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ON THE MAYER PROBLÉM 
II. EXAMPLES 

VERONIKA CHRASTINOVÁ — VÁCLAV TRYHUK 

(Communicated by Michal Fečkan ) 

ABSTRACT. Given an underdetermined system of ordinary differential equa­
tions, extremals of all possible variational problems relevant to the system to­
gether with the corresponding Poincare-Cartan forms were characterized in geo­
metrical terms in previous Part I of this article. The present Part II demonstrates 
the utility of this approach: it enables a deep insight into the structure of Euler-
Lagrange and Hamilton-Jacobi equations not available by other methods and 
provides the sufficient extremality conditions without uncertain multipliers simi­
lar to the common Hilbert-Weierstrass theory Degenerate variational problems 
are in principle not excluded and, like in the "royal road" by Caratheodory, no 
subtle investigation of admissible variations satisfying the boundary conditions is 
needed. 

Introduction 

Let us overview the main achievements of this paper by using the common 
terminology. Two underdetermined systems of differential equations are dis­
cussed here: the case of a single equation y'm = f(x,yx,..., ym,y[,...,y^) 
and the case of two equations y'm = f(x,yv...,ym,y[,...,ym_2), ym_x = 
g(x, yx,..., ym, y[,..., ym_2), where m > 2 or m > 3, respectively. For techni­
cal reasons, some results are stated only for the particular value m = 3. 

In the first case, the nondegenerate subcase det(d2f/dy^dy^) ^ 0 (i,j = 
1,..., m — 1) leads to extremals given by a second order system. They are iden­
tical with the characteristics of the Pfaffian equation uj = 0, where 

^ = ^ ( d y r o - / d x - ^ ^ ( d y i - ^ d x ) ) = / l ( i . ' d x - ^ ^ d 2 / i + d y m ) 

2000 M a t h e m a t i c s S u b j e c t C l a s s i f i c a t i o n : Primary 49-01, 34A26, 46K15, 58A17. 
Keywords : diffiety, Mayer problem, Poincare-Cartan module, Euler-Lagrange subspace, 
Hamilton-Jacobi equation. 
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may be regarded as a generalized Poincare-Cartan (VC) form. Here h is a para­
meter and H = — / + X. v\ ®f l®y'i stands for the generalized Hamilton function. 
Various extremality problems can be easily discussed in a uniform manner and 
the Hilbert-Weierstrass criterion is obtained: the existence of appropriate solu­
tions of the Hamilton-Jacobi (HJ) equation together with the convexity of / in 
y[, • • • j 2/m-i e n s u r e s the global extremum. We moreover deal with the generic 
degenerate case assuming m = 3 for better clarity. Then the extremals are given 
by a first order system. (It seems that this result cannot be easily verified with­
out the use of the VC forms.) Alas, the usual 1-LJ equation is insufficient to 
cope with the extremality problems. (We intend to discuss this remarkable and 
old-standing problem in future and refer to [1; Parts II, III, IV] dealing with 
analogous tasks for this time.) Finally the particular degenerate case when the 
extremals satisfy an underdetermined system (namely y3 = f and a single sec­
ond order equation) is mentioned. It is similar to (but more general than) the 
so called "parametrical problem" of the classical theory (i.e., if the variational 
integral is independent of the parametrization). It does not cause much difficul­
ties in spite of the fact that the extremals are depending on the choice of one 
arbitrary function and a HJ involutive system (instead of a single equation) is 
obtained. 

In the case of two differential equations, the results are more instructive if 
compared with the common point of view. For simplicity, let us refer only to the 
case m = 3 here. Then the functions 

F=dl+dl___+dg_d___d_o_\ G=d9_+dldg_+dg_dg__d_dg_ 

dyx dy[ dy3 dy[ dy2 dx dy[ ' dyx dy[ dy3 dy[ dy2 dx dy[ 

play the crucial role. If Gd2f/dy[ ^ Fd2g/dy[ , the extremals are given by 
the additional third order equation 

F ^ _ G ^ + c * | _ + re(|/_|_)_F>|__o 
dx dx dy2 \dy3 dy2J dy3 

(equivalent to y[" + lower order terms = 0). The generalized VC form 

h(o(dy3 - /dx - ^-{dyx - y[ dx)) - F{dy2 -gdx- ^-{dyx - y[ dx)) 

= h(Hdx-(G§l-F^-)dyi-Fdy2-Gdy3) 

with a parameter h and the generalized Hamilton function H provide the 
HJ equation and the Hilbert-Weierstrass extremality criterion. The convex­
ity of the function Gf — Fg in the variable y[ (which is freezed in coefficients 
F, G) is needful. This corresponds to the common "nondegenerate case". We 
also deal with the "degenerate case" assuming that both / , g are linear in y[ • 
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The simplest result is obtained if the functions / , g are independent of y[ and 
the inequality 

dld^^dg_dy 
dyl dy\ dyx dy\ 

holds true. Then the extremals are given by an additional first order equation 
(briefly: y[ + • • • -= 0), the VC form is retained (it simplifies considerably), 
a reasonable 7i J equation appears, but the relevant Weierstrass function is a 
multiple of the function 

j^Wivi) - /») - ^W(5(»i) - m) 
(where /(•) = f(x, • ,y2,y3), g{-) = g{x,- ,y2,j/3) and x, y2 , y3 are regarded as 
parameters) which looks very strange. 

A few concluding remarks. 
The nondegenerate variational problems are frequently investigated in actual 

textbooks, however, the common presence of uncertain coefficients essentially 
obscures the sense of the results. The degenerate problems were ignored as yet: 
even the true identification of extremals is hardly possible by the common direct 
calculations (cf. the surprising identities (20), (21)). The only exception repre­
sents the top linear problems appearing in sub-Riemannian geometries [4], [5]. 
It should be however noted that the classical definition of degenerate variational 
problems does not make a good sense since it may be highly affected by the 
choice of coordinates (e.g., the problem of Section 14 can be seen equivalent to 
the theory of the simplest nondegenerate variational integral J f(x,y,yf) dx) 
by appropriate adaptation of variables. 

