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THE MINIMAL RIGHT A-IDEAL OF 
THE FREE SEMIGROUP 
ON A COUNTABLE SET 

ROBERT SULKA 

In [1] O. G r o s e k and L. S a t k o have studied some properties of left, right and 
two-sided A-ideals of a semigroup S. A left A-ideal G of a semigroup S is a subset 
GcS such that for all seS there exists a ge G satisfying the relation sge G. The 
right A-ideal is defined dually and the two-sided A-ideal is a subset of S that is 
a left A-ideal and a right a right A-ideal of S. 

In the presented paper we prove the 

Theorem. The free semigroup on a countable set has a minimal right A-ideal. 
The proof of this Theorem is based on Lemma 1 and Lemma 2. 

Lemma 1. Let S = (o„)~ , be a free semigroup on a countable set X, where 
(o„)~ i is a simple sequence. 

Then there exist a simple sequence (i,)7 i of elements of S and a sequence 
G = (9")Z i of elements of S such that the following conditions are satisfied: 

M 1) gk+, = gksk, forall keN= {1, 2, 3, ...} 
{*} 2) d:H={(gp,gq)eGxG\p<q}^S, 

d(gP, gq) = sp...sq i is a bisection. 
We shall give the proof of this Lemma in several steps. Here l(o„) will denote the 

length of the word o„ e S. 
First we construct a finite sequence (sr)

k } of elements of S and a finite sequence 
Gk=(g,)k, i of elements of S for all keN, k^2, satisfying the following 
conditions: 

1) g,+ i = g,sr forall r<k 
(**} 2) d:Hk = {(gP,gq)eGkxGk\p<q}^S, 

d(gP, gq) = sp...sq is an injection. 
I) For k = 2 let (s,) = (o,) and G2 = (g,, g2), where g, is an arbitrary element of S 

and g2 = g,s\. Evidently (s,) and G2 satisfy conditions (**). 
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II) Suppose the sequences (sr)/ \ and G2, having the properties (**) to be 
defined for / e N. We want to define (sr)

2
r' i and G2,+i having the properties (**). 

Let m2, = max{l(d(gp, gq)\(gp, gq)eH2,}. Further let (srfr',, where l(s2,)7z 
2m2„ s2, = x' if X={x} and s2, = xyx2y2...x'y' if X contains at least two distinct 
elements x and y. Let G2,+i = (flr)r'V, where g2,+i = g2,s2,. 

Evidently the property 1) of (**) is satisfied. 
The property 2) of (**) follows from comparing lengths of words. 
a) The relation l(d(gp, g2,+\)) > l(d(gq, g2,+\)) holds for every (gp, gq)eH2„ 

hence d(gp, g2l+x) + d(gq, g2l+i). 
b) We have l(d(gr, o2,+,)) =s l(s2l) > 2m2, > m2, 3= l(d(gp, gq)) for every 

(dp> gq)eH2, and for every greG2„ therefore d(gr, g2l+i) =£ d(gp, gq). This means 
that d: H2,+\—*S is an ijection. 

Hence 2) of (**) holds. 
III) Let us suppose that the sequences (sr)

2
r' \ and G2,+i have the properties (**). 

We define the sequences (sr)r'V and G2,+2 satisfying the properties (**). 
Let S2,+i be the subsequence of S that can be obtained from S by omitting all 

elements of d(H2lrl). 
Let us now consider the sequence (jr)r'V, where s2,+i is the first term of S2,+i. 

Further let G2,+2 = (flr)r'V, where a2,+2 = g2l \s2l+l. 
We shall prove that (s )r'V and G2,+2 have the properties (**). 
Evidently the property 1) of (**) is satisfied. 
The property 2) of (**) will be proved in several steps. 
a) For every (gp, gq)eH2,+\ we have l(d(gp, g2l+2)) > l(d(gq, o2,+2)), hence 

d(gp, fl2,+2) =£ d(gq, g2,+2). 
b) The relation d(gp, gq)4s2,+\ = d(g2,+u g2l+2) holds for every (gP, gq)eH2l+\ 

by the choice of s2l+\. 
c) For every (gP, gq)e H2, and every g, e G2, we have l(d(gp, gq)) ^ m2, < 2m2, 

s= l(d(g„ g2,+\)) < l(d(g„ g2,+2)), hence d(gp, gq) 4= d(g„ g2,+2). 
d) For every (gp, gq)eH2, and also if gP = gqeG2, we have l(d(gq, g2,+\)) < 

l(d(gp, fl2,+2)), therefore d(gq, g2,+\) * d(gP, g2l+2). 
e) It remains to be shown that d(gp, o2l+,) ^ d(gq, g2l+2) for all (gP, gq) e H2.. 
We shall prove it indirectly. 
Let 

d(gP,g2,+\) = d(gq,g2l+2) (i). 

From (i) we get 

Hence 
Sp...Sq \Sq. ..s2, — sq...s2,s2, + l ('i)-

l(sp...sq \Sq...s2,) = l(sq...s2s2, ) (iii). 

