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MAECEV TYPE CONDITIONS FOR TWO VARIETIES 

HILDA DRAŠKOV1ČOVÁ 

Preliminaries. W. Taylor [5] suggests to consider the properties of /i-tuples of 
varieties which can be characterized via the existence of polynomial symbols 
(terms). An example of such a situation .is the independence of varieties. The 
varieties Ko, Kl9..., Kn_i (of the same type) of algebras are independent (cf. [2]) if 
there is a polynomial symbol p such that for each / 6 {0,1, ..., n — 1} the identity 
p(xo,..., xn-x) = Xi holds in Kt. In the present note characterizations of this kind of 
further properties are given for the case n = 2 (see the theorems below). To 
simplify notation we use the same symbol for the polynomial symbol and for its 
induced polynomials. Let Ko, Kx be varieties of the same type. The smallest variety 
K containing Ko and Kx will be denoted by KoVKx. #(21) will denote the lattice of 
all congruence relations on the algebra 21 = (A; F ) . Given elements a9 b of an 
algebra 21, 0(a9 b) will denote the smallest congruence relation of 21 containing 
(a, b). If 216 Kov K, and a9 b are elements of 21, &(a9 b) (i = 0,1) will denote the 
smallest congruence relation 0 of 21 such that (a, b)e& and <&/0eKi. 

Statement of the results 

Theorem 1. Let Ko9 Kx be varieties of the same type. The foUowing conditions 
are equivalent. 
(1) For each WeKovKt and each 0°, /81e«(2l) such that WpeK, (/ = 0,1), 

(2) There is a ternary polynomial symbol p such that 
(i) p(x9 x9y) = y is an identity of Ko, 

(ii) p(x9 y9 y) = x is an identity of Kx. 
Remark 1. Let us observe that in the case Ko — Kx we get the known Malcev's 

result [3]. 

Theorem 2. Let Ko, Kx be varieties of the same type. The foUowing conditions 
are equivalent 
(3) For each KeKo\/Kx and each a, 0°, ? 6 tf(2i) such that %/0'eK, ( i=0, l ) , 

FF = fp and aA(/3iy/3l) = (aAp0)(aA/31). 
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(4) There is a ternary polynomial symbol q such that 
(iii) q(x, x,y) = y = q(y, x, y) hold in JQ, 
(iv) q(x,y,y) = x = q(x,y,x) hold in Kx. 

Remark 2. In case Ao = AT, Theorem 2 yields the result of A. F. Pixley [4, 
Lemma 2.3]. 

Theorem 3. Let Ko, K, be varieties of the same type. The following conditions 
are equivalent. 
(5) The variety KoAK, consists of one-element algebras only. 
(6) There exist binary polynomial symbols pk, k = 0, 1, ..., n such that 

(v) p0(x, y) = x and pn(x, y) = y, 
(vi) pk(x, y) = pk + x(x, y) holds in Ko for k even, 

(vii) pk(x, y) = pk+x(x, y) holds in Kx for k odd. 
As an application of Theorem 1 and Theorem 3 we get a simple proof of the 

following theorem. 

Theorem W f 1, Theorem 1]. LetKo, Kx be varieties of the same type. Ko, Kx are 
independent if and only if the conditions (1) and (5) hold. 

Proofs of the theorems 

The proofs of theorems 1 and 2 are similar to the known proofs of the special 
case of the theorems Ko = Kx. 

Proof of Theorem 1. Let the condition (2) be satisfied. Let 
% = (A ; F) e Ko v AT,, p e <€(%) be such that 21/0' e Kf (i = 0,1). It suffices to show 
that p°px^plli0. Let a, be A, affpb. Then there exists ceA such that af?c and 
cfi'b. It follows that affp(a, c, b), p(a, c,b)0°b, hence ap/Fb and (1) holds. 
Conversely, let the condition (1) be satisfied. Denote by ft the free algebra over 
KoV-K, with three generators x, y, z. Take 0°(x, y), 0\y, z)ec€(%). Since 
(x, z) e 0°(x, y)0\y, z) = 0\y, z)0°(x, y) there exists p(x, y, z) in ft such that 
x0\y, z)p(x, y, z) and p(x, y, z)0°(x, y)z. Since ft/6>°(*, y) (%/0\y, z)) is the 
free algebra over Ko(Kx) with two generators, we get the validity of (i) and (ii), 
q.e.d. 

Proof of Theorem 2. Let the condition (3) be satisfied. Let ft be the free 
algebra over KovKx with three generators x, y, z. Take 0(x, z), 0°(x,y), 
0\y,z)e%(%). Since (z9x)e0(x, z) A (0°(X, y)0\y, Z)) = (0(x,z) A 