Some results of this article were already referred to without proofs in [2]. 

Preliminaries 

1, Contact diffieties. 
In order to enter into the applications easily, we begin with a short review of 

classical concepts suitably adapted for our future aims. Let M(m) be the space 
(isomorphic to 1R°° , but moreover) equipped with (infinite order) jet coordinates 
x,wl

s G T(M.{m)) {i = l , . . . , m , 5 = 0 , 1 , . . . ) , contact forms ul
s =- dwl

s — 
wl

s+1 dx G $ ( M ( m ) ) , and the formal derivative vector field 

X = d/dx + Y,<+id/dwi € T(M(m)). (1) 

Then the submodule ft{m) = {ul
s} C $ (M(m) ) generated by all contcict forms 

clearly is a diffiety with the slope %{m) = Vt{m)L = {X} C T ( M ( m ) ) genera­
ted by the single vector field (1). 
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Hint. 
We refer to [3; Sect. 3]: Cxu] = CJ*+1 , hence 

n(m),: ft(m)0 C tt(m)1 C • • • C ft(m) = IJ fi(™)/ (fi(™)/ = K : s < l)) 
(2) 

is a good filtration. 
The solutions P(£) G M(m), 0 < t < 1, of 17 (m) given by the formulae x = 

a;(£), u>* = wl
s(t) satisfy wl

s+1dx/dt = dwl
s/dt (equivalently u>^+1 = duj^/dx 

if x'(t) 7-= 0) and it follows that the diffiety f2(m) corresponds to the empty 
system of ordinary differential equations for m unknown functions w^,..., w™ 
of one independent variable x. 

General systems of ordinary differential equations are realized as certain sub-
diffieties of fi(m). More explicitly, let Z 1 , . . . , fc G ^r(M(m)) be functions such 
that the equations XlfJ = 0 (j = 1, . . . , c, / = 0 ,1 , . . . ) determine a subspace 
m: M C M(m). Then we obtain the induced diffiety ft = m*fi(m) C $(M(m)) 
with the good filtration 

ft, = m*ft(m),: ft0 C fix C - - -C f t = Ufy (ft, .siri'tym),) (3) 

and the slope H = - I 1 C T(M(m)) generated by the same vector field (1) re­
stricted to M. Denoting a little symbolically fJ = fJ(x,..., wl

s,...), the diffiety 
ft corresponds to the system of differential equations fJ(x,..., dswl

0/ dxs,...) 
= 0 or, better, to the infinite prolongation XlfJ = 0 with derivatives dswl

0/ dxs 

substituted for the jet variables w\. 
On this occasion, it is necessary to recall the common abbreviations of re­

strictions like / = m*/ , tp = m V , especially 

x = m*x, wl
s = m*ws, u)\ = m*u;j (4) 

and of partial derivatives like 

fx = df/dx, fs = df/dwi, fa = d2f/dwidwi. 
We believe that no confusions will arise. 

The contact forms ul
s G $(M(m)) provide a basis of ft(m). The restrictions 

ul
s = m*u>s G $(M) (abbreviation (4)) generate ft but they are not linearly 

independent. In more detail: the expansions 

dF = Fxdx+^Fidw3 = XFdx+J^Fiu] G *(M(m)) (F G ^ (M(m)) ) 

are clearly true, hence the identity m*F = 0 (i.e., F vanishing on M which 
also implies m*XF = 0) leads to the linear dependence 

0 = dm*F = m* dF = J T F>* € * (M) , (5) 

where FJ = m*FJ, CJ* = m*tj* (abbreviations (4)). In particular, F = XlfJ 

(j = l , . . . , c , / = 0,1, . . . ) may be substituted here which provides a large 
family of identities (5). 
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2. A survey of algorithms. 
The main result of Part I was as follows: for a given diffiety ft C $ ( M ) , the 

Euler-Lagrange (£C) subspaces e: E C M together with Poincare-Cartan (VC) 
submodules S l c i l can be explicitly calculated by a certain algorithm. Recall 
that the restriction e*ft C $ (E) is a diffiety (the £C diffiety, a subdiffiety 
of ft) and fi C fi is a finite-dimensional submodule satisfying the equivalent 
conditions 

dft*-0 (mod ft, ft A ft), £zft C ft (Zen1-) (6) 

along E . Since E , ft can be interpreted in terms of certain variational problems, 
the solutions of £C diffieties are called extremals. (Alternatively: extremals are 
solutions of ft that lie in E.) 

The algorithm consists of two steps. First, certain maximal possible subspaces 
M C M and submodules ft C ft were determined such that (6) holds true for 
ft (instead of ft) along M . Second, this M was adapted to obtain the maximal 
subspace E C M (hence E C M ) such that the restriction of ft to E is a 
diffiety (the £C diffiety) and the modules ft = ft were identified along E . 

In principle, the second step is quite clear (cf. also [3; Sect. 4] and any of the 
examples below). Concerning the first step, let us state the main idea. If N C M 
is a subset and 0 C ft a submodule, we introduce the submodule KerN 0 C 0 
of all d G 0 satisfying Czd G 0 (Z G ft1) along N . This operation KerN is 
repeatedly applied to certain terms of the filtration (3) which gives the desired 
subspace M (which is equal to the last stationary term N ) and the desired 
module ft (the least value of the module Ker N ) . 

3. Adjoint modules . 
For the convenience of reader, some well-known results concerning the exis­

tence of special (local) bases of certain modules will be briefly stated. (Note that 
the existence of some local bases of all modules under consideration is always 
tacitly supposed.) 

