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POPRODUCT DECOMPOSITION OF A LATTICE 

ZUZANA LADZIANSKA 

In [1] it was proved that in the classes of lattices satisfying the condition (J) any 
two free decompositions of a given lattice have a common refinement. In the 
present paper we generalize this result to the case of the poproduct of lattices. The 
poproduct of lattices was defined in [2]. 

Let K be an equational class of lattices. The following condition (J) was stated in 

[i i . 
(J) If L is a free K-product of the lattices (L£, i e I), A, is a sublattice of L, for / e I 

and A is the sublattice of L generated by u(A,, iel), then A is a free 
K-product of (Ai, iel). 

Lemma. An equational class of lattices satisfies the condition (J) if and only if it 
satisfies the following condition (J') 
(J') If L is a K-poproduct of lattices (Lp,pe P), Ap is a sublattice of Lp for peP 

and A is the sublattice of L generated by u (A p , p eP), then A is 
a K-poproduct of (Ap, peP). 

Proof. Clearly (J') implies (J). We shall show that (J) implies (J'). Let P be 
a partially ordered set and for each p e P let Lp be a lattice. Denote by L = PJC(LP ; 
p eP) a K-poproduct of lattices (Lp, peP) and by F their free K-product. Then 
there exists a congruence relation 0 such that L = F/@. Denote by [u(Ap ; 
peP)]L the sublattice of L generated by the set u(Ap; p eP) and by [u(Ap ; 
p e P)]F the sublattice of F generated by the set u(Ap ; peP). Then there holds 

A = [u(Ap ; p eP)]L = [u(A p ; p eP)]F/0 = F/0 -= PK(AP ;peP). 

The lemma is proved. 
For an element a from the poproduct, the covers a(p), a(p) were defined in [2]. 

Instead of a(p), a(p) we shall write aLp, aLp. In [2] also ideals Tp(a), Tp(a)^Lp were 
defined. Instead of Tp(a), Tp(a) we shall write TLp(a), TLp(a). 

We shall introduce some other notions. Let R, S be partially ordered sets. Let 
(Ar, reR), (Bs,seS) be systems of pairwise disjoint lattices. Let L = PK(Ar; 
reR) = PK(Bs; seS). Let the set RxS be partially ordered as follows: 

(ru si)^(r2, s2) if and only if rt^r2 and si^s2. 
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If p is a lattice polynomial symbol, then we denote by p a polynomial symbol 
arising from p in such a way that the symbols A, V will be replaced by A, V, 
respectively (A, V are the operations in the lattice of ideals (see [2])). 

If M, N are two subsets of the K-poproduct L, then M<N denotes that for the 
ideals (M) , (N) there holds (M) g ( N ) . Especially, M S N denotes that m^=n for 
each pair meM, neN. 

If (Lr, reR) is a system of pairwise disjoint lattices such that some of them can 
also be empty, then under PK(Lr; reR)v/e shall understand PK(Lr; reR'), where 
R'^R is the maximal subset of R such that for reR', Lr=£0. 

Theorem 1. Let K be a nontrivial equational class of lattices satisfying the 
condition (J'). Let LeK. Any two representations of L as a K-poproduct have 
a common refinement. 

Theorem 1 will be proved in the following form: 

Theorem 1'. Let K be a nontrivial equational class of lattices satisfying the 
condition (3'). Let LeK. Let 

Then 

Moreover, for reR, 

and, for s eS, 

L = PK(AR;reR) = PK(Bs;seS). 

L = PK(ArnBs; (r,s)eRxS). 

Ar = PK(ArnBs;seS) 

Bs = PK(ArnBs; reR). 

Proof. Let L = PK(Ar; reR) = PK(Bs; SeS). We shall show that 

(*) if a e Ar, then aBs e A r n B s u ( 0 } u { l } . 

Let a e Ar and let aBs be proper, i.e. =£0, =£1. Since L is generated by the set 
u(Bs; s eS), a can be written in the form 

(1) a = p(bsuU ..., bsuni, ..., bSk,u ..., bSk,nk), 

where p is a (rci + . . . + nk)-ary polynomial, su ..., skeS and bSh,meBSh for 
h = \, ..., k; l^m^nh. Now (1) implies 

(2) (a)inAr = TAr(a) = p(TAr(bsui), ..., TAr(bSk,nk)). 

Without loss of generality we can assume that s = si, then from (1) it follows that 

(3) (aBs)inBs = TBs(a) = p(TBs(b,ul), ..., TBs(bsum), 
TBs(bS2,i), ..., TBs(bSk,nk)) = p((bsul)inBs, ..., 

(bsuni)inBs, TBs(bS2,i), ..., TBs(bSknk)), 

because bsui, ..., bsunieBs. Consider now in (3) TBs(bSl m) for s,=?- s (=Si): 
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1/ if s$5, in S, hence if Bs^BSi, then TBs(fcSi,w) = 0; 
2/ if s^s, in S, hence if Bs^BSi, then TBs(6Si,w) = Bs, (in both cases bSi,m^Bs). 
If M^L, denote TBs(M) = u(TBs(m); meM). 

