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POPRODUCT DECOMPOSITION OF A LATTICE

ZUZANA LADZIANSKA

In [1] it was proved that in the classes of lattices satisfying the condition (J) any
two free decompositions of a given lattice have a common refinement. In the
present paper we generalize this result to the case of the poproduct of lattices. The

poproduct of lattices was defined in [2].
Let K be an equational class of lattices. The following condition (J) was stated in

[1].
(J) If L is afree K-product of the lattices (L;, i € I), A, is a sublattice of L, for i e I
and A is the sublattice of L generated by U(A;, iel), then A is a free

K-product of (A;, i€ I).
Lemma. An equational class of lattices satisfies the condition (J) if and only if it
satisfies the following condition (J')

(J") If L is a K-poproduct of lattices (L,, p € P), A, is a sublattice of L, for p e P
and A is the sublattice of L generated by U(A,,peP), then A is

a K-poproduct of (A,, p € P).

Proof. Clearly (J') implies (J). We shall show that (J) implies (J’). Let P be
a partially ordered set and for each p € P let L, be a lattice. Denote by L = Px(L, ;
p € P) a K-poproduct of lattices (L,, p € P) and by F their free K-product. Then
there exists a congruence relation © such that L =F/@. Denote by [U(A,;
p € P)]. the sublattice of L generated by the set U(A,; p € P) and by [U(A,;
p € P)]r the sublattice of F generated by the set U(A, ; p € P). Then there holds

A=[U(A,; peP).=[uU(A,; peP)]r/O=F/O=Pc(A,; peP).

The lemma is proved.
For an element a from the poproduct, the covers ae), a® were defined in [2].

Instead of a,), a® we shall write ay,, a*. In [2] also ideals T, (a), T?(a) S L, were
defined. Instead of T,(a), T?(a) we shall write Ty, (a), T"(a).

We shall introduce some other notions. Let R, S be partially ordered sets. Let
(A, reR), (B,, s€S) be systems of pairwise disjoint lattices. Let L =Px(A,;
re R)=Px(B,; s€8S). Let the set RXS be partially ordered as follows:

(ry, s1)=(r, s,) ifandonlyif r=r, and s =s..
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If p is a lattice polynomial symbol, then we denote by p a polynomial symbol
arising from p in such a way that the symbols A, v will be replaced by A, V,
respectively (A, V are the operations in the lattice of ideals (see [2])).

If M, N are two subsets of the K-poproduct L, then M < N denotes that for the
ideals (M), (N) there holds (M) = (N ). Especially, M = N denotes that m = n for
each pair meM, neN.

If (L,, r € R) is a system of pairwise disjoint lattices such that some of them can
also be empty, then under Px(L, ; r € R) we shall understand Px(L,; r € R'), where
R’'<S R is the maximal subset of R such that for re R’, L, # 0.

Theorem 1. Let K be a nontrivial equational class of lattices satisfying the
condition (J'). Let L e K. Any two representations of L as a K-poproduct have
a common refinement.

Theorem 1 will be proved in the following form:

Theorem 1'. Let K be a nontrivial equational class of lattices satisfying the
condition (J'). Let Le K. Let .

L=Px(Ar; re R)=Px(B,;seS).
Then
L=P«(A.NnB,; (r,s)eRXS).
Moreover, for re R,
A,=Px(A,NB;;s€e8s)
and, for s€ S,
B,=Px(A.NnB,; reR).

Proof. Let L=Px(A,; re R)=Px(B,; S€S). We shall show that
(%) ifae A,, then as, € A,NnB,U{0}uU{1}.

Let a€ A, and let as, be proper, i.e. #0, #1. Since L is generated by the set
U(By; s€S), a can be written in the form

(1) a=p(ba.1, ... Banis -oos Bty ooer Do m)s

where p is a (m +...+ n)-ary polynomial, s, ..., sx€S and b,, .€B,, for
h=1, .., k; 1=m=n,. Now (1) implies

(2) (@)ina, = Ta,(a)= p(Ta,(bs.1), .., Ta,(bon))-

Without loss of generality we can assume that s = s,, then from (1) it follows that
(3) (a5, )inn, = To,(a) = p(Ts.(bs.1), ..., To.(ba.n),

TBs(bsz.l)’ [EET) TBS(bSk"'k))=ﬁ((bslvl>inﬂss ceey
(bxl.nl)inB,, TBs(bsz-l), ceey TB.s(bSknk))’

because b;,.1, ..., by, n € Bs. Consider now in (3) Tg, (b, ) for s,;#s (=s1):
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1/ if s£s in S, hence if B,£B,, then Ty,(b;,n)=0;
2/ if s=s in S, hence if B, = B, then Tg,(b,,~)= B, (in both cases b,, . ¢ B,).
If Mc L, denote Ts,(M)=u(Ts,(m); meM).