Let d G $ ( M ) and consider the submodule 

Adjdtf = {Z\ dd : Z G T ( M ) } C $ ( M ) . (7) 

This submodule has a special basis dn1, d t ; 1 , . . . , duc, dvc (c > 0) such that di? = 
du1 A dv1 H h duc A dvc . In particular e=\ dim Adj dfi. If fl £ Adj dt?. then 
i9 = du° + v1 du1 + • • • + vc duc for appropriate u° G J-"(M). 

Let w G $ ( M ) be nonvanishing and consider the submodule 

Adj{cj} = {(j, Z\du : Z G T(M), UJ(Z) = 0} C $ ( M ) . (8) 

This submodule has a special basis d^°, du1, d t ; 1 , . . . , duc, dvc (c > 0) such that 
hu) = du°+ v1 du1-! \-vc duc for appropriate (nonvanishing) factor h G .F (M) . 
In particular c = \ (dim Adj{UJ} — l ) . 
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By using these results, it follows that the codimension of the greatest sub-
space 1: L C M , the so called Hamilton-Jacobi (HJ) subspace, satisfying the 
requirements l*di9 = 0, l*d(hu) = 0, respectively, is clearly equal to c. On a 
simply connected domain, these requirements read 

l*(tf - dW) = 0 , V(huj - dW) = 0 , (9) 

respectively, where W G .F(M) is an unknown function. In the following appli­
cations, E will stand for the space M and I?,CJ C e*Ct will be the generalized 
VC forms. Then the conditions (9) turn into a generalization of the familiar 
classical %J equation. 

First example 

4. One differential equa t ion . 

In order to deal with the equation 

< = / ( x , ^ , . . . , < , ^ 1
1 , . . . , < - 1 ) , 

we introduce the subdiffiety ft = m*fi(m) C $ (M) of the diffiety Q(m) on the 
subspace m : M C M(m) of all points that satisfy the equations Xl(w™ — f) = 0 
(/ = 0 , 1 , . . . ) . Clearly 

as the top order terms are concerned, therefore the functions 

x, w j , w3
s ( i = l , . . . , m , j = l , . . . , m - 1 , 5 = 1,2, . . . ) 

provide the coordinate system on M . Then 

X = 8/dx + ̂ 2 w\dld< + J2 wUid/dwi e n± c r ( M ) (WT = / ) 

in terms of these coordinates and the forms 

u)l
0 = m*cjQ , {jj{ = m*u3

s (i = 1 , . . . , m , j = 1 , . . . , m - 1, s = 0 , 1 , . . . ) 

provide a basis of Cl (abbreviations (4) of the notation). Filtration (3) consists 
of submodules 

Ql = {UQ,U3
S : 2 = l , . . . , m , j = 1 , . . . ,m - 1, 5 < ! } c f ! 

and the obvious formula CXUJ1
S — UJ1

S+1 implies Kerfiz = Ql_1 for every / > 1 
(abbreviation Ker = K e r M ) . 
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The identity (5) applied to F = w™ — / turns into the linear dependence 

<-£«-£/iV = o 
in the module $(M) and therefore 

£x {< - £ f(<4) = < - £ AM = 0 (mod fi0). 
It follows that Ker fi0 = {CJ} c fi0 is the one-dimensional submodule which is 
generated by the form LO = LJ™ —J^fi^o- ^n m o r e detail 

Cxu = J2 eJ"3o + f™" (ej = ft + fif? ~ Xfl) (10) 

by easy calculation. In accordance with the algorithm, the subset M c M is 
denned by the equations eJ' = 0 (j = 1, . . . , m — 1) which imply (62) along M. 
Then the EC subspace E c M should be defined by the requirements XleJ = 0 
(j — 1 , . . . , m — 1, / = 0 , 1 , . . . ) and we may choose Ct — ft = {u} as the 
VC module is concerned. 

The conditions ensuring that we indeed have a subspace e: E C M (not a 
mere subset) and hence the reasonable £C diffiety e*Jl C $(E) are not quite 
clear yet. We shall mention three "generic" cases. 

5. The nondegenerate case. 
Assuming det(//1) ^ 0, the equations 

XleJ = -X\Xfi) + ••• = - ] T ftfw*+l + . • • 

(j,fc= 1,. . . ,771-1, Z = 0,1,. . .) 

are equivalent to certain conditions w%+l + • • • = 0 and it follows that they 
indeed determine a certain subspace e: E C M equipped with coordinates x, 
w2

0, w{ (z = l , . . . , m , j = l , . . . , m - 1). 
In order to determine the Lagrangian subspaces, the formulae 

duj = dx A ^ eJ4 + J2 aJk4 ALJO~J2 fii4 A ^ + ^ A CJ , (11) 

where j , k = 1 , . . . , m — 1 and 

2ajk = Hk - fti + AT/ f - ffrfl , £ = /0
m dx + £ / # ^ (12) 

are needful. 
It follows easily that 

Adj{ш} = {u,шг

0,u>{ : i = l , . . . , m , j = 1,... ,m - 1} 
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on E (where eJ = 0 identically). Therefore dimAdjjcj} = 2ra — 1 and the 
Lagrangian subspaces 1: L C E denned by (92) are of the codimension c = 
ra — 1, hence dimL = 2ra — (ra — 1) = ra -f 1. We shall be interested in such 
L that the functions x,w^,... ,w™ provide the coordinate system on L. It is 
necessary to solve (92) with unknown functions h = \*h and W = \*W of the 
coordinates mentioned above. This is expressed by the system 

l>(E/>i-/)=W/*> ~hfi = Wi (i = l , . . . ,m- l ) , h = W™.(U) 

Functions x, HjJ,..., w™, f \ , . . . , / 1
m _ 1 can be taken for alternative (local) co­

ordinates on E . In terms of these coordinates, we may introduce the Hamilton 
function H such that 

i / ( . . . , / i , . . . , /r i) = Y2/1x-/(. . . ,U;i , . . . ,wr1) 
(where • • • = x, w0,..., w0

l) and then (13x) yields the HJ equation 

WJW™ = H(..., -WlJW™,..., -W^/W™) (14) 

quite analogously as in the common classical theory. Remaining equations (13) 
may be regarded as the embedding equations W0 /W™ = —f{ of the subspace 
L into E . (In classical terms, the inclusion Adj{cj} C ft along E means that 
the extremals are identical with Cauchy characteristics of the HJ equation and 
the space L represents the generalized Mayer field of extremals.) 

