(y, 2)e €(g). Since (z,x)eO(x,2z) A (B°(x, y)O'(¥,2)) = (O(x,2) A
O°(x, ¥))(O(x, z) A '(y, 2)), there exists q(x, y, z) in & such that z(O (x, z) A
O°(x, y)g(x, y, 2) and q(x, y,- 2)(O(x, z)AO'(y, z))x. Since
F/0°(x, y)(F/O'(y, 7)) is the free algebra over K, (over K;) with two generators,
we get that the identity q(x, x, y)=y (q(x,y, y) =x) holds in K, (in K,). Since
&/ O(x, z) is the free algebra over K,v K, with two generators, we get that the
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identity x = g(x, y, x) holds in K,,v K,, hence it holds in K, and in K too, i.e. (4) is
satisfied. Conversely, let the condition (4) be satisfied. Let % € KoV K|, take a, 8°,
B' e €(N) such that A/B e K;, i=0,1. The condition (4) implies (2), hence using
Theorem 1 we get 8°8'=B'B". Let a, ce ¥ and (a, c) € aA(B°B"). Then aac and
there exists b€ such that aB°b, bB'c. Using (iv) we get aB'q(a,b,c),
a=gq(a, b,a)aq(a,b,c), hence' a(anB')q(a,b,c). Similarly we get
q(a,b,c)(anf’)c. Hence an(B’BY=(anB')(anB’), which implies
an(B’B)=(arB’)(anrB).

Proof of Theorem 3. Let the condition (5) be satisfied. Let § be the free
algebra over K,v K, with two generators x, y and @' the smallest congruence
relations on & such that /@' €K, i=0,1. §/0'v @'e K,AK,, hence O°v @' is
the greatest congruence relation of ¥, i.e. x(@"v @')y holds for arbitrary elements
x, y of . It follows that there exists a natural number n and po(x,¥), pi(X, ¥), ...,
P.(x, y) in & satisfying x = po(x, ), y = p.(x, ¥), pu(x, y) @° pi.i(x, y) for k even
and pi(x, y) @' pi.i(x,y) for k odd. Since §/©@' is the free algebra over K,
(i =0,1) with two generators, the identity p,(x, y) = p...(x, y) holds in K, for k
even and p,(x, y)=p«..(x, y) holds in K, for k& odd, i.e. the condition (6) is
satisfied. The converse assertion is obvious.

Proof of Theorem W. Let the conditions (1) and (5) be satisfied. With respect -
to Theorem 1, there exists a ternary polynomial symbol p satisfying (i) and (ii).
According to Theorem 3 there exist binary polynomial symbols p,, ..., p. satisfying
the conditions (v), (vi), (vii). We shall show by induction on n that X, K, are
independent, i.e. there exists a binary polynomial symbol ¢ such that ¢(x, y)=x
holds in K, and #(x, y) =y holds in K. The case n =2 is trivial. For n =3 define
t(x, y)=p(y, p(x, y), pi(x, y)). To finish the proof it suffices to show that if p,,
..., P» (n Z4) are binary polynomial symbols satisfying (v), (vi) and (vii), then there
exist binary polynomial symbols s,, s,, ..., s,_. satisfying the conditions (v), (vi),
(vii) for k=n—2 (i.e. so(x, y)=po(x, y), S.—o(x, y)=p.(x,y) and for k<n-—2
S(x, ¥)=5s:41(x, y) holds in K, for k£ even and s.(x, ¥) = si..,(x, y) holds in K, for
k odd). Such polynomial symbols can be defined as follows: s,(x, y) = ps(x, y),
si(x, y)=p(ps(x, y), p:(x, y), Pi(x, y)) and for 1 <k =n—2 5.(x, y) = pe+a(x, ¥).
Hence K, and K, are independent. Conversely, let K,, K, be independent and let ¢
be a binary polynomial symbol such that ¢(x, y)=x holds in K, and #(x, y)=y
holds in K. Then (5) trivially holds. Accordingto Theorem 1 to show (1) it suffices
to check that the polynomial symbol p(x, y, z) = ¢(¢(z, y), x) satisfies (i) and (ii).
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YCJIOBUSI TUITA MANBUEBA U1 IBYX MHOTOOBPA3UH
'mnbpa IpaiikoBu4OBa
Pesiome

Mycre K,, K, mMHOroo6pasus anre6p omuHaxosoro tuna. Hna ke {1, 2,3} ycnosus (ka) (ko)
IKBHBAJIEHTHBI, Ife '
(1a) Ons scsaxon anre6pul N e K,v K, kourpysuuun S°, f' na Y takwe, uto /B eK,, i=0,1,
NepeCcTaHOBOYHBI. .
(16) CyuiecTByeT NONMHOMMANBHBIA CHMBOJ p Tak, 4To p(x,x,y)=y B K, u p(x,y,y)=x B K,.
(2a) Onsa seaxoi anre6pbi A € K,v K, n Bcakux KOHrpy3xumi a, °, B' na ¥, takux, yto A/f €K,
(i=0,1), uméet mecto B°B'=B'"n an(B’B')=(anrB’)(anrB').
(26) CymecTByeT NONHHOMHANLHBIA CHMBOJI g TakK, YTO
q(x, x,y)=y=q(y, x,y) B K, n
q(x,y,y)=y=4q(x,y,x) B K,.
(3a) Muoroo6pasue K,A K, cOpepXHT TONbKO OJHO3JIEMEHTHbIE anreGpsl.

(36) CymecTByloT GMHApHbIE MOJHHOMHMAIbHBIE CHMBONBI Doy, ..., P, TAKHE, YTO p,(X,y) =X H
P.(X, )=y u TOXHECTBO p.(X, ¥)=pi..(X, y) nmeeT Mecto B K, ans k-4étHbix u B K, nns
K-HEYETHBIX.
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