Since Tg,(b) is an isotone function of its argument b, there holds

(113_‘ )inB‘ = TB‘(Q) = TB_‘ ((a >inA.) = TB.:(TA,(a))

and from (2) we get
4) (a5, Yinn, = To.(Ta,(a)) = p(Ts.(Ta, (b)), ---» To.(Ta,(ba.)))

In (4) there holds

a) if s¥s, in S, hence if B,£B,, then B, K Ta,(b..~) (because if it were B, <
Ta,(bs,m), from Ta, (b, m)< B, (see [2], Lemma 1.1) we would get B, <B,, a
‘contradiction). Now B, K Ta, (b, ) implies that Ts,(Ta, (b)) =9 (because if it
were nonempty, there would exist b € Tg,(Ta,(bs,»)) and there would be
b=b,, , beB,, a contradiction with B,£B,,;

b) if s=s in S, hence B, =B,, then from Ta,(bs,m)<(bs,m)ms. it follows that
Ts,(Ta, (bs.m)) < Ts,((bs.m)) = Ta, (b, m)-

Now the following inequalities hold:

(5) for S5i=$1. (bs|,m)inB,>TA,(bs|,m)> TB,(TA,(bsl,m));
for S.'# S1: TB,(b;i,m) > Xs.-.m > TB;(TAr(b-’i-"'))’

where X, . will be suitably defined as follows:

1/ if Ts,(bs,m)=9 (it was in the case 1/ s¥s after the inequality (3)), then also
Ts.(Ta,(bs.m)) =9, because Te.(Ta,(bs. m)) < Te,(bs,m) (because
Ta,(bs,m)<(bs,m)ins,) and we put X, .=0;

2/ if Ts,(bs.m)= B, (it was the case 2/s =s; after the inequality (3)), then clearly
Ts,(Ta,(bs.m)) < B, (because Tg,(Ta,(bs,»))< B;) and we put X, = B;.

Now from (3) and (4) using (5) we get

(6) (asj)ins, =p-((b5‘_1)in5,, ceey (bn.m)ins,, TB,(b:z,l)a ceey TBs(b’kv"k))>
>ﬁ(TAr(b31.l)) ceey TA,(bs,_n.), sz.ly (R Xxk.nk)>
>p_(TB:(TAr(bSI-1)’ seey TB-‘(TAr(B!k.IIk)))= TB:(TAr(a)) =
= Ts.((a)ina,)=(as, ).

From (6) it follows that

(7) (aB,>inB, = I;(TA.(bsl.l), ety TAy(bSl.'ll)’ sz.h erey X'k-"k)’

where X, .. is either @ or B,.
By the definition of lower covers ([2]) there exists a polynomial q such that

(8) ap, = CI((bn)A., cees (blp)m), where bips -5 b,,, p..-<=ﬂ1
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are those from among b;,.1, ..., by, ., for which there exist their lower covers in the
lattice A,.

Since b, € A, for n=1, ..., p by (8), we have also as, € A, and because by the
definition of up, there holds as, € B, we have also ag, € A,NB;.

Now () is proved.

Since a = aa,, from (2) it follows by the definition of the lower covers ([2]) that
there exists a polynomial w such that

©)] a=w((bp)a,, ..., (b )a,),
where b, e By, fori=1,...,m;m=n+...+m and b, i=1, ..., n are those from
among the by, 1, ..., by . for which there exists (by)a,.

By (%), (b;)a, € B,nA, for i=1, ..., m holds.

Now by (9) there is a e[U(A,nB;; s € S)]. for a € A,. Hence A, is generated by
the set U(A,NB,; seS). By the property (J'), because (A,nB,, s€S) are
sublattices of A,, there holds A, = Px(A,NnB;,; s €S). Then by the “associativity”
of the poproduct, [2], Lemma 4.2, L = Px(A.nB,; (r, s) € R X S). Theorem 1’ is
proved.
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