Let us eventually mention the increment formula [3; Part I, (30)]. It will be 
applied to the form huo (instead of u appearing in [3; (27), (29), (30)]) and to 
certain curves P(t),R(t) G L and Q(t) G M (0 < t < 1). More explicitly, let us 
denote 

Q(t) = (x(t), wl(t),..., w™(t), w\ (t),..., w™-1 (t),...) e M , 

R(t) = {x(t),wl(t),...,w™(t),r{(t),...,r™-1(t),...)e-L, 

where coordinates of P(t) G L need not be explicitly stated. We shall suppose 
that both P(t), Q(t) are solutions of ft (in particular P(t) G L C E is an 
extremal and Q*UJ0 = 0 whence dwl

0(t) = w\(t)dx(t)) and moreover 

W(R(0)) =W(P(0)) (16) 

in accordance with [3; (28J] . Thanks to (15) and the choice of variables in 
W = W(x,wl

0,... ,w™), condition (282) is trivial. Then [3; (29)] reads 

l 

W(Q(1)) - W(P(1)) = [R*(hu) = f S dx(t) (17) 

o 
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with the Weierstrass function 

£ = h(...)(f(...,w\,...,w?~l)-f(...,r\,...,r?-1) 

-E/ i ( - - -> r i 1 ' - - -^r 1 )K-- i 1 ) ) 
(abbreviation • • • = x,w0,... ,u t m ) evaluated on the curve w{ = w{(t), r{ = 
r{(t). We shall suppose h = W{™ > 0 (cf. (133)) and x'(t) > 0. Then (e.g.) the 
convexity of f in the variables w\,..., w™~1 ensures the inequality W(Q(1)) > 
W(P(1)). This is a preliminary result: as yet we do not deal with any extremality 
problem. The point lies in the fact that a large spectrum of such problems can 
be resolved by means of appropriate choice of the function W. 

6. Continuation: Some extremality problems-
Only a few simple possibilities will be mentioned. Recall for clarity that we 

shall deal with extremals P(t) E L, 0 < t < 1, embedded into a Mayer field and 
such solutions Q(t) E M , 0 < £ < 1, of fl given by (15-_) that the "projections 
R(t) E L" given by (152) make a good sense. (The functions r{(t) result from the 
embedding equations of L into E.) The increment formula (17) will be applied, 
however, some additional requirements for the solution W of the HJ equations 
may appear if we wish to resolve certain particular extremality problem. 

(i) The classical Mayer problem. 
Assuming the boundary conditions 

x(P(0))=x(Q(0)), wi(P(0))=wi(Q(0)), i = l,...,m, 

x(P(l)) = x(Q(l)) , w3
0{P(l))=wi(Q(l)), j = l,...,m-l 

(the functions x,wl
0 E ^ ( M ) that should not be confused with arguments in 

(15)), we have (16) is a triviality hence (17) may be applied. Assuming W m > 0, 
the inequalities W(Q(1)) > W(P(1)) and w™(Q(l)) > w m ( P ( l ) ) are equiva­
lent. So we have the sufficient criterion ensuring the extremality of the function 
g = w™ at the right-hand end points of the curves Q(t). One can observe that 
the solution W of the T-LJ equation need not satisfy any additional boundary 
conditions in this case: all Mayer fields are appropriate to solve the extremality. 
(See also [3; 13(0] w - th a special choice of data.) 

(a) The terminal problem. 
Assuming the boundary conditions 

x(P(0)) = x(Q(0)) , wl(P(0))=wi(Q(0)), i = l,...,m, 

x(P(l))=x(Q(l))=c, 
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(17) may be again applied and it ensures the extremality of function VV(c, I/JQ, 
. . . , wm) at the right-hand end points. The extremality of a prescribed function 
g = g(iOQ,..., wm) is ensured if the solution W of the T-LJ equation is chosen 
such that (e.g.) g = PV(c, HjJ,... ,wm). (Certain transversality conditions are 
tacitly involved: (132 3) together with dg = dVV(c,HjJ,... ,wm) imply the con­
ditions gQ + g™' f{ = 0 ( j = 1 , . . . ,m — 1) valid at the right-hand end points. 
One can observe that then the stationarity requirement [3; (152)] expressed by 
the inclusion dg £ {cO,dx} is satisfied.) 

(LLL) The free tim,e problem. 
Assuming the boundary conditions 

wi(P(0))=wi(Q(0))=<J, i=l,...,m, 

wl{P(l))=wi{Q(l))=V, j = l,...,m-l, 

(17) is ensured if W(x: a 1 , . . . , am) = const. Applying (17), we obtain the suffi­
cient extremality condition for the function W(x, bl,..., bm_1, wm) at the right-
hand end points. Then the extremality of a prescribed function g = g(x, wm) is 
ensured if (e.g.) W is chosen such that W( •, b1,..., bm~1, •) = g. Altogether 
taken, we have the peculiar boundary conditions 

W( •, a 1 , . . . , am ) = const, W( •, b\ ..., bm~\ •) = g 

for the solution W of the T-LJ equation (and one can verify that they imply the 
relevant stationarity conditions [3; (15)]. 