0°(x, y))(0(x, z) A 01 (y, z)), there exists q(x, y, z) in ft such that z(0(x, z) A 
© V , y))q\x, y, z) and q(x, y, - z)(0(x, z)A0\y, z))x. Since 
ft/0°(.r, y)(ft/0 !(y, z)) is the free algebra over Ko (over KY) with two generators, 
we get that the identity q(x, x, y) = y (q(x, y, y) = x) holds in Ko (in Kx). Since 
ft/0(.r, z) is the free algebra over KovAT, with two generators, we get that the 
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identity x = q(x, y, x) holds iaK<,vK,, hence it holds in Ko and in Kx too, i.e. (4) is 
satisfied. Conversely, let the condition (4) be satisfied. Let 5t eKoVK,, take a, /?°, 
/ 3 ' e ^ l ) such that ?l//3'eK„ / = 0-1. The condition (4) implies (2), hence using 
Theorem 1 we get 0°/J' = f31(3t). Let a, ce?l and (a, c ) 6 a A ( 0 ' ) . Then aac and 
there exists b e?l such that ap°b, b/3lc. Using (iv) we get a0lq(a,b,c), 
a = q(a,b,a)aq(a,b,c), hence a(aA(3l)q(a, b, c). Similarly we get 
q(a, b, c)(aAt3")c. Hence a A ^ ^ i a A ^ ^ a A A which implies 
a A ( ^ ' ) = (aA/S°)(aA/31). 

ProofofTheorem 3. Let the condition (5) be satisfied. Let ft be the free 
algebra over K0vKx with two generators x, y and & the smallest congruence 
relations on ft such that ft/0'eK„ / = 0,1. ft/^Ve'eKoAK,, hence &v0x is 
the greatest congruence relation of ft, i.e. x(&}v 0x)y holds for arbitrary elements 
x, y of ft. It follows that there exists a natural number n and p0(x, y), px(x, y), ..., 
pn(x, y) in ft satisfying x = p0(x, y), y = pn(x, y), pk(x, y) 0° pk + x(x, y) for k even 
and pk(x,y) 0l pk+x(x, y) for k odd. Since ftA<9' is the free algebra over K, 
(/' = 0,1)' with two generators, the identity pk(x, y) = pk+x(x, y) holds in Ko for k 
even and pk(x, y) = pk+x(x, y) holds in Kx for k odd, i.e. the condition (6) is 
satisfied. The converse assertion is obvious. 

ProofofTheorem W. Let the conditions (1) and (5) be satisfied. With respect 
to Theorem 1, there exists a ternary polynomial symbol p satisfying (i) and (ii). 
According to Theorem 3 there exist binary polynomial symbols p0, ...,/*„ satisfying 
the conditions (v), (vi), (vii). We shall show by induction on n that Ko, Kx are 
independent, i.e. there exists a binary polynomial symbol / such that t(x, y) = x 
holds in K0 and t(x, y) = y holds in Kx. The case n = 2 is trivial. For n = 3 define 
t(x, y) = p(y, Pi(Xy y), P\(x, y)). To finish the proof it suffices to show that if p0, 
...,pn(n i_4) are binary polynomial symbols satisfying (v), (vi) and (vii), then there 
exist binary polynomial symbols s0, sx, ..., sn-2 satisfying the conditions (v), (vi), 
(vii) for k^n-2 (i.e. s0(x, y) = p0(x, y), sn-2(x, y) = p„(x, y) and for k<n-2 
sk(x, y) = sk+x(x, y) holds in Ko for k even and sk(x, y) = sk+x(x, y) holds in Kx for 
k odd). Such polynomial symbols can be defined as follows: s0(x, y) = p0(x, y), 
sx(x,.y) = p(pi(x, y), p2(x, y), px(x, y)) and for Kk^n -2 sk(x, y) = pk+2(x, y). 
Hence Ko and Kx are independent. Conversely, let Ko, Kx be independent and let / 
be a binary polynomial symbol such that t(x, y) = x holds in Ko and t(x, y) = y 
holds in K,. Then (5) trivially holds. According to Theorem 1 to show (1) it suffices 
to check that the polynomial symbol p(x, y, z) = t(t(z, y), x) satisfies (i) and (ii). 
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УСЛОВИЯ ТИПА МАЛЬЦЕВА ДЛЯ ДВУХ МНОГООБРАЗИИ 

Гильда Драшковичова 

Резюме 

Пусть /С„ К% многообразия алгебр одинакового типа. Для А: €{1 ,2 ,3} условия (ка) (ко) 
эквивалентны, где 
(1а) Для всякой алгебры ?1е/С,у.К, конгруэнции /5°, /3' на М такие, что ?[//3'еК,, /=0,1, 

перестановочны. 
(16) Существует полиномиальный символ р так, что р(х, х, у) = у в /С> и р(х, у, у) = х в Кх. 
(2а) Для всякой алгебры %еКп\/Кх и всяких конгруэнции а, /3°, /З1 на ЭД, таких, что А//3' е К, 

(/=0,1), имеет место р*рх=рхра и а/\(Р,р1) = (ал(1")(а/\Р1). 
(26) Существует полиномиальный символ ^ так, что 

^(x,x,у) = у = ̂ (у, х, у) в /С, и 
Я(х,У,у) = У = я(х,у,х) в К,. 

(За) Многообразие /С.лХ", содержит только одноэлементные алгебры. 
(36) Существуют бинарные полиномиальные символы р(), ..., р„ такие, что р()(х,у)=х и 

Рп(хчу) = у и тождество рк(х, у) = рк+}(х, у) имеет место в К, для к-чётных и в Кх для 
к-нечётных. 
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