Since both words in (ii) contain the word sq...s2„ by compairing lengths of these 
words we get 
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l(sp...sq i) = /(52,+,) = /* (iv). 

a) We have l(d(gp, gq)) = l(s2l+i), (gp, gq)eH2l. If X={x), we get d(gp, gq) 
= 52,+i, (gP, gq)eH2, which contradicts the choice of 52l+i. Hence in the case of 
X={x) we have d(gp, g2l+l) =jt d(gq, g2l+2) for every (gP, gq)eH2l. 

P) Now we shall deal with the case of X containing at least two distinct elements 
x and y. By definition s2, = xyx2y2...x'yi and l(xyx2y2...x'y') = l(s2l) S= 2m2l > 
2l(d(gp, gq)) = 2l(sp...sq-l) = 2l*. Therefore we may write 

52, = uv, where /(«) = /* and l(v)^l*. 

By (ii) we have 
Sp...Sq \Sq...S2,-\UV = Sq...S2,-\UVS2, + \. 

The equality of these two words implies the equality of the initial sections of these 
words having the same length. Since 

l(sp...Sq iSq...S2, i) = /* + l(sq...s2, i) = l(sq...s2, i«) (v), 

we have 

sp...sq...s2, i = 5,...52l \U (vi). 

From (ii) and (vi) we get 

S , . . . S 2 l S 2 , + i = S / , . . . S ( , . . . S 2 l = Sp...Sq...S2, \UV = Sq...S2, \UUV. 

This implies 
Sq...S2, \S2J2l + 1 = Sq...S2, \UUV. 

Hence s2j2l+i = uuv. 
Since 2l(u) *£ l(s2l), we have s2, = uuw, where w may be the empty word. But this 

is a contradiction with the form of the word s2, = xyx2y2...x'y'. 
This means that for all (gp, gq)eH2, we have d(gP, o2l+i) * d(gq, g2,+2). 
From a)—e) we get that the property 2) of (**) is satisfied for the sequences 

(sr)2r'-V and G2,+2. 

Therefore the sequences (s,)*'V and G2,+2 have the properties (**). 
From I)—III) using induction it follows that the sequences (sr)* ' and Gk have 

the properties (**) for all keN, k^2. 
IV) Let us consider (sr)T-i and G = (gn)„ i. We want to show that these 

sequences have the properties (*). 
The property 1) of (*) follows immediatelly from the property 1) of (**). 
The injectivity of the function d: H—*S follows from the injectivity of the 

functions d: Hk-*S. 
The surjectivity of the function d: H-* S is a consequence of the fact that during 

the construction all elements of S = (a„)"-i are used as values of the function d: 
H—*S. The element a, will be used last in the construction of G2l. Therefore the 
function d: H—*S is a bisection. Hence the property 2) of (*) is also satisfied. 
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Lemma 2. Let S = (a„)"-, be a free semigroup on a countable set X, where 
(a„)"=i is a simple sequence. Let (sr)7~\ be a simple sequence of elements of S and 
G = (g„)7.~\ be a sequence of elements of S satisfying (*). Then G = (g„)"=l is 
a minimal right A-ideal of S. 

Proof, a) The mapping d: //—>S is a surjection, hence for every o„eS there 
exists an element (gP, gq) e / / such that gpo„ = gq i.e. for every o„eS there exists an 
element gp e G such that gpo„ = gqeG. This means that G is a right A-ideal. 

b) If we omit an arbitrary element gkeG from G, then G\{gk} is not a right 
A-ideal. 

By the assumption we have gk+1 = gksk, hence d(gk, gk+\) = sk. Since d- //—»S is 
injective, for the element skeS there exists only one pair (gP, gq)eH<=Gx G 
such that d(gp, gq) = sk, namely (gp, gq) = (gk, gk+\). 

Let us suppose that G\{gk} is a right A-ideal. Then for the element skeS there 
exists an element gp e(G\{gk})<=: G such that gPsk = gqe(G\{gk})<=G. Clearly 
(gP,gq)eH<zGxG and d(gp,gq) = sk hold. From this it follows that (gP, gq) 
= (gk, gk+\), therefore we have gk = gp e(G\{gk}), which is impossible. Hence 
G\{gk} is not a right A-ideal. 

We have proved that G is a minimal right A-ideal. Lemma 1 and Lemma 2 imply 
directly our Theorem. 

R e m a r k . The proof of the Theorem involves the construction of a minimal 
A-ideal of the infinite cyclic semigroup. O. G r o s e k and L. S a t k o have con­
structed minimal A-ideals of the infinite cyclic semigroup, distinct from minimal 
A-ideals used in the proof of our Theorem. 
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MHHHMAJIbHblH riPABblH A-HflEAJI CBOBOflHOH n O J i y r P y n i l b l 
HA CHETHOM MHO)KECTBE 

PorJepT UlyjiKa 

Pe3K)Me 

ripHBOAHTCH KOHCTpyKinw HeKOTopbDt MHHHMajibHbix A-HjjeajioB cBoooflHOH nojiytpynnbi Ha 
cweTHOM MHOxecTse, neM noKa3bmaeTcsi HX cymecTBOBaHHe. 
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