(LV) The classical variational problems. 
If f™ = 0 is identically vanishing, all the above formulae are much simplified, 

e.g., 2a?k = f{k - / # , i = 0, J = ft - Xf{ in (12). Moreover, u £ Adj du; 
and dimAdjdcO = 2(m — 1) in this case, therefore the %J equations (9X) are 
sufficient. (In other words, we may suppose h = Wm = 1 without the loss of 
generality.) Recalling the above Mayer problem (L) that concerns the extremality 
of the value 

I 

iv™(Q(l))=w™(Q(0)) + Jf(x,wl(t),...,w™-1(t),wl(t),...,wln-l(t))dx(t) 

0 

(hence of the integral), we have the familiar classical problem. 

7. T h e d e g e n e r a t e case. 
Assuming det ( / i X ) = 0 from now on, we enter a huge realm which deserves 

a whole book. So we restrict ourselves to certain generic situations with m = 3 
in this article. 
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Assuming moreover fH ^ 0 for technical reasons, / 2 2 5= bf\l where ft = 
flllfll and it follows 

e1 = -f\l (w\ + bw2
2) +•••, e2 = -ft/.1.1 (w\ + hul) + •••, (18) 

consequently e = e2 — be1 is a function of the order one at most. One can then 
verify the formula 

do; = e dx A CJ0 + (eldx + au0 — / j1 1^) A UJ0 + £ A ^ , (19) 

where a = 2a12, C = /0
3 dx + f™u0 + (/20

3 - f^b)u2, us = WJ + bu;2 by using 
(12), (13), and the identities 

e\ = be}, b2 = bbj , e\ + e1b\ + a + f\\Xb = 0 (20) 

follow by identifying the coefficients in the congruence 

0 = d2cj = de A dx A CJ0 — (eldx + au;0 — fl{w^ A da;0 (mod a;, u0). 

Hint. 
Use also the formula dus = dx A CJ5+1 + db A CJ2 and the congruences 

dF^XFdx + Flul + {Fl-bFl)u2
l (mod o;0,L.j2,a;,^) ( s > 2 , i = 1,2) 

with F = e,b. 

We suppose e\ ^ 0 in this section. (This is a generic case, see (203).) Then, 
thanks to (18J and (20x), the function 

e = e* + f£xe = f0+flf0-f}x-Y,™Uli + §{ex + E<eo) 
(where i = 1,2,3 and w\ = f) is again of the order at most one. The coefficient 
e1 occurring in (19) can be replaced by this function e: we substitute e1 dx = 
(e - fl\Xe/e\) dx, where moreover 

Xe dx = de - (ej + f\e^)u0 - CLJ2 - e0cj - e\u1 

(c = e0 + / 2 e 0 — b(ej + f\e\) by direct verification) to obtain 

/ f11 \ / fn \ 
du; = edxAa;0 + (edx - M±- de + A J 2 J A u0 + (£ - e*^cJ 0 J ACJ, 

where A = a + cfH /e\. It simplifies considerably on the subspace defined by 
e = 0 (hence de =: 0): 

/ fu \ 
du^(edx + Au2

0)AuJ0 + [( - e3
0-±±u0) ACJ. 

\ e-% ' 
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Then the remarkable identity 

e\ - be\ = A (valid at e = 0) (21) 

follows by identifying the summand u\ A dx A LJ0 in the identically vanishing 
form d2cj (at e = 0). Our calculations are done. 

Assume A ^ 0. (This is a generic case.) The £L subspace E C M defined 
by the equations Xlel = Xle2 = 0 (I = 0 , 1 , . . . ) can be equivalently defined by 
Xle = Xle = 0. Clearly 

Xle = e\w\+l + e\w\+l H , Xle = e\w\+l + e\w\+l H , 

where e\e\ — e\e\ = e}^4 ^ 0 in virtue of (20J , (21). It follows that functions 
x, wQ) HjQ, ̂UQ provide coordinates on E , hence dim E = 4. 

With these results, various reasonable stationarity problems can be formu­
lated, however, the relevant %J concepts and the increment formula are insuf­
ficient to establish the extremality properties. 

8. The case of underdetermined extremals. 
Continuing the notation, let us assume e = e2 — be1 = 0 identically van­

ishing from now on. Then the EL system reduces to the equations Xlel = 0 
(I = 0 , 1 , . . . ) and, assuming again f\\ ^ 0, the infinite family of functions 
x, HjJ, tDQ, wQ, w\, Hj2, w2, s > 2, provide coordinates on the EL subspace 
e: E C M . Formula (19) simplifies a little: 

do; = (eldx + acjQ — fl\<^i) A CJ0 + ( A u . (22) 

Clearly Adj{o;} = {CJ,CJ0, eldx + au^ — fHux} and the Lagrange subspaces 
1: L C E are of the codimension c = 1. We shall be interested in the infinite-
dimensional Lagrange subspaces where the functions x,wQ,wQ,w2 ( 5 7 - I ) pro­
vide the coordinate system. It is again necessary to resolve the equation (92) 
with unknown functions h = l*h and W = l*W. This leads to equations (13) 
with m = 3, 

h(f{w\ + flw\ - / ) = Wx , -hf\=Wl, -hf* = W*, h = W%, (23) 

however, they are not equivalent to a single TiJ equation of the kind (14). In 
fact, by virtue of the degeneracy, there exist functions G = G(x, wQ, wQ, iDQ, z) , 
II = H(:r, wj, WQJWQ, Z) such that 

/1 = G(. . . ,/>), / X + flw\ - / = lf(..., fl) 

(at least locally) and (23) turns into the (involutive) HJ system 

YL. = M -™L\ -™L-r( ---a-
w$ " V " " W o V ' ^o 3 V " " ' w$ 
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instead of a single equation. 
Passing to the increment formula and extremality properties, the curves Q(t) 

given by (15x) with m = 3 are retained, but quite another curve 

R(t) = {x{t),wl{t),w*^ 

(distinctions at the places w2, s > 2) stands for (152). Fortunately, this change 
does not affect the Weierstrass function £ and the main result that the convexity 
of f in the variable w\ is enough to ensure the extremum. 