Since TB,(b) is an isotone function of its argument b, there holds 

(aBs)inBs = TBs(a)= TBs((a)i„Ar)= TBs(TAr(a)) 

and from (2) we get 

(4) (flB.>inB. = TB.(TAr(fl)) = p(TBXTAr(6.1.i))- . - , TBXTAr(bSk,nk))). 

In (4) there holds 
a) if s$s, in S, hence if B s$BS i , then Bs-\:TAr(bSi,m) (because if it were B s < 

TAr(bSl,m), from TAr(fe,i,m)<BSi (see [2], Lemma 1.1) we would get Bs<BSi, a 
'contradiction). Now Bs-\: TAr(bSi,m) implies that TBs(TAr(feSi,w)) = 0 (because if it 
were nonempty, there would exist fteTBl(TAr(fclim)) and there would be 
b^bSi,m, beBs, a contradiction with Bs^BSi; 

b) if s^Si in S, hence Bs^BSi, then from TAr(&,fcm)<(6fJ.m)inB-, it follows that 
TBs(TAr(^,w))<TBs((6Si,w))=TBs(6Sl,w). 

Now the following inequalities hold: 

,-v for Si = Sii (bsum)inBs> TAr(bsum)> TBs(TAr(fosl,w)); 
P j for s^si:TBs(foSl,w)>XSi,w>TBs(TAr(feS|,w)), 

where XS|,W will be suitably defined as follows: 
1/ if TBXbs„m) = 0 (it was in the case 1/ s$s, after the inequality (3)), then also 

TBs(TAr(bSi,m)) = 0, because TBs(TAr(k,,m)) < TBs(/?Si,w) (because 
TAr(^,.m)<(^.m)inBsi) and we put XS i ,w=0; 

2/ if TBs(foSl,w) = Bs (it was the case 2/s=^st after the inequality (3)), then clearly 
TBs(TAr(k.,m))<Bs (because TBs(TAr(k„w))gBs) and we put XSiW = Bs. 

Now from (3) and (4) using (5) we get 

( 6 ) (aBs)inBs =p((bsl,l)inBs, ••., (&si.n, )inB,, TBs(foS2,l), . . . , TBs (bSk, nk)) > 

> p(TAr(bsl,l), . . . , TA-(&si,n,), -X-2.1- ••«, X S k , „ k )> 

>p(TBs(TAr(6sl,i), ..., TB5(TAr(Bsk,nk)))=TBs(TAr(a)) = 
= TB s ( (a ) inA r ) = (flBs)inB5. 

From (6) it follows that 

( 7 ) (aBs)mB4 = p(TAr(bsui), .••> TAr(bsuni), X-2,1, . . . , XSk,nk), 

where XSi,w is either 0 or Bs. 
By the definition of lower covers ([2]) there exists a polynomial q such that 

(8) aB, = q((blx)Ar, ..., (bh)AX where bh,.>-,K, p^rii 
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are those from among bsui, ..., bsuni, for which there exist their lower covers in the 
lattice Ar. 

Since b,n e Ar for n = 1, ..., p by (8), we have also aBs e Ar and because by the 
definition of aBs there holds aBs eBs, we have also aBs eArnBs. 

Now (*) is proved. 
Since a = aAr, from (2) it follows by the definition of the lower covers ([2]) that 

there exists a polynomial w such that 

(9) a = w((bh)Ar,...,(bfm)Ar), 

where bfi e Bfi for / = 1, ..., m ; m = nx + ... + nk and bfl, / = 1, ..., n are those from 
among the bvi,i, ..., bSk,nk for which there exists (bfl)Ar. 

By (*), (bfi)Ar eBflnAr for / = 1 , ..., m holds. 
Now by (9) there is a e [ u ( A r n B s ; s e S)]L for a e Ar. Hence Ar is generated by 

the set u ( A r n B v ; seS). By the property (J'), because (ArnBs, s e S) are 
sublattices of A r, there holds Ar = PK(ArnBs; seS). Then by the "associativity" 
of the poproduct, [2], Lemma 4.2, L = PK(ArnBs; (r, s) eR X S). Theorem I' is 
proved. 
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ПОПРОДУКТОВОЕ РАЗЛОЖЕНИЕ СТРУКТУРЫ 

2игапа Еао*21ап8ка 

Р е з ю м е 

В работе обобщается теорема об общом подразделении всяких двух представлений структуры 

как свободного произведения структур на случай попродукта. 
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