Analogous extremality problems as in Section 6 may be introduced without 
any difficulties. They do not have unique solutions, however, the existence of the 
relevant function W (i.e., the embedding into the Mayer field and the convexity) 
provides the sufficient extremality condition as before. 

9. A note on the Jacobi principle. 
We shall deal with two equations w\ = f and w\ = F(f) simultaneously and 

then the more precise notation like e J[/], &[/], e[f] will clarify the exposition. 
Recalling (102), we have e3[f] = /Q 4- f(f0 — Xf( and therefore 

e>[F(f)] = F'(f)ei[f] + f({F'(f){F'(f) - l)/0
3 - XF'(f)) 

after a short calculation. Then, assuming e[f] = e2[f] — ^[/Je1^] = 0 identically 
vanishing, clearly 

e2[F(/)] -b[fy[F(f)] = {f?-b[f]fl)(F'(f)(F'(f)-l)f*-XF'(f)) 

is true and finally the formula 

det{F(f)i1) = F'(f)F"(f)f\l{fl - b[f]f\)2 

can be verified by using the identity f22 = b[f]f\2 = b[f]2f\\. 
Several conclusions follow. 

(0 Either of the identities F'(f) = 0, F"(f) = 0, f2f\\ = f\f\2 ensures 
the degeneracy det(F(f)3

ll) = 0 and the converse is also true. Especially 
the last identity ensures moreover b[F(f)] = b[f]. 

(u) If f2f\\ ^ f\f\2, then the equations ex[F(f)] = e2[F(f)] = 0 imply 

XF'(f) = F'(f)(F'(f)-l)f0, 

hence el[f] = e2[f] = 0 in the case when F'(f) ^ 0. Moreover 
XF'(f) = 0 (hence F'(f) = const # 0) if /0

3 = 0 identically. 

(LU) Conversely, the equation ex[/] = XF'(f) - F'(f)(F'(f) - l ) / 3 = 0 
implies e2[f] = 0 hence e1 [F(f)] = e2[F(f)] = 0. 
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The classical Jacobi least action principle for the "parametrical variational 
problems" appears as a very particular case of points (u), (ui) when f0 = 0 
is assumed. Then the equation F'(f) = const ^ 0 may be interpreted as a 
"normalization" of the independent variable on the underdetermined extremals 
(solutions of el[f] = e2[/] = 0) to obtain determined extremals (solutions of 
el[F(f)]=e*[F(f)]=0). 

10. On t h e rea l iza t ion p rob l em. 
Using the previous simple notation, we shall be interested in the overview 

of all cases when e = 0 is identically vanishing. So we have to resolve the 
identity e2 = be1 regarded as a differential equation for the unknown function 
/ = /(x,ujQ,HjQ,uVQ,uvJ,iv2). The VC form CJ provides a useful tool. 

Assuming e = 0 identically, dimAdjju;} = 3 by virtue of (22), therefore 
hu = U dV — dW for appropriate functions h, U, V, W of variables x, wl

0 , w{ 
(i = 1, 2, 3, j = 1, 2), see Section 3. We shall however begin with the congruence 

d(hu) = dUAdV = 0 (mod c^,cO2,c^) 

easily following from either of the formulae (11), (19), (22). In more detail 

dU A dV =" (XUdx + U\w\ + Ufa*) A (XV dx + Vfa\ + V?u\) .= 0 , (24) 

whence U{XV = V(XU and moreover U\V* = V^U2. We may assume U = 
U(x, HjJ, WQ, I/JQ, V) and then (24) is satisfied if and only if 

ux + ^ o X + Uowl + Uowl = 0 (u>l = f) (25) 

(direct verification). With this particular result, let us consider the obvious con­
gruence huj = U dV - dW = 0 (mod cOJ, cO2, cjjj). In more detail 

U(XVdx + V^u\ + V?u\) ^ XWdx + Wl
xuj\ + Wlu\ , (26) 

whence UV( = W{ and we may assume W = W(x,w\,w\,w\, V). Then (26) 
is satisfied if and only if 

W = U, Wx + Wlw\ + Wtw\ + WZw\ = 0, (w\ = f, ' = ^y) (27) 

(direct verification). 

With these preparatory results, let us turn to the construction of the function 
/ . Abbreviating • • • = a,, ujj, w%, w% , we may choose a function W = W(..., V) 
and assuming VV0

3 ^ 0, (272) determines the function 

F(...,wlwlV) = --L(Wx + Wlw\+Wtwt), (28) 
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a temporary substitute for / . On the other hand, in accordance with (27x), we 
have to put U = W'(..., V) and then 

ux + Uowl + Uowl + Uowl + WoF' = ° (29) 
by using (27) and (28). In order to ensure (25), we must introduce the implicit 
equation 

F'(...,w\,w2,V) = 0 (30) 
for the function V. Our calculations are done: assuming F" ^ 0, (30) determines 
V = V(... ,w\,w\) which, substituted into (28), provides the sought function 
/ = F(... ,w\,w\, V(... ,w\,w\)) such that e = 0 identically. (An alternative 
indirect verification: our solution ensures the identities (24)-(27), hence ku) = 
UdV - dW, dimAdj{/iu;} = 3 and e = 0 by virtue of formula (19).) 

In particular, assume W = W(V, iuj, w0) +w0 . Then U = W' and conditions 
(27), (29) are simplified as 

U]w\ + U*w\ = 0 , W]w\ + W*w\ + F = 0 . (31) 

The function V is clearly homogeneous of the order zero in w\, w\ (by virtue 
of (31J) and 

F{...,w\,w\,V(...,w\,w\))=f(...,w\,w\) 

is homogeneous of the order one (by virtue of (312)). So we obtain the common 
familiar "parametrical" integral / / dx in this very particular case. 

Second example 

11. Two differential equations. 
We deal with the equations 

w 

w 

Ţ = f(x,wl...,w™,w\,...,w?-2), 
•?-1=g(x,wl...,w™1w\,...ìw?-2)ì 

the relevant subdimety Q. = m*lT2(m) C $(M) is defined on the subspace 
m: M C M(m) of all points that satisfy the equations Xl(w™ — / ) = 
K^ujJ72-1 - g) = 0 (/ = 0 , 1 , . . . ). One can see that the functions 

x, wl
0, w3

s (i = l , . . . , r a , j = l , . . . , m - 2 , 5 = 0,1, . . .) 

provide coordinates on M. Then the vector field 

X = d/dx + ^Tjw[dldwi + J2wUid/dwi € ̂  C T(M) 
( < = / , w™~l=g) 
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generates f i 1 and the forms 

CJ0, uJ
s ( i = l , . . . , m , j = l , . . . , m - 2 , 5 = 1,2, . . . ) 

constitute a basis of fi. Filtration (3) consists of submodules 

Clt = {UQ,U)J
S: i = l , . . . , m , j = l , . . . , m - 2 , s < l } c f i , 

where Kerf2/ = ^i-i (I > 1)- Denoting 

<" = < - E /i ̂ o, * = "C1 - E M, 
we obtain 

£ vu, = E F'wo + /«> + /om_1^> -V> = E G ^ + 9™" + 9™'^, (32) 

where 

F> = /g + f{f™ + gif™-1 ~ Xf{ , & = gi + f{g? + gig?-1 - Xg{ 

with j = 1 , . . . , m—2, and it follows that Ker fi0 = {u, u}. To calculate Ker2 QQ , 
the formula 

Cx(Au - BQ) = ^(AFJ - BGJ)uoJ
0 + Cu + Du (33) 

with coefficients 

C = Af™ - Bg™ + XA, F> = Af™-1 - Bg^1 - XB 

will be useful. 
An exhaustive discussion of all interesting subcases which may occur is hardly 

possible at this place. We restrict ourselves to a few indications assuming more­
over m = 3, hence j = 1 in the above formulae. 

12. The most peculiar case . 
If F1 = G1 = 0 identically, then Kerfi0 = Tl(ft) C f2 is the maximal 

completely integrable submodule of Q (see [3; Sect. 7], especially [3; 13(i^)]), 
explicitly Kerfi0 = {U),LJ} = {dF, dG}. The functions F , G of variables x, uv0 , 
w0, w0 can be determined by solving certain ordinary differential equations. 
It follows that the original system is equivalent to the conditions F = const, 
G = const, this should be viewed as a very peculiar and rare case. 

13. The n o n d e g e n e r a t e case. 
Assuming (e.g.) F 1 ^ 0, we have Ker2 fi0 is generated by the single form 

AUJ-BU e Ker fi0 along the subset N C M of all points satisfying A F 1 = BG1. 
We may assume B = 1 for better clarity, hence A = G1 jF1 along N . 
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Passing to the submodule Ker3 fi0 C Ker2 QQ, it is nontrivial if and only if 
the form Cx(Au — u) is a multiple of Au — u (and then Ker3 fi0 = Ker2 fi0) 
which is expressed by AD + C = 0. Since A = G1 /F1 along the subset N c M , 
we obtain the condition 

(e = ) {Gl)2f2 + F 1 G 1 ( / 0
3 -gl) - {Fl)2gl + FlXGl - GlXFl = 0 . (34) 

We are done: the subset M = N C M is defined by the equation e = 0 and 
Vt = {Au — u} = {G1u — Fxu}. It follows that the VC module fi is generated 
by the single form Gxu — F1^ along the £C subspace e: E C M of such points 
that satisfy the system Xle = 0 (I = 0 , 1 , . . . ) . More precisely: clearly 

e = F^G1 - G^F1 + • • • = ( G 1 / 1 1 - F1g\\)wl + • • • (35) 

as the top order terms are concerned. We moreover suppose G1 f\\ ^ F1g\\ to 
ensure that E C M is indeed a subspace and the functions x, w0, w0, w0, w\, w\ 
provide the coordinate system on E . 

One can easily infer that the Lagrangian subspaces 1: L C E are of the 
codimension two. We shall be interested in the case when x, w\, w\, w0 are 
coordinates on L. Then (92) is expressed by 

h^u-F1^) =dW(x1w
1
Q,wl,w*) 

which is equivalent to the system 

-Wx = W*f + W*g + W*w{ , W£ + W2g{ + W*f\ = 0 , FlW*+GlW2 = 0 
(36) 

(and h = -Wfi/F1, hence W$ ^ 0 is supposed). The system (36) gives a single 
equation for the unknown function W: the equations (362 3) can be solved in 
terms of the parameters w\, w\ and these can be inserted into (36J with the 
final result of the classical kind W ^ + H ^ , wj, w2, w0, KV0, JV0, TV0 ) = 0 in terms 
of the corresponding Hamilton function H. (In more detail, (363) rewritten as 
WQIWQ + G1 /F1 = 0 can be resolved with respect to w\ and then (362) 
yields the variable w\. These w\ and w\ inserted into the right-hand side (36x) 
provide the function H. The condition G1 f11 £ F1g\\ with F 1 = -W$/h, 
G1 = W^/h was employed here.) The increment formula (17) with the form 
h(Gxu — F1^) at the place of hu easily follows. The curves (15) with m = 3 
lead to very simple Weierstrass function 

£ = h{...,r{){F{...,w{)-F{...,r{)-Fl{...,r{){w{-r{)), 

where the nonvanishing factor h may be in principle omitted, F = G1 f — F1g 
(alternatively hF = WQ f + W0 g) and the dots stand for the parameters x, w\ , 
WQ , w0 . Various extremality problems can be discussed without much difficulties 
analogously as in Section 6. 
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14. A strange "degenerate" case. 
We shall suppose / = f(x,w1

0,w
2,w^), g = g(x,w^, w2,w%), hence f\ = 

g\ = 0 vanishing identically for a moment. The above formulae simplify very 
much: 

u, = u;0
3, u> = u>2

0, F' = fl(^0), Gl=gl, G1^- F'LO = 9 y - f y , 

and the latter form generates the VC submodule fj C fi. The relevant £C 
subspace E C M is defined by the equations Xle = 0 (/ = 0 , 1 , . . . ), where 

e = (glffo + fUUl - So) - (fo)293o + flXg\ - gl
0X / ' 

is a particular case of (34). Clearly e = (/dgoo ~~ 9ofoo)wl + " " a s the top 
order summands are concerned. Assuming /dgoo ¥" go/do ^ r o m n o w o n ( t n e 

nondegenerate-degenerate case), functions x, w0, w%, w^ may be used for co­
ordinates on E . 

One can see that there are one-codimensional Lagrangian subspaces 1: L C E . 
[fa;, w%, WQ are taken for coordinates on L, then the condition (92) reads 
MgrVu - fo^o) = dW(x, w2, w%), that is 

-Wx = TV3/ + W2g, W2 = -hfl , TV0
3 = hgl . (37) 

The system (37) leads to a single U J equation Wx+H(..., W2, W*) = 0 for the 
unknown function W. (Indeed, the parameter w\ can be determined by using 
Wo/W% + g o / / d — 0 and> inserted into (37x), we obtain the desired result.) 
Passing to the increment formula for the curves 

Q(t)^ (x^^^t)^2^)^^)^^)^2^),...) eM, o<t<i, 

W) = {x(t)y0(t),w*(^^ o<t<i, 

and P(t) e L (0 < t < 1) satisfying (16), then (92) applied to the form 
h(g0u — f*Q) instead of hcj leads to the very unorthodox Weierstrass function 

S = h(rl)(gl(rl)(f(wl) - f(r\)) - fyo)(g(wl) - 5 ( r J ) ) ) , (39) 

where the parameters x, w0 , w% are omitted for brevity. The inequalities £ > 0, 
£ < 0 admit a geometrical interpretation. We shall not discuss the self-evident 
results for various extremality problems, they do not bring any novelty. 

15. The top linear case >. The top linear case . 

Slightly generalizing the previous Section 14, we shall eventually conclude 
th the quasilinear system wit 

w\ = Kw\ + L , w\= Mw\ + N, 
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where K, L, M, N are given functions of variables x, w\, w0, w0. Retaining 
the notation of Sections 11 and 12, we have the forms 

u = LU0 - McjJ = dHJ0 - Mdw\ - Ndx , u = u% - Ku\ = dw0 - Kdwl
0 -Ldx 

such that (32) holds true with the coefficients 

F1 = N1 - Mx + KN2 - LM2 + M/V3 - 7VM3 , 

G1 = L\ - Kx + ML\ - NKl + KL2 - LK2 , 

/0
fc = M 0 X + K . 95 = K*w\+Lk

0 (fc = 2,3). 
Assuming F1 / 0, the form 

G1^ - F1^ = G1 dw3
0 - F1 dw2

0 + (FXK - GXM) dw0 + (FXL - GXN) dx (40) 

generates the VC module f2 C fi along the relevant SC subspace E C M 
defined by Xle = 0 (/ = 0 , 1 , . . . ). The function e was stated in (34), however, 
quite another top order terms than in (35) appear: 

e = Ew\ + . . . , 

E = ^ ( G 1 ) 1 + F1(G1)2K + F1(G1f0M 

- G1(F1)1
0 - G1(F1)2

0K - G1(F1f0M. 

From now on, we suppose E ^ 0, then the functions x, w0, w0, w0 provide 
coordinates on E . 

One can see that the Lagrangian subspaces L C E are of the codimension 
one and we shall be interested in the case when x, w0, w% may be chosen 
for coordinates on L, hence W = W(x,w^,w0) in equation (92) . A certain 
inconvenience appears since the form (40), which should be substituted into the 
left-hand side of (92), involves the abundant summand dw\. 

To cope with this problem, we introduce the equation w0 = r(x,w^,w0) 
valid along the subspace L c E , where r is regarded as an additional unknown 
function. In other words, the equation (92) is completed to the system 

h(G1uo-F1u) =dW(x,w2,w3), w\ =r(x,w2
0,w

3) . (41) 

Then, by using (40) and dw0 = rx dx + r0 dw0 + r0 dw0, one can obtain the 
requirements 

h(T + Srx) = Wx , h(-F* + Sr2
0) = W$ , h(Gl + Sr3

0) = W$ 

for three unknown functions h, r, W of variables x, w%, w% with abbreviations 
S = FXK -GXM, T = F1L-G1N. So we have a strange modification of the 
common HJ equation 

(F 1 -Sr\)Wl + (G1 + Srl)W% = 0, (G1 + Sr3
0)Wx = (T+Srx)W* , (42) 
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where the "parameter" function w\ = r cannot be algebraically deleted. Accord­
ing to the sense of the system (42), the method of Cauchy characteristics may be 
applied and therefore the solution can be reduced to mere ordinary differential 
equations. 

The increment formula for the curves (38) and an extremal P(t) G L (0 < 
t < 1) immediately follows. One can obtain the Weierstrass function 

E = h{rl){G\rl)[{M{wl) - M{rl

0))w\ + yV(>J) - JV(rJ)] -

-F\rl)[{K{wl) - K{rl))w\ + L{wl) - L^)}} , 
(43) 

where the parameters x, w%, w^ were omitted and the variable w\ may be 
regarded as an independent parameter. This is clearly a generalization of the 
previous result (39). 

We again omit the discussion of extremality problems. In principle, it should 
not cause much difficulties. 
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